Grape Winemaking By-Products: Current Valorization Strategies and Their Value as Source of Tannins with Applications in Food and Feed
Abstract
1. Introduction
2. Tannins: Structure and Considerations
3. Tannins in Grape By-Products
3.1. Skin
Fraction | Cultivar | mDP | Units | Extraction Method | Concentration * | Ref. |
---|---|---|---|---|---|---|
White grapes | ||||||
Pomace | Chardonnay | 4.5 | Catechin, epicatechin, procyanidins B1, B2, B3, B4, procyanidin C1 | PLE, Ace 80%, 103 bar, 5 min, 40 °C | 71.9 | [67] |
Macabeu | 7.1 | 50.8 | ||||
Parellada | 5 | 92.1 | ||||
Premsal Blanc | 10.1 | 12.5 | ||||
Sauvignon Blanc | na | Epicatechin | UAE, EtOH 60%, 300 W, 37 kHz, 20 min, S/L 1:30, 70 °C | 23.8 | [68] | |
Pinot Gris | na | 56 | ||||
Gerwurztraiminer | na | 58.2 | ||||
Italian Riesling | na | Catechin, epicatechin | Maceration, acidified MeOH 50%, S/L 1:10, 6 h, 25 °C | 0.68 mg/g fw | [69] | |
Pinot Gris | 3.4 | Catechin, epicatechin | Maceration, EtOH 50%, S/L 1:10, 30 min, 40 °C | 1 | [70] | |
2.7 | PLE, EtOH 50%, 10.3 MPa, 10 min, 120 °C | 3.4 | ||||
Skin | Malvasia bianca | 26.4 | Vanillin and phoroglucinol equivalents | Maceration, acidified MeOH 100%, 24 h, S/L 1:3, −20 °C Maceration, MeOH 80%, S/L 1:3, 4 h, 25 °C Maceration, MeOH 50%, S/L 1:3, 4 h, 25 °C | 1.5 | [51] |
Moscato bianco | 25.6 | 1.1 | ||||
Nascetta | 24.9 | 0.72 | ||||
Pinot bianco | 34.4 | 0.9 | ||||
Morio Muscat | na | na | UAE, acidified Ace 70%, S/L 1:4, 1 h, <45 °C | 19.4 | [71] | |
Muller Thurgau | 8 | |||||
Moscato bianco | 5.7 | Epicatechin, catechin, epicatechin gallate, procyanidins B1, B2, B3, B4, procyanidin C1 | UAE, EtOH 50%, S/L 1:10, 50 W, 20 min, 25 °C | 3.1 | [46] | |
Arneis | 6.6 | 5.3 | ||||
Cortese | 7.9 | 7.3 | ||||
Garnacha | na | Catechin derivatives, polymeric procyanidins | Maceration, acidified MeOH 80%, S/L 12 h, 4 °C + UAE 5 min (3×) | 1.3 | [59] | |
Maturana | na | 1.5 | ||||
Tempranillo | na | 1.1 | ||||
Viura | na | 1.1 | ||||
Seed | Malvasia bianca | 15.2 | Vanillin and phoroglucinol equivalents | Maceration, MeOH 100%, 24 h, S/L 1:3, −20 °C Maceration, MeOH 80%, S/L 1:3, 4 h, 25 °C Maceration, MeOH 50%, S/L 1:3, 4 h, 25 °C | 13.25 | [51] |
Moscato bianco | 11.5 | 13.35 | ||||
Nascetta | 10 | 5.47 | ||||
Pinot bianco | 9.4 | 9.5 | ||||
Moscato bianco | 4.4 | Epicatechin, catechin, epicatechin gallate, procyanidins B1, B2, B3, B4, procyanidin C1 | UAE, EtOH 50%, S/L 1:10, 50 W, 20 min, 25 °C | 48.6 | [46] | |
Arneis | 3.9 | 30.8 | ||||
Cortese | 6.6 | 57.9 | ||||
Grenache | na | Catechin derivatives, polymeric procyanidins | Maceration, acidified MeOH 80%, S/L 12 h, 4 °C + UAE 5 min (3×) | 11.8 | [59] | |
Maturana | na | 13.2 | ||||
Tempranillo | na | 5.4 | ||||
Viura | na | 5.5 | ||||
Riesling | na | Catechin, epicatechin, procyanidins B1, B2, B4 | UAE, Ace 70%, S/L 2:15, 15 min, 50 °C (3×) | 23 | [72] | |
Chardonnay | na | 13.8 | ||||
Stem | Grenache | na | Catechin derivatives, polymeric procyanidins | Maceration, acidified MeOH 80%, S/L 12 h, 4 °C + UAE 5 min (3×) | 6.1 | [59] |
Maturana | na | 8.6 | ||||
Tempranillo | na | 3.4 | ||||
Viura | na | 4.7 | ||||
Airen | 2.6 | Catechin, epicatechin, gallocatechin, epicatechin gallate, prodelphinidin, procyanidins B1, B2, B4 | MAE, EtOH 12.5%, S/L 1:5, 600 W, 12 min, 75 °C (3×) | 1.2 | [34] | |
Red grapes | ||||||
Pomace | Merlot | na | Epicatechin | UAE, EtOH 60%, 300 W, 37 kHz, 20 min, S/L 1:30, 70 °C | 73.8 | [68] |
Pinot Noir | na | 79.9 | ||||
Cabernet Sauvignon | na | Catechin | Maceration, EtOH 40%, S/L 1:50, 24 h, 25 °C | 160 µg/mL | [73] | |
Merlot | na | 153 µg/mL | ||||
Terci | na | 153 µg/mL | ||||
Cabernet Sauvignon | na | Catechin, epicatechin | Maceration, acidified MeOH 50%, S/L 1:10, 6 h, 25 °C | 0.2 mg/g fw | [69] | |
Merlot | na | 0.04 mg/fw | ||||
Skin | Cabernet Sauvignon | 3.4 | Catechin, epicatechin, gallocatechin, epigallocatechin, epicatechin gallate | Maceration, acidified EtOH 12%, 5 days, 30 °C | 0.62 | [61] |
Carmenere | 2.1 | 0.93 | ||||
Marzemino | 2.6 | 1.1 | ||||
Merlot | 4.2 | 0.01 | ||||
Pinot Noir | 7 | 0.04 | ||||
Shiraz | 3.4 | 0.09 | ||||
Teroldego | 4.4 | 0.05 | ||||
Cabernet Sauvignon | 32.2 | Vanillin and phoroglucinol equivalents | Maceration, MeOH 100%, 24 h, S/L 1:3, −20 °C Maceration, MeOH 80%, S/L 1:3, 4 h, 25 °C Maceration, MeOH 50%, S/L 1:3, 4 h, 25 °C | 1.4 | [51] | |
Nebbiolo | 42.5 | 1.9 | ||||
Cabernet Sauvignon | 4.1 | Monomeric flavan-3-ols, dimeric procyanidins, catechin, epicatechin, epicatechin gallate | HAE, EtOH 10%, 2 h, S/L 1:200 20 °C | 7.9 | [74] | |
Carménère | 3.8 | 8.7 | ||||
Grenache | na | Catechin derivatives, polymeric procyanidins | Maceration, acidified MeOH 80%, S/L 12 h, 4 °C + UAE 5 min (3×) | 0.6 | [59] | |
Graciano | na | 0.4 | ||||
Maturana | na | 0.04 | ||||
Mazuelo | na | 0.2 | ||||
Tempranillo | na | 0.3 | ||||
Grenache | 7.8–11 | Catechin, epicatechin, procyanidin dimers and C1 trimer | Maceration, Ace 80%, S/L 6:55 4 h, 25 °C Maceration, MeOH 60%, S/L 6:55 4 h, 25 °C | 35.2 | [75] | |
Shiraz | 10.2–12.2 | 31.8 | ||||
Carignan | 10.3–12.1 | 46.2 | ||||
Mourvedre | 9.2–12.2 | 47.3 | ||||
Counoise | 11.2–11.7 | 37.6 | ||||
Alicante | 9.9–10.9 | 55.3 | ||||
Barbera | 4.4–6 | Catechin, epicatechin, epicatechin gallate | UAE, EtOH 50%, 50 W, 48 kHz, S/L 1:10, 25 °C | 7.5–21 | [76] | |
Seeds | Shiraz | Proanthocyanidins | Catechin, epicatechin, epicatechin gallate | HAE. Ace 70%, 24 h, 1 mL, 0.1 g | 0.06–0.09 mg/g fw | [77] |
Shiraz | Proanthocyanidins | Catechin, epicatechin, epicatechin gallate | HAE. Ace 70%, 50 mL, 24 h, 20 °C | 25.9 | [78] | |
Grenache | 2.6–14.6 | Catechin, epicatechin, procyanidin dimers and C1 trimer | Maceration, Ace 80%, S/L 6:55 4 h, 25 °C Maceration MeOH 60%, S/L 6:55 4 h, 25 °C | 83.1 | [75] | |
Shiraz | 2.3–12 | 68.9 | ||||
Carignan | 3–10.4 | 78.8 | ||||
Mourvedre | 4.2–12.2 | 69.4 | ||||
Counoise | 2.5–11 | 70.9 | ||||
Alicante | 1.9–8.1 | 84.9 | ||||
Cabernet Sauvignon | 3 | Catechin, epicatechin, gallocatechin, epigallocatechin, epicatechin gallate | Maceration, Acidified EtOH 12%, 5 days, 30 °C | 57.7 | [61] | |
Carmenere | 2.8 | 83.4 | ||||
Marzemino | 2 | 107.4 | ||||
Merlot | 3 | 72.7 | ||||
Pinot Noir | 3.2 | 317.1 | ||||
Shiraz | 3.5 | 63 | ||||
Teroldego | 3.9 | 148.3 | ||||
Cabernet Sauvignon | 11.2 | Vanillin and phoroglucinol equivalents | Maceration, MeOh 100%, 24 h, S/L 1:3, −20 °C Maceration, MeOH (80%), S/L 1:3, 4 h, 25 °C Maceration, MeOH (50%), S/L 1:3, 4 h, 25 °C | 12.1 | [51] | |
Nebbiolo | 12.2 | 16.7 | ||||
Grenache | na | Catechin derivatives, polymeric procyanidins | Maceration, acidified MeOH 80%, S/L 12 h, 4 °C + UAE 5 min (3×) | 3.6 | [59] | |
Graciano | na | 3.6 | ||||
Maturana | na | 1.7 | ||||
Mazuelo | na | 1.7 | ||||
Tempranillo | na | 2.2 | ||||
Carménère | 3.8 | Monomeric flavan-3-ols, dimeric procyanidins, catechin, epicatechin, epicatechin gallate | HAE, acidified EtOH 10%, 2 h, S/L 1:200 20 °C | 86.9 | [74] | |
Cabernet Sauvignon | 4.3 | 90.3 | ||||
Carménère | 4.2 | Catechin, epicatechin, procyanidins B1, B2, B4, B5, procyanidin C1, procyanidin B4-gallate | HAE, acidified EtOH (10%), 2 h, 20 °C | 16.2 | [79] | |
Cabernet Sauvignon | 4 | 11 | ||||
Merlot | 4.8 | 6.6 | ||||
Cabernet Franc | 5.2 | 8.2 | ||||
Barbera | 3.6–4.6 | Catechin, epicatechin, epicatechin gallate | UAE, EtOH 50%, 50 W, 48 kHz, S/L 1:10, 25 °C | 3.7–16.7 | [76] | |
Nebbiolo | 4.2 | Catechin, epicatechin, epicatechin gallate | UAE, Ace 50%, 50 W, 48 kHz, S/L 1:6, 20 min, 25 °C | 8.3 | [80] | |
Stem | Grenache | na | Catechin derivatives, polymeric procyanidins | Maceration, acidified MeOH 80%, S/L 12 h, 4 °C + UAE 5 min (3×) | 4.8 | [59] |
Graciano | na | 4.5 | ||||
Maturana | na | 5.1 | ||||
Mazuelo | na | 3.5 | ||||
Tempranillo | na | 4 | ||||
Cencibel | 2.2 | Catechin, epicatechin, gallocatechin, epicatechin gallate, prodelphinidin, procyanidins B1, B2, B4 | MAE, EtOH 12.5%, S/L 1:5, 600 W, 12 min, 75 °C (3×) | 1.3 | [34] |
3.2. Seeds
3.3. Pulp
3.4. Prunings and Leaf Debris
4. Biological Properties of Tannins
4.1. Antioxidant
4.2. Anti-Inflammatory
4.3. Antidiabetic and Antiobesity
4.4. Cardioprotective
5. Current Food and Feed Applications of Tannins Derived from Grape By-Products
6. Future Trends and Perspectives
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GP | Grape pomace |
GSk | Grape skins |
GSd | Grape seeds |
GSt | Grape stems |
CTs | Condensed tannins |
HTs | Hydrolyzable tannins |
mDP | Mean degree of polymerization |
fw | Fresh weight |
dw | Dry weight |
SOD | Superoxide dismutase |
CAT | Catalase |
GSH | Glutathione |
MDA | Malondialdehyde |
TBARS | Thiobarbituric acid reactive substances |
NO | Nitric oxide |
NF-κB | Nuclear factor kappa B |
IL | Interleukin |
TNF-α | Tumor necrosis factor-alpha |
iNOS | Inducible nitric oxide synthase |
COX | Cyclooxygenase |
CRP | C-reactive protein |
AMPK | Amp-activated protein kinase |
PPAR | Peroxisome proliferator-activated receptor |
PGE | Prostaglandin E |
GLP | Glucagon-like peptide |
LDL | Low-density lipoprotein |
References
- FAO. World Food Production Data—FAOSTAT. Available online: https://www.fao.org/faostat (accessed on 21 February 2024).
