Chemical Composition, Acetylcholinesterase-Inhibitory Potential and Antioxidant Activity of Essential Oils from Three Populations of Parthenium hysterophorus L. in Ecuador
Abstract
1. Introduction
2. Results
2.1. Obtaining the Essential Oil
2.2. Chemical Composition
2.3. Anticholinesterase Activity
2.4. Antioxidant Activity
2.5. Multivariate Analysis
3. Discussion
4. Methodology
4.1. Plant Material and Collection
4.2. Essential Oil Extraction
4.3. Chemical Composition Analysis
4.3.1. Qualitative Analysis
4.3.2. Quantitative Analysis
4.4. Anticholinesterase Activity
4.5. Antioxidant Activity
4.5.1. DPPH Assay
4.5.2. ABTS Assay
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Acosta, L. Medicinal plants in a human development project. Rev. Cuba. Plantas Med. 2012, 17, 446–451. [Google Scholar]
- Bautista, V.; Ken, C.; Keita, H. The role of agriculture in the food security of rural communities in Quintana Roo: A self-sustaining cycle. Estud. Soc. Rev. Sliment. Contemp. Desarro. Reg. 2020, 30, e20987. [Google Scholar] [CrossRef]
- Salazar-Gómez, A.; Velo-Silvestre, A.A.; Alonso-Castro, A.J.; Hernández-Zimbrón, L.F. Medicinal Plants Used for Eye Conditions in Mexico—A Review. Pharmaceuticals 2023, 16, 1432. [Google Scholar] [CrossRef]
- Rivero-Guerra, A. Diversity and distribution of the endemisms of Asteraceae (Compositae) in the Flora of Ecuador. Collect. Bot. 2020, 39, e001. [Google Scholar] [CrossRef]
- León, S.; Valencia, R.; Pitman, N.; Endara, L.; Ulloa, C.; Navarrete, H. Red Book of the Endemic Plants of Ecuador; Herbario QCA: Quito, Ecuador, 2011; ISBN 978-9942-03-393-2. [Google Scholar]
- Suárez, E.; Villaseñor, J. The endemic composites of Oaxaca, México: Diversity and distribution. Bol. Soc. Bot. México 2011, 88, 55–61. [Google Scholar]
- Maishi, A.; Shoukat, P.; Chaghtai, A.; Khan, G. A test of parthenium hysterophorus, L. Br. Homeopath. J. 1998, 87, 17–21. [Google Scholar] [CrossRef]
- Vimala; Hans, D. Variations in epidermal trichomes of Parthenium hysterophorus L., a mystic weed, from se-miarid regions of Barmer, Rajasthan (India). Front. Plant Sci. 2024, 15, 1363774. [Google Scholar] [CrossRef]
- Jørgensen, P.; León, S.; González, A.; Swift, V.; Hediger, N.; Missouri, P. Catalogue of the Vascular Plants of Ecuador; Jacks, P.S.W., Ed.; Missouri Botanical Garden: Louis, MO, USA, 1999; ISBN 0161-1542. [Google Scholar]
- Adkins, S.; Shabbir, A. Biology, ecology and management of the invasive parthenium weed (Parthenium hysterophorus L.). Pest Manag. Sci. 2014, 70, 1023–1029. [Google Scholar] [CrossRef]
- Kaur, L.; Malhi, D.; Cooper, R.; Kaur, M.; Sohal, H.; Mutreja, V.; Sharma, A. Comprehensive review of the ethnobotanical uses, phytochemistry, biological potential and toxicology of Parthenium hysterophorus L.: A journey from noxious weed to therapeutic medicinal plant. J. Ethnopharmacol. 2021, 281, 114525. [Google Scholar] [CrossRef]
- Yingngam, B. Chemistry of Essential Oils. In Flavors and Fragrances in