- EUROSTAT. Grape Production. Available online: https://ec.europa.eu/eurostat/databrowser/view/tag00121/default/table (accessed on 19 May 2025).
- Pedroza, M.A.; Salinas, M.R.; Alonso, G.L.; Zalacain, A. Oenological Applications of Winemaking By-Products; Elsevier Inc.: Amsterdam, Netherlands, 2017; ISBN 9780128098714. [Google Scholar]
- Brenes, A.; Viveros, A.; Chamorro, S.; Arija, I. Use of Polyphenol-Rich Grape by-Products in Monogastric Nutrition. A Review. Anim. Feed Sci. Technol. 2016, 211, 1–17. [Google Scholar] [CrossRef]
- Prozil, S.O.; Evtuguin, D.V.; Lopes, L.P.C. Chemical Composition of Grape Stalks of Vitis vinifera L. from Red Grape Pomaces. Ind. Crops Prod. 2012, 35, 178–184. [Google Scholar] [CrossRef]
- Genisheva, Z.; Soares, M.; Oliveira, J.M.; Carvalho, J. Wine Production Wastes, Valorization, and Perspectives. In Advances and Challenges in Hazardous Waste Management; IntechOpen: London, UK, 2023; Volume 25, pp. e275–e281. ISBN 0000957720. [Google Scholar]
- Souza, E.L.; Santos, L.F.P.; Barreto, G.d.A.; Leal, I.L.; Oliveira, F.O.; Conceição dos Santos, L.M.; Ribeiro, C.D.F.; Minafra e Rezende, C.S.; Machado, B.A.S. Development and Characterization of Panettones Enriched with Bioactive Compound Powder Produced from Shiraz Grape By-Product (Vitis vinifera L.) and Arrowroot Starch (Maranta arundinaceae L.). Food Chem. Adv. 2023, 2, 100220. [Google Scholar] [CrossRef]
- Martínez Salgado, M.M.; Ortega Blu, R.; Janssens, M.; Fincheira, P. Grape Pomace Compost as a Source of Organic Matter: Evolution of Quality Parameters to Evaluate Maturity and Stability. J. Clean. Prod. 2019, 216, 56–63. [Google Scholar] [CrossRef]
- Zacharof, M.P. Grape Winery Waste as Feedstock for Bioconversions: Applying the Biorefinery Concept. Waste Biomass Valorization 2017, 8, 1011–1025. [Google Scholar] [CrossRef]
- Muhlack, R.A.; Potumarthi, R.; Jeffery, D.W. Sustainable Wineries through Waste Valorisation: A Review of Grape Marc Utilisation for Value-Added Products. Waste Manag. 2018, 72, 99–118. [Google Scholar] [CrossRef]
- Da Ros, C.; Cavinato, C.; Pavan, P.; Bolzonella, D. Winery Waste Recycling through Anaerobic Co-Digestion with Waste Activated Sludge. Waste Manag. 2014, 34, 2028–2035. [Google Scholar] [CrossRef]
- Ping, L.; Pizzi, A.; Guo, Z.D.; Brosse, N. Condensed Tannins from Grape Pomace: Characterization by FTIR and MALDI TOF and Production of Environment Friendly Wood Adhesive. Ind. Crops Prod. 2012, 40, 13–20. [Google Scholar] [CrossRef]
- Gazzola, D.; Vincenzi, S.; Marangon, M.; Pasini, G.; Curioni, A. Grape Seed Extract: The First Protein-Based Fining Agent Endogenous to Grapes. Aust. J. Grape Wine Res. 2017, 23, 215–225. [Google Scholar] [CrossRef]
- Jiménez-Martínez, M.D.; Bautista-Ortín, A.B.; Gil-Muñoz, R.; Gómez-Plaza, E. Comparison of Fining Red Wines with Purified Grape Pomace versus Commercial Fining Agents: Effect on Wine Chromatic Characteristics and Phenolic Content. Int. J. Food Sci. Technol. 2019, 54, 1018–1026. [Google Scholar] [CrossRef]
- Lavelli, V.; Sri Harsha, P.S.C.; Spigno, G. Modelling the Stability of Maltodextrin-Encapsulated Grape Skin Phenolics Used as a New Ingredient in Apple Puree. Food Chem. 2016, 209, 323–331. [Google Scholar] [CrossRef]
- Zhang, N.; Hoadley, A.; Patel, J.; Lim, S.; Li, C. Sustainable Options for the Utilization of Solid Residues from Wine Production. Waste Manag. 2017, 60, 173–183. [Google Scholar] [CrossRef]
- Fraga-Corral, M.; García-Oliveira, P.; Pereira, A.G.; Lourenço-Lopes, C.; Jimenez-Lopez, C.; Prieto, M.A.; Simal-Gandara, J. Technological Application of Tannin-Based Extracts. Molecules 2020, 25, 614. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, X.; Zhao, G.; Hu, T.; Wang, Y. Potential and Challenges of Tannins as an Alternative to In-Feed Antibiotics for Farm Animal Production. Anim. Nutr. 2018, 4, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Ge, W.; Xu, Y.; Niu, M.; Jia, C.; Zhao, S. The Differentiation between Condensed and Hydrolyzable Tannins with Different Molecular Weights in Affecting the Rheological Property of Wheat Flour-Based Dough. J. Cereal Sci. 2023, 111, 103666. [Google Scholar] [CrossRef]
- Hosseini-Vashan, S.J.; Safdari-Rostamabad, M.; Piray, A.H.; Sarir, H. The Growth Performance, Plasma Biochemistry Indices, Immune System, Antioxidant Status, and Intestinal Morphology of Heat-Stressed Broiler Chickens Fed Grape (Vitis Vinifera) Pomace. Anim. Feed Sci. Technol. 2020, 259, 114343. [Google Scholar] [CrossRef]
- Vera, M.; Urbano, B.F. Tannin Polymerization: An Overview. Polym. Chem. 2021, 12, 4272–4290. [Google Scholar] [CrossRef]
- Fabbrini, M.; D’Amico, F.; Barone, M.; Conti, G.; Mengoli, M.; Brigidi, P.; Turroni, S. Polyphenol and Tannin Nutraceuticals and Their Metabolites: How the Human Gut Microbiota Influences Their Properties. Biomolecules 2022, 12, 875. [Google Scholar] [CrossRef]
- Unusan, N. Proanthocyanidins in Grape Seeds: An Updated Review of Their Health Benefits and Potential Uses in the Food Industry. J. Funct. Foods 2020, 67, 103861. [Google Scholar] [CrossRef]
- Vuolo, M.M.; Lima, V.S.; Maróstica Junior, M.R. Phenolic Compounds: Structure, Classification, and Antioxidant Power. In Bioactive Compounds: Health Benefits and Potential Applications; Elsevier: Amsterdam, Netherlands, 2018; pp. 33–50. ISBN 9780128147757. [Google Scholar]
- Molino, S.; Casanova, N.A.; Rufián Henares, J.Á.; Fernandez Miyakawa, M.E. Natural Tannin Wood Extracts as a Potential Food Ingredient in the Food Industry. J. Agric. Food Chem. 2020, 68, 2836–2848. [Google Scholar] [CrossRef]
- Ncube, B.; Van Staden, J. Tilting Plant Metabolism for Improved Metabolite Biosynthesis and Enhanced Human Benefit. Molecules 2015, 20, 12698–12731. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.P. Tannin Degradation by Phytopathogen’s Tannase: A Plant’s Defense Perspective. Biocatal. Agric. Biotechnol. 2019, 21, 101342. [Google Scholar] [CrossRef]
- Chang, Z.; Zhang, Q.; Liang, W.; Zhou, K.; Jian, P.; She, G.; Zhang, L. A Comprehensive Review of the Structure Elucidation of Tannins from Terminalia Linn. In Evidence-Based Complementary and Alternative Medicine; Hindawi: London, UK, 2019; p. 26. [Google Scholar]
- Shirmohammadli, Y.; Efhamisisi, D.; Pizzi, A. Tannins as a Sustainable Raw Material for Green Chemistry: A Review. Ind. Crops Prod. 2018, 126, 316–332. [Google Scholar] [CrossRef]
- Garrido, J.; Borges, F. Wine and Grape Polyphenols—A Chemical Perspective. Food Res. Int. 2013, 54, 1844–1858. [Google Scholar] [CrossRef]
- Salminen, J.P.; Karonen, M. Chemical Ecology of Tannins and Other Phenolics: We Need a Change in Approach. Funct. Ecol. 2011, 25, 325–338. [Google Scholar] [CrossRef]
- Carpena, M.; Pereira, A.G.; Prieto, M.A.; Simal-Gandara, J. Wine Aging Technology: Fundamental Role of Wood Barrels. Foods 2020, 9, 1160. [Google Scholar] [CrossRef]
- Narduzzi, L.; Stanstrup, J.; Mattivi, F. Comparing Wild American Grapes with Vitis vinifera: A Metabolomics Study of Grape Composition. J. Agric. Food Chem. 2015, 63, 6823–6834. [Google Scholar] [CrossRef]
- Cebrián-Tarancón, C.; Sánchez-Gómez, R.; Gómez-Alonso, S.; Hermosín-Gutierrez, I.; Mena-Morales, A.; García-Romero, E.; Salinas, M.R.; Zalacain, A. Vine-Shoot Tannins: Effect of Post-Pruning Storage and Toasting Treatment. J. Agric. Food Chem. 2018, 66, 5556–5562. [Google Scholar] [CrossRef]
- Santiago-Medina, F.J.; Pizzi, A.; Basso, M.C.; Delmotte, L.; Celzard, A. Polycondensation Resins by Flavonoid Tannins Reaction with Amines. Polymers 2017, 9, 37. [Google Scholar] [CrossRef]
- Guo, L.; Qiang, T.; Ma, Y.; Wang, K.; Du, K. Optimisation of Tannin Extraction from Coriaria nepalensis Bark as a Renewable Resource for Use in Tanning. Ind. Crops Prod. 2020, 149, 112360. [Google Scholar] [CrossRef]
- Bule, M.; Khan, F.; Niaz, K. Recent Advances in Natural Products Analysis, 1st ed.; Silva, A.S., Nabavi, S.F., Saeedi, M., Nabavi, S.M., Eds.; Elsevier: Amsterdam, Netherlands, 2020; ISBN 9780128164556. [Google Scholar]
- Padilla-González, G.F.; Grosskopf, E.; Sadgrove, N.J.; Simmonds, M.S.J. Chemical Diversity of Flavan-3-Ols in Grape Seeds: Modulating Factors and Quality Requirements. Plants 2022, 11, 809. [Google Scholar] [CrossRef]
- Neto, R.T.; Santos, S.A.O.; Oliveira, J.; Silvestre, A.J.D. Biorefinery of High Polymerization Degree Proanthocyanidins in the Context of Circular Economy. Ind. Crops Prod. 2020, 151, 112450. [Google Scholar] [CrossRef]
- Rajasekar, N.; Sivanantham, A.; Ravikumar, V.; Rajasekaran, S. An Overview on the Role of Plant-Derived Tannins for the Treatment of Lung Cancer. Phytochemistry 2021, 188, 112799. [Google Scholar] [CrossRef]
- Teixeira, N.; Mateus, N.; de Freitas, V. Updating the Research on Prodelphinidins from Dietary Sources. Food Res. Int. 2016, 85, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Saminathan, M.; Tan, H.; Sieo, C.; Abdullah, N.; Wong, C.; Abdulmalek, E.; Ho, Y. Polymerization Degrees, Molecular Weights and Protein-Binding Affinities of Condensed Tannin Fractions from a Leucaena Leucocephala Hybrid. Molecules 2014, 19, 7990–8010. [Google Scholar] [CrossRef]
- Mukherjee, P.K. Qualitative Analysis for Evaluation of Herbal Drugs. In Quality Control and Evaluation of Herbal Drugs; Elsevier: Amsterdam, Netherlands, 2019; pp. 79–149. ISBN 9780128133743. [Google Scholar]
- Koopmann, A.-K.; Schuster, C.; Torres-Rodríguez, J.; Kain, S.; Pertl-Obermeyer, H.; Petutschnigg, A.; Hüsing, N. Tannin-Based Hybrid Materials and Their Applications: A Review. Molecules 2020, 25, 4910. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Huh, S.M.; Mun, J.H.; Kwon, Y.E.; Im, D.; Kim, J.; Choi, B.J.; Yim, B.; Hur, Y.Y.; Yu, H.J. Early Peak of Tannin Content and Gene Expression Related to Tannin Biosynthesis in Table Grape Skin during Berry Development. Hortic. Environ. Biotechnol. 2025. [Google Scholar] [CrossRef]
- Guaita, M.; Motta, S.; Messina, S.; Casini, F.; Bosso, A. Polyphenolic Profile and Antioxidant Activity of Green Extracts from Grape Pomace Skins and Seeds of Italian Cultivars. Foods 2023, 12, 3880. [Google Scholar] [CrossRef]
- Chengolova, Z.; Ivanov, Y.; Godjevargova, T. Comparison of Identification and Quantification of Polyphenolic Compounds in Skins and Seeds of Four Grape Varieties. Molecules 2023, 28, 4061. [Google Scholar] [CrossRef]
- Okuda, T.; Ito, H. Tannins of Constant Structure in Medicinal and Food Plants-Hydrolyzable Tannins and Polyphenols Related to Tannins. Molecules 2011, 16, 2191–2217. [Google Scholar] [CrossRef]
- Travaglia, F.; Bordiga, M.; Locatelli, M.; Coïsson, J.D.; Arlorio, M. Polymeric Proanthocyanidins in Skins and Seeds of 37 Vitis vinifera L. Cultivars: A Methodological Comparative Study. J. Food Sci. 2011, 76, 742–749. [Google Scholar] [CrossRef]
- Seddon, T.J.; Downey, M.O. Comparison of Analytical Methods for the Determination of Condensed Tannins in Grape Skin. Aust. J. Grape Wine Res. 2008, 14, 54–61. [Google Scholar] [CrossRef]
- Bordiga, M.; Travaglia, F.; Locatelli, M.; Coïsson, J.D.; Arlorio, M. Characterisation of Polymeric Skin and Seed Proanthocyanidins during Ripening in Six Vitis vinifera L. Cv. Food Chem. 2011, 127, 180–187. [Google Scholar] [CrossRef]
- Ma, W.; Guo, A.; Zhang, Y.; Wang, H.; Liu, Y.; Li, H. A Review on Astringency and Bitterness Perception of Tannins in Wine. Trends Food Sci. Technol. 2014, 40, 6–19. [Google Scholar] [CrossRef]
- Zhou, H.-C.; Tam, N.F.; Lin, Y.-M.; Ding, Z.-H.; Chai, W.-M.; Wei, S.-D. Relationships between Degree of Polymerization and Antioxidant Activities: A Study on Proanthocyanidins from the Leaves of a Medicinal Mangrove Plant Ceriops Tagal. PLoS ONE 2014, 9, e107606. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Tuo, X.; Wang, L.; Tundis, R.; Portillo, M.P.; Simal-Gandara, J.; Yu, Y.; Zou, L.; Xiao, J.; Deng, J. Bioactive Procyanidins from Dietary Sources: The Relationship between Bioactivity and Polymerization Degree. Trends Food Sci. Technol. 2021, 111, 114–127. [Google Scholar] [CrossRef]
- Chai, W.; Wu, Y.; Li, X.; Zeng, S.; Cheng, Y.; Jiang, W.; Pan, Q.; Xia, X.; Chen, G. Relationships between Degree of Polymerization and Activities: A Study on Condensed Tannins from the Bark of Ficus Altissima. Int. J. Biol. Macromol. 2024, 274, 133306. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, H.; Tang, L.; Hu, X.; Xu, M. Isolation, Characterization, Antioxidant Activity, Metal-Chelating Activity, and Protein-Precipitating Capacity of Condensed Tannins from Plum (Prunus salicina) Fruit. Antioxidants 2022, 11, 714. [Google Scholar] [CrossRef]
- D’Eusanio, V.; Malferrari, D.; Marchetti, A.; Roncaglia, F.; Tassi, L. Waste By-Product of Grape Seed Oil Production: Chemical Characterization for Use as a Food and Feed Supplement. Life 2023, 13, 326. [Google Scholar] [CrossRef]
- Felice, F.; Zambito, Y.; Di Colo, G.; D’Onofrio, C.; Fausto, C.; Balbarini, A.; Di Stefano, R. Red Grape Skin and Seeds Polyphenols: Evidence of Their Protective Effects on Endothelial Progenitor Cells and Improvement of Their Intestinal Absorption. Eur. J. Pharm. Biopharm. 2012, 80, 176–184. [Google Scholar] [CrossRef]
- Mosele, J.; da Costa, B.S.; Bobadilla, S.; Motilva, M.J. Phenolic Composition of Red and White Wine Byproducts from Different Grapevine Cultivars from La Rioja (Spain) and How This Is Affected by the Winemaking Process. J. Agric. Food Chem. 2023, 71, 18746–18757. [Google Scholar] [CrossRef]
- Cáceres-Mella, A.; Talaverano, M.I.; Villalobos-González, L.; Ribalta-Pizarro, C.; Pastenes, C. Controlled Water Deficit during Ripening Affects Proanthocyanidin Synthesis, Concentration and Composition in Cabernet Sauvignon Grape Skins. Plant Physiol. Biochem. 2017, 117, 34–41. [Google Scholar] [CrossRef]
- Mattivi, F.; Vrhovsek, U.; Masuero, D.; Trainotti, D. Differences in the Amount and Structure of Extractable Skin and Seed Tannins amongst Red Grape Varieties. Aust. J. Grape Wine Res. 2009, 15, 27–35. [Google Scholar] [CrossRef]
- Blancquaert, E.H.; Oberholster, A.; Ricardo-da-Silva, J.M.; Deloire, A.J. Grape Flavonoid Evolution and Composition Under Altered Light and Temperature Conditions in Cabernet Sauvignon (Vitis vinifera L.). Front. Plant Sci. 2019, 10, 1062. [Google Scholar] [CrossRef] [PubMed]
- Sparrow, A. Comparative Analysis of Wine Tannins from Pinot Noir Grapes; University of Tasmania: Tasmania, Australia, 2015. [Google Scholar]
- Hanlin, R.L.; Hrmova, M.; Harbertson, J.F.; Downey, M.O. Review: Condensed Tannin and Grape Cell Wall Interactions and Their Impact on Tannin Extractability into Wine. Aust. J. Grape Wine Res. 2010, 16, 173–188. [Google Scholar] [CrossRef]
- Herderich, M.J.; Smith, P.A. Analysis of Grape and Wine Tannins: Methods, Applications and Challenges. Aust. J. Grape Wine Res. 2005, 11, 205–214. [Google Scholar] [CrossRef]
- Luzio, A.; Bernardo, S.; Correia, C.; Moutinho-Pereira, J.; Dinis, L.-T. Phytochemical Screening and Antioxidant Activity on Berry, Skin, Pulp and Seed from Seven Red Mediterranean Grapevine Varieties (Vitis vinifera L.) Treated with Kaolin Foliar Sunscreen. Sci. Hortic. (Amsterdam). 2021, 281, 109962. [Google Scholar] [CrossRef]
- González-Centeno, M.R.; Jourdes, M.; Femenia, A.; Simal, S.; Rosselló, C.; Teissedre, P.L. Characterization of Polyphenols and Antioxidant Potential of White Grape Pomace Byproducts (Vitis vinifera L.). J. Agric. Food Chem. 2013, 61, 11579–11587. [Google Scholar] [CrossRef]
- Zhao, Y.; Tran, K.; Brennan, M.; Brennan, C. Kinetics of Ultrasonic Extraction of Polyphenols, Anthocyanins and Tannins from Five Different New Zealand Grape Pomaces. Int. J. Food Sci. Technol. 2021, 56, 2687–2695. [Google Scholar] [CrossRef]
- Pintać, D.; Majkić, T.; Torović, L.; Orčić, D.; Beara, I.; Simin, N.; Mimica–Dukić, N.; Lesjak, M. Solvent Selection for Efficient Extraction of Bioactive Compounds from Grape Pomace. Ind. Crops Prod. 2018, 111, 379–390. [Google Scholar] [CrossRef]
- Natolino, A.; Passaghe, P.; Brugnera, G.; Comuzzo, P. Intensification of Grape Marc (Vitis vinifera) Exploitation by Subcritical Water-Ethanol Extraction: Effect on Polyphenol Bioactivities and Kinetic Modelling. J. Food Eng. 2024, 381, 112185. [Google Scholar] [CrossRef]
- Deng, Q.; Penner, M.H.; Zhao, Y. Chemical Composition of Dietary Fiber and Polyphenols of Five Different Varieties of Wine Grape Pomace Skins. Food Res. Int. 2011, 44, 2712–2720. [Google Scholar] [CrossRef]
- Khanal, R.C.; Howard, L.R.; Prior, R.L. Procyanidin Composition of Selected Fruits and Fruit Byproducts Is Affected by Extraction Method and Variety. J. Agric. Food Chem. 2009, 57, 8839–8843. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, L.F.; Ribani, R.H.; Francisco, T.M.G.; Soares, A.A.; Pontarolo, R.; Haminiuk, C.W.I. Profile of Bioactive Compounds from Grape Pomace (Vitis vinifera and Vitis labrusca) by Spectrophotometric, Chromatographic and Spectral Analyses. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2015, 1007, 72–80. [Google Scholar] [CrossRef]
- Obreque-Slier, E.; Peña-Neira, Á.; López-Solís, R.; Zamora-Marín, F.; Ricardo-da Silva, J.M.; Laureano, O. Comparative Study of the Phenolic Composition of Seeds and Skins from Carménère and Cabernet Sauvignon Grape Varieties (Vitis vinifera L.) during Ripening. J. Agric. Food Chem. 2010, 58, 3591–3599. [Google Scholar] [CrossRef]
- Ky, I.; Lorrain, B.; Kolbas, N.; Crozier, A.; Teissedre, P.-L. Wine By-Products: Phenolic Characterization and Antioxidant Activity Evaluation of Grapes and Grape Pomaces from Six Different French Grape Varieties. Molecules 2014, 19, 482–506. [Google Scholar] [CrossRef]
- Guaita, M.; Panero, L.; Motta, S.; Mangione, B.; Bosso, A. Effects of High-Temperature Drying on the Polyphenolic Composition of Skins and Seeds from Red Grape Pomace. LWT 2021, 145, 111323. [Google Scholar] [CrossRef]
- Downey, M.O.; Harvey, J.S.; Robinson, S.P. Analysis of Tannins in Seeds and Skins of Shiraz Grapes throughout Berry Development. Aust. J. Grape Wine Res. 2003, 9, 15–27. [Google Scholar] [CrossRef]
- Kennedy, J.A.; Troup, G.J.; Pilbrow, J.R.; Hutton, D.R.; Hewitt, D.; Hunter, C.R.; Ristic, R.; Iland, P.G.; Jones, G.P. Development of Seed Polyphenols in Berries from Vitis vinifera L. Cv. Shiraz. Aust. J. Grape Wine Res. 2000, 6, 244–254. [Google Scholar] [CrossRef]
- Obreque-Slier, E.; López-Solís, R.; Castro-Ulloa, L.; Romero-Díaz, C.; Peña-Neira, Á. Phenolic Composition and Physicochemical Parameters of Carménère, Cabernet Sauvignon, Merlot and Cabernet Franc Grape Seeds (Vitis vinifera L.) during Ripening. LWT-Food Sci. Technol. 2012, 48, 134–141. [Google Scholar] [CrossRef]
- Bosso, A.; Guaita, M.; Petrozziello, M. Influence of Solvents on the Composition of Condensed Tannins in Grape Pomace Seed Extracts. Food Chem. 2016, 207, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Coklar, H. Antioxidant Capacity and Phenolic Profile of Berry, Seed, and Skin of Ekşikara (Vitis vinifera L) Grape: Influence of Harvest Year and Altitude. Int. J. Food Prop. 2017, 20, 2071–2087. [Google Scholar] [CrossRef]
- Zsófi, Z.; Villangó, S.; Pálfi, Z.; Tóth, E.; Bálo, B. Texture Characteristics of the Grape Berry Skin and Seed (Vitis vinifera L. Cv. Kékfrankos) under Postveraison Water Deficit. Sci. Hortic. 2014, 172, 176–182. [Google Scholar] [CrossRef]
- Hanlin, R.L.; Downey, M.O. Condensed Tannin Accumulation and Composition in Skin of Shiraz and Cabernet Sauvignon Grapes during Berry Development. Am. J. Enol. Vitic. 2009, 60, 13–23. [Google Scholar] [CrossRef]
- Bambina, P.; Gancel, A.L.; Corona, O.; Jourdes, M.; Teissedre, P.L. Soil Effect on Proanthocyanidins Composition of Red and White Wines Obtained from Nero d’Avola and Grillo Vitis vinifera L. Cultivars. Food Chem. 2024, 443, 138521. [Google Scholar] [CrossRef]
- Poudel, P.R.; Koyama, K.; Goto-Yamamoto, N. Evaluating the Influence of Temperature on Proanthocyanidin Biosynthesis in Developing Grape Berries (Vitis vinifera L.). Mol. Biol. Rep. 2020, 47, 3501–3510. [Google Scholar] [CrossRef]
- Rousserie, P.; Rabot, A.; Geny-Denis, L. From Flavanols Biosynthesis to Wine Tannins: What Place for Grape Seeds? J. Agric. Food Chem. 2019, 67, 1325–1343. [Google Scholar] [CrossRef]
- Ky, I.; Teissedre, P.L. Characterisation of Mediterranean Grape Pomace Seed and Skin Extracts: Polyphenolic Content and Antioxidant Activity. Molecules 2015, 20, 2190–2207. [Google Scholar] [CrossRef]
- Hensen, J.P.; Dörner, M.; Etzbach, L.; Schieber, A.; Weber, F. Seed Maturation Dynamics in Cabernet Sauvignon and Pinot Noir Grapes During Berry Ripening in Cool Climate Zones. ACS Food Sci. Technol. 2024, 4, 161–172. [Google Scholar] [CrossRef]
- Genebra, T.; Santos, R.; Francisco, R.; Pinto-Marijuan, M.; Brossa, R.; Serra, A.; Duarte, C.; Chaves, M.; Zarrouk, O. Proanthocyanidin Accumulation and Biosynthesis Are Modulated by the Irrigation Regime in Tempranillo Seeds. Int. J. Mol. Sci. 2014, 15, 11862–11877. [Google Scholar] [CrossRef]
- Watrelot, A.A.; Norton, E.L. Chemistry and Reactivity of Tannins in Vitis Spp.: A Review. Molecules 2020, 25, 2110. [Google Scholar] [CrossRef] [PubMed]
- Petropoulos, S.; Kanellopoulou, A.; Paraskevopoulos, I.; Kotseridis, Y.; Kallithraka, S. Characterization of Grape and Wine Proanthocyanidins of Agiorgitiko (Vitis vinifera L. Cv.) Cultivar Grown in Different Regions of Nemea. J. Food Compos. Anal. 2017, 63, 98–110. [Google Scholar] [CrossRef]
- Calderan, A.; Sivilotti, P.; Braidotti, R.; Mihelčič, A.; Lisjak, K.; Vanzo, A. Managing Moderate Water Deficit Increased Anthocyanin Concentration and Proanthocyanidin Galloylation in “Refošk” Grapes in Northeast Italy. Agric. Water Manag. 2021, 246, 106684. [Google Scholar] [CrossRef]
- Gerós, H.; Chaves, M.M.; Delrot, S. The Biochemistry of the Grape Berry; Bentham Science Publishers: Sharjah, UAE, 2012. [Google Scholar] [CrossRef]
- Nunes, M.A.; Rodrigues, F.; Oliveira, M.B.P.P. Grape Processing By-Products as Active Ingredients for Cosmetic Proposes; Elsevier Inc.: Amsterdam, Netherlands, 2017; ISBN 9780128098714. [Google Scholar]
- Sparrow, A.M.; Dambergs, R.G.; Bindon, K.A.; Smith, P.A.; Close, D.C. Interactions of Grape Skin, Seed, and Pulp on Tannin and Anthocyanin Extraction in Pinot Noir Wines. Am. J. Enol. Vitic. 2015, 66, 472–481. [Google Scholar] [CrossRef]
- Esteban, M.A.; Villanueva, M.J.; Lissarrague, J.R. Effect of Irrigation on Changes in the Anthocyanin Composition of the Skin of Cv Tempranillo (Vitis vinifera L) Grape Berries during Ripening. J. Sci. Food Agric. 2001, 81, 409–420. [Google Scholar] [CrossRef]
- Kennedy, J.A.; Matthews, M.A.; Waterhouse, A.L. Effect of Maturity and Vine Water Status on Grape Skin and Wine Flavonoids. Am. J. Enol. Vitic. 2002, 53, 268–274. [Google Scholar] [CrossRef]
- Harbertson, J.F.; Kennedy, J.A.; Adams, D.O. Tannin in Skins and Seeds of Cabernet Sauvignon, Syrah, and Pinot Noir Berries during Ripening. Am. J. Enol. Vitic. 2002, 53, 54–59. [Google Scholar] [CrossRef]
- Fournand, D.; Vicens, A.; Sidhoum, L.; Souquet, J.-M.; Moutounet, M.; Cheynier, V. Accumulation and Extractability of Grape Skin Tannins and Anthocyanins at Different Advanced Physiological Stages. J. Agric. Food Chem. 2006, 54, 7331–7338. [Google Scholar] [CrossRef]
- Cheng, Y.; Wimalasiri, P.M.; Tian, B.; Watrelot, A.A. Influence of Grape Flesh on the Retention and Composition of Polyphenols from Skins and Seeds. J. Agric. Food Chem. 2024, 72, 9351–9364. [Google Scholar] [CrossRef]
- Kennedy, J.A.; Waterhouse, A.L. Analysis of Pigmented High-Molecular-Mass Grape Phenolics Using Ion-Pair, Normal-Phase High-Performance Liquid Chromatography. J. Chromatogr. A 2000, 866, 25–34. [Google Scholar] [CrossRef]
- Downey, M.O.; Harvey, J.S.; Robinson, S.P. The Effect of Bunch Shading on Berry Development and Flavonoid Accumulation in Shiraz Grapes. Aust. J. Grape Wine Res. 2004, 10, 55–73. [Google Scholar] [CrossRef]
- Cosme, F.; Pinto, T.; Vilela, A. Phenolic Compounds and Antioxidant Activity in Grape Juices: A Chemical and Sensory View. Beverages 2018, 4, 22. [Google Scholar] [CrossRef]
- Liu, Y.-X.; Pan, Q.-H.; Yan, G.-L.; He, J.-J.; Duan, C.-Q. Changes of Flavan-3-Ols with Different Degrees of Polymerization in Seeds of ‘Shiraz’, ‘Cabernet Sauvignon’ and ‘Marselan’ Grapes after Veraison. Molecules 2010, 15, 7763–7774. [Google Scholar] [CrossRef] [PubMed]
- Kaan Kurtural, S.; Fidelibus, M.W. Mechanization of Pruning, Canopy Management, and Harvest in Winegrape Vineyards. Am. J. Enol. Vitic. 2021, 5, 29–44. [Google Scholar] [CrossRef]
- Makris, D.P.; Boskou, G.; Andrikopoulos, N.K. Recovery of Antioxidant Phenolics from White Vinification Solid By-Products Employing Water/Ethanol Mixtures. Bioresour. Technol. 2007, 98, 2963–2967. [Google Scholar] [CrossRef]
- Ping, L.; Brosse, N.; Sannigrahi, P.; Ragauskas, A. Evaluation of Grape Stalks as a Bioresource. Ind. Crops Prod. 2011, 33, 200–204. [Google Scholar] [CrossRef]
- Pereira, A.R.; Costa, C.; Mateus, N.; de Freitas, V.; Rodrigues, A.; Oliveira, J. Exploring the Potential of Vine Shoots as a Source of Valuable Extracts and Stable Lignin Nanoparticles for Multiple Applications. Int. J. Mol. Sci. 2023, 24, 5165. [Google Scholar] [CrossRef]
- Wimalasiri, P.M.; Harrison, R.; Hider, R.; Donaldson, I.; Kemp, B.; Tian, B. Development of Tannins and Methoxypyrazines in Grape Skins, Seeds, and Stems of Two Pinot Noir Clones during Ripening. J. Agric. Food Chem. 2023, 71, 15754–15765. [Google Scholar] [CrossRef]
- González-Centeno, M.R.; Jourdes, M.; Femenia, A.; Simal, S.; Rosselló, C.; Teissedre, P.L. Proanthocyanidin Composition and Antioxidant Potential of the Stem Winemaking Byproducts from 10 Different Grape Varieties (Vitis vinifera L.). J. Agric. Food Chem. 2012, 60, 11850–11858. [Google Scholar] [CrossRef]
- Poni, S.; Tombesi, S.; Palliotti, A.; Ughini, V.; Gatti, M. Mechanical Winter Pruning of Grapevine: Physiological Bases and Applications. Sci. Hortic. 2016, 204, 88–98. [Google Scholar] [CrossRef]
- Król, A.; Amarowicz, R.; Weidner, S. Changes in the Composition of Phenolic Compounds and Antioxidant Properties of Grapevine Roots and Leaves (Vitis Viniferal L.) under Continuous of Long-Term Drought Stress. Acta Physiol. Plant. 2014, 36, 1491–1499. [Google Scholar] [CrossRef]
- Seo, K.H.; Bartley, G.E.; Tam, C.; Kim, H.S.; Kim, D.H.; Chon, J.W.; Kim, H.; Yokoyama, W. Chardonnay Grape Seed Flour Ameliorates Hepatic Steatosis and Insulin Resistance via Altered Hepatic Gene Expression for Oxidative Stress, Inflammation, and Lipid and Ceramide Synthesis in Diet-Induced Obese Mice. PLoS ONE 2016, 11, e0167680. [Google Scholar] [CrossRef]
- Díaz, H.S.; Ríos-Gallardo, A.; Ortolani, D.; Díaz-Jara, E.; Flores, M.J.; Vera, I.; Monasterio, A.; Ortiz, F.C.; Brossard, N.; Osorio, F.; et al. Lipid-Encapsuled Grape Tannins Prevent Oxidative-Stress-Induced Neuronal Cell Death, Intracellular ROS Accumulation and Inflammation. Antioxidants 2022, 11, 1928. [Google Scholar] [CrossRef] [PubMed]
- Das, A.K.; Islam, M.N.; Faruk, M.O.; Ashaduzzaman, M.; Dungani, R. Review on Tannins: Extraction Processes, Applications and Possibilities. S. Afr. J. Bot. 2020, 135, 58–70. [Google Scholar] [CrossRef]
- Fraga-Corral, M.; Otero, P.; Echave, J.; Garcia-Oliveira, P.; Carpena, M.; Jarboui, A.; Nuñez-Estevez, B.; Simal-Gandara, J.; Prieto, M.A. By-Products of Agri-Food Industry as Tannin-Rich Sources: A Review of Tannins’ Biological Activities and Their Potential for Valorization. Foods 2021, 10, 137. [Google Scholar] [CrossRef]
- Cosme, F.; Aires, A.; Pinto, T.; Oliveira, I.; Vilela, A.; Gonçalves, B. A Comprehensive Review of Bioactive Tannins in Foods and Beverages: Functional Properties, Health Benefits, and Sensory Qualities. Molecules 2025, 30, 800. [Google Scholar] [CrossRef]
- Liu, X.; Liu, M.; Liu, X.; Zheng, L. Grape Seed Proanthocyanidin Extract Supplementation Affects Exhaustive Exercise-Induced Fatigue in Mice. Food Nutr. Res. 2018, 62, 1421. [Google Scholar] [CrossRef]
- Winiarska-Mieczan, A. Protective Effect of Tea against Lead and Cadmium-Induced Oxidative Stress—a Review. BioMetals 2018, 31, 909–926. [Google Scholar] [CrossRef]
- Zeng, X.; Du, Z.; Sheng, Z.; Jiang, W. Characterization of the Interactions between Banana Condensed Tannins and Biologically Important Metal Ions (Cu2+, Zn2+ and Fe2+). Food Res. Int. 2019, 123, 518–528. [Google Scholar] [CrossRef]
- Nazima, B.; Manoharan, V.; Miltonprabu, S. Oxidative Stress Induced by Cadmium in the Plasma, Erythrocytes and Lymphocytes of Rats: Attenuation by Grape Seed Proanthocyanidins. Hum. Exp. Toxicol. 2016, 35, 428–447. [Google Scholar] [CrossRef]
- Bashir, N.; Shagirtha, K.; Manoharan, V.; Miltonprabu, S. The Molecular and Biochemical Insight View of Grape Seed Proanthocyanidins in Ameliorating Cadmium-Induced Testes-Toxicity in Rat Model: Implication of PI3K/Akt/Nrf-2 Signaling. Biosci. Rep. 2019, 39, BSR20180515. [Google Scholar] [CrossRef]
- Wang, E.H.; Yu, Z.L.; Bu, Y.J.; Xu, P.W.; Xi, J.Y.; Liang, H.Y. Grape Seed Proanthocyanidin Extract Alleviates High-Fat Diet Induced Testicular Toxicity in Rats. RSC Adv. 2019, 9, 11842–11850. [Google Scholar] [CrossRef] [PubMed]
- Niu, Q.; He, P.; Xu, S.; Ma, R.; Ding, Y.; Mu, L.; Li, S. Fluoride-Induced Iron Overload Contributes to Hepatic Oxidative Damage in Mouse and the Protective Role of Grape Seed Proanthocyanidin Extract. J. Toxicol. Sci. 2018, 43, 311–319. [Google Scholar] [CrossRef] [PubMed]
- González-Quilen, C.; Gil-Cardoso, K.; Ginés, I.; Beltrán-Debón, R.; Pinent, M.; Ardévol, A.; Terra, X.; Blay, M.T. Grape-Seed Proanthocyanidins Are Able to Reverse Intestinal Dysfunction and Metabolic Endotoxemia Induced by a Cafeteria Diet in Wistar Rats. Nutrients 2019, 11, 979. [Google Scholar] [CrossRef]
- Chen, F.; Wang, H.; Zhao, J.; Yan, J.; Meng, H.; Zhan, H.; Chen, L.; Yuan, L. Grape Seed Proanthocyanidin Inhibits Monocrotaline-Induced Pulmonary Arterial Hypertension via Attenuating Inflammation: In Vivo and in Vitro Studies. J. Nutr. Biochem. 2019, 67, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Jiang, H.; Liu, B.; Baiyun, R.; Li, S.; Lv, Y.; Li, D.; Qiao, S.; Tan, X.; Zhang, Z. Grape Seed Procyanidin Extract Protects against Pb-Induced Lung Toxicity by Activating the AMPK/Nrf2/P62 Signaling Axis. Food Chem. Toxicol. 2018, 116, 59–69. [Google Scholar] [CrossRef]
- Pons, Z.; Guerrero, L.; Margalef, M.; Arola, L.; Arola-Arnal, A.; Muguerza, B. Effect of Low Molecular Grape Seed Proanthocyanidins on Blood Pressure and Lipid Homeostasis in Cafeteria Diet-Fed Rats. J. Physiol. Biochem. 2014, 70, 629–637. [Google Scholar] [CrossRef]
- Thiruchenduran, M.; Vijayan, N.A.; Sawaminathan, J.K.; Devaraj, S.N. Protective Effect of Grape Seed Proanthocyanidins against Cholesterol Cholic Acid Diet-Induced Hypercholesterolemia in Rats. Cardiovasc. Pathol. 2011, 20, 361–368. [Google Scholar] [CrossRef]
- Vinson, J.A.; Proch, J.; Bose, P. MegaNatural® Gold Grapeseed Extract: In Vitro Antioxidant and In Vivo Human Supplementation Studies. J. Med. Food 2001, 4, 17–26. [Google Scholar] [CrossRef]
- Liu, W.; Zhao, S.; Wang, J.; Shi, J.; Sun, Y.; Wang, W.; Ning, G.; Hong, J.; Liu, R. Back Cover: Grape Seed Proanthocyanidin Extract Ameliorates Inflammation and Adiposity by Modulating Gut Microbiota in High-Fat Diet Mice. Mol. Nutr. Food Res. 2017, 61, 1770096. [Google Scholar] [CrossRef]
- Terra, X.; Montagut, G.; Bustos, M.; Llopiz, N.; Ardèvol, A.; Bladé, C.; Fernández-Larrea, J.; Pujadas, G.; Salvadó, J.; Arola, L.; et al. Grape-Seed Procyanidins Prevent Low-Grade Inflammation by Modulating Cytokine Expression in Rats Fed a High-Fat Diet. J. Nutr. Biochem. 2009, 20, 210–218. [Google Scholar] [CrossRef]
- Terra, X.; Pallarés, V.; Ardèvol, A.; Bladé, C.; Fernández-Larrea, J.; Pujadas, G.; Salvadó, J.; Arola, L.; Blay, M. Modulatory Effect of Grape-Seed Procyanidins on Local and Systemic Inflammation in Diet-Induced Obesity Rats. J. Nutr. Biochem. 2011, 22, 380–387. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, Z.; Dai, X.; Jiang, Y.; Bao, L.; Li, Y.; Li, Y. Grape Seed Proanthocyanidins Ameliorate Pancreatic Beta-Cell Dysfunction and Death in Low-Dose Streptozotocin- and High-Carbohydrate/High-Fat Diet-Induced Diabetic Rats Partially by Regulating Endoplasmic Reticulum Stress. Nutr. Metab. 2013, 10, 51. [Google Scholar] [CrossRef] [PubMed]
- Yogalakshmi, B.; Bhuvaneswari, S.; Sreeja, S.; Anuradha, C.V. Grape Seed Proanthocyanidins and Metformin Act by Different Mechanisms to Promote Insulin Signaling in Rats Fed High Calorie Diet. J. Cell Commun. Signal. 2014, 8, 173. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Serrano, A.; Arola-Arnal, A.; Suárez-García, S.; Bravo, F.I.; Suárez, M.; Arola, L.; Bladé, C. Grape Seed Proanthocyanidin Supplementation Reduces Adipocyte Size and Increases Adipocyte Number in Obese Rats. Int. J. Obes. 2017, 41, 1246–1255. [Google Scholar] [CrossRef]
- Pascual-Serrano, A.; Bladé, C.; Suárez, M.; Arola-Arnal, A. Grape Seed Proanthocyanidins Improve White Adipose Tissue Expansion during Diet-Induced Obesity Development in Rats. Int. J. Mol. Sci. 2018, 19, 2632. [Google Scholar] [CrossRef] [PubMed]
- Montagut, G.; Bladé, C.; Blay, M.; Fernández-Larrea, J.; Pujadas, G.; Salvadó, M.J.; Arola, L.; Pinent, M.; Ardévol, A. Effects of a Grapeseed Procyanidin Extract (GSPE) on Insulin Resistance. J. Nutr. Biochem. 2010, 21, 961–967. [Google Scholar] [CrossRef]
- Kar, P.; Laight, D.; Rooprai, H.K.; Shaw, K.M.; Cummings, M. Effects of Grape Seed Extract in Type 2 Diabetic Subjects at High Cardiovascular Risk: A Double Blind Randomized Placebo Controlled Trial Examining Metabolic Markers, Vascular Tone, Inflammation, Oxidative Stress and Insulin Sensitivity. Diabet. Med. 2009, 26, 526–531. [Google Scholar] [CrossRef]
- Saratale, R.G.; Saratale, G.D.; Ahn, S.; Shin, H.-S. Grape Pomace Extracted Tannin for Green Synthesis of Silver Nanoparticles: Assessment of Their Antidiabetic, Antioxidant Potential and Antimicrobial Activity. Polymers 2021, 13, 4355. [Google Scholar] [CrossRef]
- Campos, F.; Peixoto, A.F.; Fernandes, P.A.R.; Coimbra, M.A.; Mateus, N.; de Freitas, V.; Fernandes, I.; Fernandes, A. The Antidiabetic Effect of Grape Pomace Polysaccharide-Polyphenol Complexes. Nutrients 2021, 13, 4495. [Google Scholar] [CrossRef]
- Kato-Schwartz, C.G.; Corrêa, R.C.G.; de Souza Lima, D.; de Sá-Nakanishi, A.B.; de Almeida Gonçalves, G.; Seixas, F.A.V.; Haminiuk, C.W.I.; Barros, L.; Ferreira, I.C.F.R.; Bracht, A.; et al. Potential Anti-Diabetic Properties of Merlot Grape Pomace Extract: An in Vitro, in Silico and in Vivo Study of α-Amylase and α-Glucosidase Inhibition. Food Res. Int. 2020, 137, 109462. [Google Scholar] [CrossRef] [PubMed]
- Serrano, J.; Casanova-Martí, À.; Blay, M.; Terra, X.; Ardévol, A.; Pinent, M. Defining Conditions for Optimal Inhibition of Food Intake in Rats by a Grape-Seed Derived Proanthocyanidin Extract. Nutrients 2016, 8, 652. [Google Scholar] [CrossRef] [PubMed]
- Serrano, J.; Casanova-Martí, À.; Gual, A.; Pérez-Vendrell, A.M.; Blay, M.T.; Terra, X.; Ardévol, A.; Pinent, M. A Specific Dose of Grape Seed-Derived Proanthocyanidins to Inhibit Body Weight Gain Limits Food Intake and Increases Energy Expenditure in Rats. Eur. J. Nutr. 2017, 56, 1629–1636. [Google Scholar] [CrossRef]
- Ginés, I.; Gil-Cardoso, K.; Serrano, J.; Casanova-Martí, À.; Blay, M.; Pinent, M.; Ardévol, A.; Terra, X. Effects of an Intermittent Grape-Seed Proanthocyanidin (GSPE) Treatment on a Cafeteria Diet Obesogenic Challenge in Rats. Nutrients 2018, 10, 315. [Google Scholar] [CrossRef] [PubMed]
- Caimari, A.; del Bas, J.M.; Crescenti, A.; Arola, L. Low Doses of Grape Seed Procyanidins Reduce Adiposity and Improve the Plasma Lipid Profile in Hamsters. Int. J. Obes. 2013, 37, 576–583. [Google Scholar] [CrossRef]
- Fernández-Fernández, A.M.; Iriondo-DeHond, A.; Dellacassa, E.; Medrano-Fernandez, A.; del Castillo, M.D. Assessment of Antioxidant, Antidiabetic, Antiobesity, and Anti-Inflammatory Properties of a Tannat Winemaking by-Product. Eur. Food Res. Technol. 2019, 245, 1539–1551. [Google Scholar] [CrossRef]
- Vinson, J.A.; Mandarano, M.A.; Shuta, D.L.; Bagchi, M.; Bagchi, D. Beneficial Effects of a Novel IH636 Grape Seed Proanthocyanidin Extract and a Niacin-Bound Chromium in a Hamster Atherosclerosis Model. Mol. Cell. Biochem. 2002, 240, 99–103. [Google Scholar] [CrossRef]
- Quiñones, M.; Guerrero, L.; Suarez, M.; Pons, Z.; Aleixandre, A.; Arola, L.; Muguerza, B. Low-Molecular Procyanidin Rich Grape Seed Extract Exerts Antihypertensive Effect in Males Spontaneously Hypertensive Rats. Food Res. Int. 2013, 51, 587–595. [Google Scholar] [CrossRef]
- Peng, N.; Clark, J.T.; Prasain, J.; Kim, H.; White, C.R.; Wyss, J.M. Antihypertensive and Cognitive Effects of Grape Polyphenols in Estrogen-Depleted, Female, Spontaneously Hypertensive Rats. Am. J. Physiol. Integr. Comp. Physiol. 2005, 289, R771–R775. [Google Scholar] [CrossRef]
- Mellen, P.B.; Daniel, K.R.; Brosnihan, K.B.; Hansen, K.J.; Herrington, D.M. Effect of Muscadine Grape Seed Supplementation on Vascular Function in Subjects with or at Risk for Cardiovascular Disease: A Randomized Crossover Trial. J. Am. Coll. Nutr. 2010, 29, 469–475. [Google Scholar] [CrossRef]
- Sano, A.; Uchida, R.; Saito, M.; Shioya, N.; Komori, Y.; Tho, Y.; Hashizume, N. Beneficial Effects of Grape Seed Extract on Malondialdehyde-Modified LDL. J. Nutr. Sci. Vitaminol. 2007, 53, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Auger, C.; Gérain, P.; Laurent-Bichon, F.; Portet, K.; Bornet, A.; Caporiccio, B.; Cros, G.; Teissédre, P.-L.; Rouanet, J.-M. Phenolics from Commercialized Grape Extracts Prevent Early Atherosclerotic Lesions in Hamsters by Mechanisms Other than Antioxidant Effect. J. Agric. Food Chem. 2004, 52, 5297–5302. [Google Scholar] [CrossRef]
- Terra, X.; Valls, J.; Vitrac, X.; Mérrillon, J.-M.; Arola, L.; Ardèvol, A.; Bladé, C.; Fernández-Larrea, J.; Pujadas, G.; Salvadó, J.; et al. Grape-Seed Procyanidins Act as Antiinflammatory Agents in Endotoxin-Stimulated RAW 264.7 Macrophages by Inhibiting NFkB Signaling Pathway. J. Agric. Food Chem. 2007, 55, 4357–4365. [Google Scholar] [CrossRef]
- Qiao, X.; Wang, H.; He, Y.; Song, D.; Altawil, A.; Wang, Q.; Yin, Y. Grape Seed Proanthocyanidin Ameliorates LPS-Induced Acute Lung Injury By Modulating M2a Macrophage Polarization Via the TREM2/PI3K/Akt Pathway. Inflammation 2023, 46, 2147–2164. [Google Scholar] [CrossRef] [PubMed]
- Magrone, T.; Magrone, M.; Russo, M.A.; Jirillo, E. Recent Advances on the Anti-Inflammatory and Antioxidant Properties of Red Grape Polyphenols: In Vitro and In Vivo Studies. Antioxidants 2020, 9, 35. [Google Scholar] [CrossRef]
- Pallarès, V.; Fernández-Iglesias, A.; Cedó, L.; Castell-Auví, A.; Pinent, M.; Ardévol, A.; Salvadó, M.J.; Garcia-Vallvé, S.; Blay, M. Grape Seed Procyanidin Extract Reduces the Endotoxic Effects Induced by Lipopolysaccharide in Rats. Free Radic. Biol. Med. 2013, 60, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Cho, H.; Jung, H.; Lee, H.; Hwang, K.T. Antioxidant and Anti-Inflammatory Activities of Tannin Fraction of the Extract from Black Raspberry Seeds Compared to Grape Seeds. J. Food Biochem. 2014, 38, 259–270. [Google Scholar] [CrossRef]
- Dash, U.C.; Bhol, N.K.; Swain, S.K.; Samal, R.R.; Nayak, P.K.; Raina, V.; Panda, S.K.; Kerry, R.G.; Duttaroy, A.K.; Jena, A.B. Oxidative Stress and Inflammation in the Pathogenesis of Neurological Disorders: Mechanisms and Implications. Acta Pharm. Sin. B 2025, 15, 15–34. [Google Scholar] [CrossRef]
- Zielińska-Przyjemska, M.; Ignatowicz, E.; Krajka-Kuźniak, V.; Baer-Dubowska, W. Effect of Tannic Acid, Resveratrol and Its Derivatives, on Oxidative Damage and Apoptosis in Human Neutrophils. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2015, 84, 37–46. [Google Scholar] [CrossRef]
- Martins, I.M.; Macedo, G.A.; Macedo, J.A.; Roberto, B.S.; Chen, Q.; Blumberg, J.B.; Chen, C.-Y.O. Tannase Enhances the Anti-Inflammatory Effect of Grape Pomace in Caco-2 Cells Treated with IL-1β. J. Funct. Foods 2017, 29, 69–76. [Google Scholar] [CrossRef]
- Popović-Djordjević, J.B.; Katanić Stanković, J.S.; Mihailović, V.; Pereira, A.G.; Garcia-Oliveira, P.; Prieto, M.A.; Simal-Gandara, J. Algae as a Source of Bioactive Compounds to Prevent the Development of Type 2 Diabetes Mellitus. Curr. Med. Chem. 2021, 28, 4592–4615. [Google Scholar] [CrossRef] [PubMed]
- Pillon, N.J.; Loos, R.J.F.; Marshall, S.M.; Zierath, J.R. Metabolic Consequences of Obesity and Type 2 Diabetes: Balancing Genes and Environment for Personalized Care. Cell 2021, 184, 1530–1544. [Google Scholar] [CrossRef]
- González, P.; Lozano, P.; Ros, G.; Solano, F. Hyperglycemia and Oxidative Stress: An Integral, Updated and Critical Overview of Their Metabolic Interconnections. Int. J. Mol. Sci. 2023, 24, 9352. [Google Scholar] [CrossRef] [PubMed]
- Ginés, I.; Gil-Cardoso, K.; Terra, X.; Blay, M.; Pérez-Vendrell, A.M.; Pinent, M.; Ardévol, A. Grape Seed Proanthocyanidins Target the Enteroendocrine System in Cafeteria-Diet-Fed Rats. Mol. Nutr. Food Res. 2019, 63, 1800912. [Google Scholar] [CrossRef]
- World Health Organization. Cardiovascular Diseases (CVDs). Available online: https://www.who.int/health-topics/cardiovascular-diseases#tab=tab_1 (accessed on 24 April 2025).
- Sharifi-Rad, J.; Rodrigues, C.F.; Sharopov, F.; Docea, A.O.; Can Karaca, A.; Sharifi-Rad, M.; Kahveci Karıncaoglu, D.; Gülseren, G.; Şenol, E.; Demircan, E.; et al. Diet, Lifestyle and Cardiovascular Diseases: Linking Pathophysiology to Cardioprotective Effects of Natural Bioactive Compounds. Int. J. Environ. Res. Public Health 2020, 17, 2326. [Google Scholar] [CrossRef] [PubMed]
- Ozogul, Y.; Ucar, Y.; Tadesse, E.E.; Rathod, N.; Kulawik, P.; Trif, M.; Esatbeyoglu, T.; Ozogul, F. Tannins for Food Preservation and Human Health: A Review of Current Knowledge. Appl. Food Res. 2025, 5, 100738. [Google Scholar] [CrossRef]
- Wang, H. Medical Benefits and Polymer Applications of Grapes. Polymers 2025, 17, 750. [Google Scholar] [CrossRef]
- Ras, R.T.; Zock, P.L.; Zebregs, Y.E.M.P.; Johnston, N.R.; Webb, D.J.; Draijer, R. Effect of Polyphenol-Rich Grape Seed Extract on Ambulatory Blood Pressure in Subjects with Pre- and Stage I Hypertension. Br. J. Nutr. 2013, 110, 2234–2241. [Google Scholar] [CrossRef]
- Clifton, P.M. Effect of Grape Seed Extract and Quercetin on Cardiovascular and Endothelial Parameters in High-Risk Subjects. J. Biomed. Biotechnol. 2004, 2004, 272–278. [Google Scholar] [CrossRef]
- Nunes, M.A.; Pimentel, F.; Costa, A.S.G.; Alves, R.C.; Oliveira, M.B.P.P. Cardioprotective Properties of Grape Seed Proanthocyanidins: An Update. Trends Food Sci. Technol. 2016, 57, 31–39. [Google Scholar] [CrossRef]
- Belcaro, G.; Ledda, A.; Hu, S.; Cesarone, M.R.; Feragalli, B.; Dugall, M. Grape Seed Procyanidins in Pre- and Mild Hypertension: A Registry Study. Evid.-Based Complement. Altern. Med. 2013, 2013, 313142. [Google Scholar] [CrossRef] [PubMed]
- Fernández, K.; Labra, J. Simulated Digestion of Proanthocyanidins in Grape Skin and Seed Extracts and the Effects of Digestion on the Angiotensin I-Converting Enzyme (ACE) Inhibitory Activity. Food Chem. 2013, 139, 196–202. [Google Scholar] [CrossRef]
- Bladé, C.; Arola, L.; Salvadó, M.-J. Hypolipidemic Effects of Proanthocyanidins and Their Underlying Biochemical and Molecular Mechanisms. Mol. Nutr. Food Res. 2010, 54, 37–59. [Google Scholar] [CrossRef] [PubMed]
- Marchio, P.; Guerra-Ojeda, S.; Vila, J.M.; Aldasoro, M.; Victor, V.M.; Mauricio, M.D. Targeting Early Atherosclerosis: A Focus on Oxidative Stress and Inflammation. Oxid. Med. Cell. Longev. 2019, 2019, 8563845. [Google Scholar] [CrossRef]
- Bagchi, D.; Swaroop, A.; Preuss, H.G.; Bagchi, M. Free Radical Scavenging, Antioxidant and Cancer Chemoprevention by Grape Seed Proanthocyanidin: An Overview. Mutat. Res. Mol. Mech. Mutagen. 2014, 768, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Soldado, D.; Bessa, R.J.B.; Jerónimo, E. Condensed Tannins as Antioxidants in Ruminants—Effectiveness and Action Mechanisms to Improve Animal Antioxidant Status and Oxidative Stability of Products. Animals 2021, 11, 3243. [Google Scholar] [CrossRef]
- Li, W.; Yao, R.; Xie, L.; Liu, J.; Weng, X.; Yue, X.; Li, F. Dietary Supplementation of Grape Seed Tannin Extract Stimulated Testis Development, Changed Fatty Acid Profiles and Increased Testis Antioxidant Capacity in Pre-Puberty Hu Lambs. Theriogenology 2021, 172, 160–168. [Google Scholar] [CrossRef]
- Leparmarai, P.T.; Sinz, S.; Kunz, C.; Liesegang, A.; Ortmann, S.; Kreuzer, M.; Marquardt, S. Transfer of Total Phenols from a Grapeseed-Supplemented Diet to Dairy Sheep and Goat Milk, and Effects on Performance and Milk Quality1. J. Anim. Sci. 2019, 97, 1840–1851. [Google Scholar] [CrossRef]
- Chikwanha, O.C.; Raffrenato, E.; Muchenje, V.; van E. Nolte, J.; Mapiye, C. Effect of Grape (Vitis vinifera L. Cv. Pinotage) Pomace Supplementation on Nutrient Utilization in Finisher Lambs. Small Rumin. Res. 2019, 179, 48–55. [Google Scholar] [CrossRef]
- Zhao, J.X.; Li, Q.; Zhang, R.X.; Liu, W.Z.; Ren, Y.S.; Zhang, C.X.; Zhang, J.X. Effect of Dietary Grape Pomace on Growth Performance, Meat Quality and Antioxidant Activity in Ram Lambs. Anim. Feed Sci. Technol. 2018, 236, 76–85. [Google Scholar] [CrossRef]
- Ianni, A.; Martino, G. Dietary Grape Pomace Supplementation in Dairy Cows: Effect on Nutritional Quality of Milk and Its Derived Dairy Products. Foods 2020, 9, 168. [Google Scholar] [CrossRef] [PubMed]
- Molosse, V.L.; Deolindo, G.L.; Lago, R.V.P.; Cécere, B.G.O.; Zotti, C.A.; Vedovato, M.; Copetti, P.M.; Fracasso, M.; Morsch, V.M.; Xavier, A.C.H.; et al. The Effects of the Inclusion of Ensiled and Dehydrated Grape Pomace in Beef Cattle Diet: Growth Performance, Health, and Economic Viability. Anim. Feed Sci. Technol. 2023, 302, 115671. [Google Scholar] [CrossRef]
- Alfaia, C.M.; Costa, M.M.; Lopes, P.A.; Pestana, J.M.; Prates, J.A.M. Use of Grape By-Products to Enhance Meat Quality and Nutritional Value in Monogastrics. Foods 2022, 11, 2754. [Google Scholar] [CrossRef] [PubMed]
- Koenig, K.M.; Beauchemin, K.A.; McGinn, S.M. Feeding Condensed Tannins to Mitigate Ammonia Emissions from Beef Feedlot Cattle Fed High-Protein Finishing Diets Containing Distillers Grains12. J. Anim. Sci. 2018, 96, 4414–4430. [Google Scholar] [CrossRef]
- Stewart, E.K.; Beauchemin, K.A.; Dai, X.; MacAdam, J.W.; Christensen, R.G.; Villalba, J.J. Effect of Tannin-Containing Hays on Enteric Methane Emissions and Nitrogen Partitioning in Beef Cattle1. J. Anim. Sci. 2019, 97, 3286–3299. [Google Scholar] [CrossRef]
- Min, B.R.; Solaiman, S.; Waldrip, H.M.; Parker, D.; Todd, R.W.; Brauer, D. Dietary Mitigation of Enteric Methane Emissions from Ruminants: A Review of Plant Tannin Mitigation Options. Anim. Nutr. 2020, 6, 231–246. [Google Scholar] [CrossRef]
- Hixson, J.L.; Durmic, Z.; Vadhanabhuti, J.; Vercoe, P.E.; Smith, P.A.; Wilkes, E.N. Exploiting Compositionally Similar Grape Marc Samples to Achieve Gradients of Condensed Tannin and Fatty Acids for Modulating in Vitro Methanogenesis. Molecules 2018, 23, 1793. [Google Scholar] [CrossRef]
- Mena, M.O.; Trevise, G.G.O.; Silva, T.N.R.; Moellmann, V.M.; Bassetto, C.C.; Gatti, B.S.; Louvandini, H.; Soutello, R.V.G.; Albuquerque, A.C.A.; Amarante, A.F.T. Evaluation of Grape Pomace Supplementation in Lamb Diets to Mitigate Haemonchus Contortus Infection. Agriculture 2025, 15, 341. [Google Scholar] [CrossRef]
- Costa, M.M.; Alfaia, C.M.; Lopes, P.A.; Pestana, J.M.; Prates, J.A.M. Grape By-Products as Feedstuff for Pig and Poultry Production. Animals 2022, 12, 2239. [Google Scholar] [CrossRef]
- Piluzza, G.; Sulas, L.; Bullitta, S. Tannins in Forage Plants and Their Role in Animal Husbandry and Environmental Sustainability: A Review. Grass Forage Sci. 2014, 69, 32–48. [Google Scholar] [CrossRef]
- Van Niekerk, R.F.; Mnisi, C.M.; Mlambo, V. Polyethylene Glycol Inactivates Red Grape Pomace Condensed Tannins for Broiler Chickens. Br. Poult. Sci. 2020, 61, 566–573. [Google Scholar] [CrossRef]
- Mueller-Harvey, I. Unravelling the Conundrum of Tannins in Animal Nutrition and Health. J. Sci. Food Agric. 2006, 86, 2010–2037. [Google Scholar] [CrossRef]
- Cheng, X.; Du, X.; Liang, Y.; Degen, A.A.; Wu, X.; Ji, K.; Gao, Q.; Xin, G.; Cong, H.; Yang, G. Effect of Grape Pomace Supplement on Growth Performance, Gastrointestinal Microbiota, and Methane Production in Tan Lambs. Front. Microbiol. 2023, 14, 1264840. [Google Scholar] [CrossRef] [PubMed]
- Chamorro, S.; Goñi, I.; Hervert-Hernández, D.; Viveros, A.; Brenes, A. Changes in Polyphenolic Content and Antioxidant Activity after Thermal Treatments of Grape Seed Extract and Grape Pomace. Eur. Food Res. Technol. 2012, 234, 147–155. [Google Scholar] [CrossRef]
- Murga, R.; Ruiz, R.; Beltrán, S.; Cabezas, J.L. Extraction of Natural Complex Phenols and Tannins from Grape Seeds by Using Supercritical Mixtures of Carbon Dioxide and Alcohol. J. Agric. Food Chem. 2000, 48, 3408–3412. [Google Scholar] [CrossRef]
- Larcher, R.; Tonidandel, L.; Román Villegas, T.; Nardin, T.; Fedrizzi, B.; Nicolini, G. Pre-Fermentation Addition of Grape Tannin Increases the Varietal Thiols Content in Wine. Food Chem. 2015, 166, 56–61. [Google Scholar] [CrossRef]
- Souquet, J.-M.; Cheynier, V.; Brossaud, F.; Moutounet, M. Polymeric Proanthocyanidins from Grape Skins. Phytochemistry 1996, 43, 509–512. [Google Scholar] [CrossRef]
- Ahn, J.; Grün, I.U.; Mustapha, A. Effects of Plant Extracts on Microbial Growth, Color Change, and Lipid Oxidation in Cooked Beef. Food Microbiol. 2007, 24, 7–14. [Google Scholar] [CrossRef]
- Mitropoulou, A.; Hatzidimitriou, E.; Paraskevopoulou, A. Aroma Release of a Model Wine Solution as Influenced by the Presence of Non-Volatile Components. Effect of Commercial Tannin Extracts, Polysaccharides and Artificial Saliva. Food Res. Int. 2011, 44, 1561–1570. [Google Scholar] [CrossRef]
- Kandylis, P.; Dimitrellou, D.; Moschakis, T. Recent Applications of Grapes and Their Derivatives in Dairy Products. Trends Food Sci. Technol. 2021, 114, 696–711. [Google Scholar] [CrossRef]
- Kokkinomagoulos, E.; Kandylis, P. Sustainable Wine Fining: Evaluating Grape Pomace as a Natural Alternative to Commercial Agents. Beverages 2025, 11, 31. [Google Scholar] [CrossRef]
- Mekoue Nguela, J.; Poncet-Legrand, C.; Sieczkowski, N.; Vernhet, A. Interactions of Grape Tannins and Wine Polyphenols with a Yeast Protein Extract, Mannoproteins and β-Glucan. Food Chem. 2016, 210, 671–682. [Google Scholar] [CrossRef]
- Chen, J.; Thilakarathna, W.P.D.W.; Astatkie, T.; Rupasinghe, H.P.V. Optimization of Catechin and Proanthocyanidin Recovery from Grape Seeds Using Microwave-Assisted Extraction. Biomolecules 2020, 10, 243. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Lopez, P.; Rueda-Robles, A.; Borrás-Linares, I.; Quirantes-Piné, R.M.; Emanuelli, T.; Segura-Carretero, A.; Lozano-Sánchez, J. Grape and Grape-Based Product Polyphenols: A Systematic Review of Health Properties, Bioavailability, and Gut Microbiota Interactions. Horticulturae 2022, 8, 583. [Google Scholar] [CrossRef]
- Ricci, A.; Parpinello, G.P.; Palma, A.S.; Teslić, N.; Brilli, C.; Pizzi, A.; Versari, A. Analytical Profiling of Food-Grade Extracts from Grape (Vitis vinifera Sp.) Seeds and Skins, Green Tea (Camellia sinensis) Leaves and Limousin Oak (Quercus robur) Heartwood Using MALDI-TOF-MS, ICP-MS and Spectrophotometric Methods. J. Food Compos. Anal. 2017, 59, 95–104. [Google Scholar] [CrossRef]
- EFSA Panel on Nutrition Novel Foods and Food allergens MegaNatural®-BP Grape Seed Extract and Maintenance of Normal Blood Pressure: Evaluation of a Health Claim Pursuant to Article 13(5) of Regulation (EC) No 1924/2006. EFSA J. 2021, 19, e06776. [CrossRef]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). Safety and Efficacy of Dry Grape Extract When Used as a Feed Flavouring for All Animal Species and Categories. EFSA J. 2016, 14, e04476. [Google Scholar] [CrossRef]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP); Bampidis, V.; Azimonti, G.; Bastos, M.L.; Christensen, H.; Dusemund, B.; Durjava, M.; Kouba, M.; López-Alonso, M.; López Puente, S.; et al. Safety and Efficacy of a Feed Additive Consisting of a Dry Grape Extract (Nor-Grape® α) for All Avian Species (Nor-Feed S.A.S.). EFSA J. 2023, 21, e07964. [Google Scholar] [CrossRef]
- Cejudo-Bastante, C.; Arjona-Mudarra, P.; Fernández-Ponce, M.T.; Casas, L.; Mantell, C.; Martínez de la Ossa, E.J.; Pereyra, C. Application of a Natural Antioxidant from Grape Pomace Extract in the Development of Bioactive Jute Fibers for Food Packaging. Antioxidants 2021, 10, 216. [Google Scholar] [CrossRef]
- Díaz-Galindo, E.P.; Nesic, A.; Cabrera-Barjas, G.; Mardones, C.; von Baer, D.; Bautista-Baños, S.; Dublan Garcia, O. Physical-Chemical Evaluation of Active Food Packaging Material Based on Thermoplastic Starch Loaded with Grape Cane Extract. Molecules 2020, 25, 1306. [Google Scholar] [CrossRef]
- Guo, Y.; Huang, J.; Chen, Y.; Hou, Q.; Huang, M. Effect of Grape Seed Extract Combined with Modified Atmosphere Packaging on the Quality of Roast Chicken. Poult. Sci. 2020, 99, 1598–1605. [Google Scholar] [CrossRef] [PubMed]
- Dordevic, S.; Dordevic, D.; Sedlacek, P.; Kalina, M.; Tesikova, K.; Antonic, B.; Tremlova, B.; Treml, J.; Nejezchlebova, M.; Vapenka, L.; et al. Incorporation of Natural Blueberry, Red Grapes and Parsley Extract By-Products into the Production of Chitosan Edible Films. Polymers 2021, 13, 3388. [Google Scholar] [CrossRef] [PubMed]
- Escobar-Avello, D.; Avendaño-Godoy, J.; Santos, J.; Lozano-Castellón, J.; Mardones, C.; von Baer, D.; Luengo, J.; Lamuela-Raventós, R.M.; Vallverdú-Queralt, A.; Gómez-Gaete, C. Encapsulation of Phenolic Compounds from a Grape Cane Pilot-Plant Extract in Hydroxypropyl Beta-Cyclodextrin and Maltodextrin by Spray Drying. Antioxidants 2021, 10, 1130. [Google Scholar] [CrossRef]
- Gaber Ahmed, G.H.; Fernández-González, A.; Díaz García, M.E. Nano-Encapsulation of Grape and Apple Pomace Phenolic Extract in Chitosan and Soy Protein via Nanoemulsification. Food Hydrocoll. 2020, 108, 105806. [Google Scholar] [CrossRef]
- Brezoiu, A.-M.; Matei, C.; Deaconu, M.; Stanciuc, A.-M.; Trifan, A.; Gaspar-Pintiliescu, A.; Berger, D. Polyphenols Extract from Grape Pomace. Characterization and Valorisation through Encapsulation into Mesoporous Silica-Type Matrices. Food Chem. Toxicol. 2019, 133, 110787. [Google Scholar] [CrossRef]
- Lavelli, V.; Sri Harsha, P.S.C.; Laureati, M.; Pagliarini, E. Degradation Kinetics of Encapsulated Grape Skin Phenolics and Micronized Grape Skins in Various Water Activity Environments and Criteria to Develop Wide-Ranging and Tailor-Made Food Applications. Innov. Food Sci. Emerg. Technol. 2017, 39, 156–164. [Google Scholar] [CrossRef]
- Carra, J.B.; de Matos, R.L.N.; Novelli, A.P.; do Couto, R.O.; Yamashita, F.; Ribeiro, M.A.d.S.; Meurer, E.C.; Verri, W.A.; Casagrande, R.; Georgetti, S.R.; et al. Spray-Drying of Casein/Pectin Bioconjugate Microcapsules Containing Grape (Vitis Labrusca) by-Product Extract. Food Chem. 2022, 368, 130817. [Google Scholar] [CrossRef]
- English, M.; Okagu, O.D.; Stephens, K.; Goertzen, A.; Udenigwe, C.C. Flavour Encapsulation: A Comparative Analysis of Relevant Techniques, Physiochemical Characterisation, Stability, and Food Applications. Front. Nutr. 2023, 10, 1019211. [Google Scholar] [CrossRef]
Source | Dose | Model | Results | Ref. |
---|---|---|---|---|
Antioxidant | ||||
Seeds | PAE // 375 mg/kg bw | Wistar male rats | ↓ oxidative stress markers, high blood pressure | [128] |
Seeds | PAE // 100 mg/kg bw; 30 days | Wistar male rats | ↑ antioxidant status; reverse of high lipid levels | [129] |
Seeds | NE // 600 mg/day | Human | ↑ plasma antioxidant capacity | [130] |
Anti-inflammatory | ||||
Seeds | PAE // 300 mg/kg bw/day, 7 weeks | C57BL/6 male mice | ↓ TNF-α, IL-6, MCP-1 | [131] |
Seeds | PAE // 100–500 mg/kg bw/day, 2 weeks | Wistar female rats | ↓ TNF-α secretions, transepithelial electrical resistance in small and large intestine, plasma LPS to basal levels | [125] |
Seeds | PAE // 10 mL/kg bw/day, 3 weeks | Sprague-Dawley male rats | ↓ myeloperoxidase, IL-1β, IL-6, TNF-α | [126] |
Seeds | PCE // 345 mg/kg bw/day; 19 weeks | Zucker male rats | ↓ CRP; ↑ adiponectin plasma levels; ≈IL-6 plasma levels | [132] |
Seeds | PCE // 30 mg/kg bw/day; 15 weeks | Wistar female rats | ↓ CRP, TNF-α, IL-6, Emr1; ↑ adiponectin in adipose tissue | [133] |
Seeds | PCE // 200 mg/kg bw/day; 5 weeks | Wistar male rats | ↓ inflammatory cells and TNF-α in lung tissue | [127] |
Antidiabetic | ||||
Seeds | PAE // 500 mg/kg bw/day; 16 weeks | Sprague-Dawley male rats | Partially reversed beta-cell dysfunction; ↑ insulin levels | [134] |
Seeds | PAE // 100 mg/kg bw/day; 45 days | Wistar male rats | ↓ glucose, insulin levels; ↑ insulin SE; restoration of the activities of glycolytic enzymes in the liver | [135] |
Seeds | PAE // 25 mg/kg bw/day; 21 days | Wistar male rats | ↓ glucose, insulin levels | [136] |
Seeds | PAE // 25–200 mg/kg bw/day; 45 days | Wistar male rats | ≈glucose, insulin, HOMA-IR plasma levels | [137] |
Seeds | PCE // 345 mg/kg bw/day; 19 weeks | Zucker male rats | ↓ glucose levels | [132] |
Seeds | PCE // 25 mg/kg bw/day; 10–30 days | Wistar female rats | ↓ insulin levels | [138] |
Seeds | NE // 600 mg/day, 4 weeks | Human | Improvement of markers of inflammation and glycemia | [139] |
Pomace | NE // 48.5 µg/mL | In vitro | ↓ activity carbohydrate digesting enzymes | [140] |
Pomace (red Portuguese varieties) | NE // 0.47 µg/mL | In vitro | ↓ activity carbohydrate digesting enzymes | [141] |
Pomace (Merlot) | NE // 50–250 mg/kg bw/day | Wistar male rats | ↓ glucose levels | [142] |
Antiobesity | ||||
Seeds | PAE // 500 mg/kg bw/day; 8 days | Wistar male rats | ↓ Food intake, bw; ↑ energy expenditure | [143] |
Seeds | PAE // 25 mg/kg bw/day; 21 days | Wistar male rats | ↓ adipocyte size; ≈bw, reversion of adiposity | [136] |
Seeds | PAE // 100 mg/kg bw/day; 30 days | Wistar male rats | ↓ bw | [129] |
Seeds | PAE // 1000 mg/kg bw/day; 8 days | Wistar female rats | ↓ Food intake, bw; ↑ energy expenditure | [144] |
Seeds | PAE // 500 mg/kg bw/day; 14 days | Wistar female rats | ↓ bw; ≈adiposity | [125] |
Seeds | PAE // 500 mg/kg bw/day; 17 weeks | Wistar female rats | ↓ bw, WAT, % visceral and total adiposity | [145] |
Seeds | PAE // 300 mg/kg bw/day; 7 weeks | C57BL/6 male mice | ↓ epidydimal fat mass; ≈bw | [131] |
Seeds | PCE // 25 mg/kg bw/day; 15 days | Golden Syrian male hamsters | ↓ adiposity, bw | [146] |
Seeds | PCE // 25 mg/kg bw/day; 30 days | Wistar female rats | ↓ visceral adipose tissue; ≈bw, plasma leptin levels | [138] |
Seeds | PCE // 30 mg/kg bw/day; 15 weeks | Wistar female rats | ↓ bw; ≈adiposity | [133] |
Seeds | PCE // 345 mg/kg bw/day; 19 weeks | Zucker male rats | ≈adiposity, bw | [132] |
Pomace (Tannat) | NE // 2431.0 µg/mL | In vitro | Pancreatic lipase inhibition | [147] |
Cardioprotective | ||||
Seeds | PAE // 100 mg/kg bw/day; 30 days | Wistar male rats | ↓ CHOL | [129] |
Seeds | PAE // 25 mg/kg bw/day; 21 days | Wistar male rats | ↓ CHOL | [136] |
Seeds | PAE // 100 mg/kg bw; 10 weeks | Hamsters | ↓ CHOL | [148] |
Seeds (white grapes) | PCE // 375 mg/kg bw/day; 2 days | Spontaneously hypertensive male rats | ↓ DBP, SBP | [149] |
Seeds | PCE // 345 mg/kg bw/day; 19 weekss | Zucker male rats | ↑ CRP; ↓ IL-6, TNF-α; ≈CHOL | [132] |
Seeeds | NE // 0.5%; 10 weeks | Harlan Sprague-Dawley female rats | ↓ arterial pressure | [150] |
Seeds (Muscadine) | NE // 1300 mg/day, 4 weeks | Humans | ↑ resting brachial diameter | [151] |
Seeds | NE // 200–400 mg/day, 12 weeks | Human | ↓ CHOL | [152] |
Seeds | NE // 18.4 mg/kg bw; 12 weeks | Hamsters | ↓ CHOL, atherosclerosis | [153] |
Application | Description | Benefits | Example Products | Ref. |
---|---|---|---|---|
Animal Feed | Inclusion of grape tannins in animal diets to improve health and growth performance | Enhances gut health, antimicrobial properties, antioxidant effects, reduces methane production | Livestock feed, poultry feed | [179,185] |
Food Preservation | Use of grape tannins as natural preservatives to extend shelf life and maintain quality of food products | Antimicrobial properties, antioxidant effects, extends shelf life | Packaged meats, dairy products, baked goods | [197] |
Functional Foods | Addition of grape tannins to foods to enhance nutritional and functional properties | Antioxidant effects, potential health benefits (e.g., cardiovascular health, anti-inflammatory) | Nutraceuticals, fortified foods, beverages | [114] |
Wine and Beverage Industry | Utilization of tannins in winemaking and other beverage formulations to enhance flavor and stability | Improves taste and aroma, stabilizes color, provides antioxidant benefits | Wine, juices, teas | [198] |
Pet Food | Incorporation of grape tannins in pet food formulations to promote health and wellness | Supports digestive health, provides antioxidants, antimicrobial properties | Dog and cat food | [185] |
Natural Colorants | Use of grape tannins as natural colorants in food products | Provides natural coloring, antioxidant properties | Confectionery, beverages, sauces | [199] |
Dietary Supplements | Formulation of dietary supplements containing grape tannins for their health-promoting properties | Antioxidant effects, potential health benefits (e.g., cardiovascular health, anti-inflammatory) | Capsules, powders, tablets | [114] |
Meat Products | Application of grape tannins in meat processing to improve quality and shelf life | Antimicrobial properties, enhances flavor, antioxidant effects | Sausages, cured meats | [200] |
Bakery Products | Incorporation of grape tannins in bakery products for enhanced nutritional value and shelf life | Antioxidant properties, potential health benefits, extends shelf life | Bread, cakes, pastries | [201] |
Dairy Products | Use of grape tannins in dairy processing to enhance nutritional and functional properties | Antioxidant effects, potential health benefits, improves texture and flavor | Yogurt, cheese, milk-based drinks | [202] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Echave, J.; Pereira, A.G.; Jorge, A.O.S.; Barciela, P.; Nogueira-Marques, R.; Yuksek, E.N.; Oliveira, M.B.P.P.; Barros, L.; Prieto, M.A. Grape Winemaking By-Products: Current Valorization Strategies and Their Value as Source of Tannins with Applications in Food and Feed. Molecules 2025, 30, 2726. https://doi.org/10.3390/molecules30132726
Echave J, Pereira AG, Jorge AOS, Barciela P, Nogueira-Marques R, Yuksek EN, Oliveira MBPP, Barros L, Prieto MA. Grape Winemaking By-Products: Current Valorization Strategies and Their Value as Source of Tannins with Applications in Food and Feed. Molecules. 2025; 30(13):2726. https://doi.org/10.3390/molecules30132726
Chicago/Turabian StyleEchave, Javier, Antía G. Pereira, Ana O. S. Jorge, Paula Barciela, Rafael Nogueira-Marques, Ezgi N. Yuksek, María B. P. P. Oliveira, Lillian Barros, and M. A. Prieto. 2025. "Grape Winemaking By-Products: Current Valorization Strategies and Their Value as Source of Tannins with Applications in Food and Feed" Molecules 30, no. 13: 2726. https://doi.org/10.3390/molecules30132726
APA StyleEchave, J., Pereira, A. G., Jorge, A. O. S., Barciela, P., Nogueira-Marques, R., Yuksek, E. N., Oliveira, M. B. P. P., Barros, L., & Prieto, M. A. (2025). Grape Winemaking By-Products: Current Valorization Strategies and Their Value as Source of Tannins with Applications in Food and Feed. Molecules, 30(13), 2726. https://doi.org/10.3390/molecules30132726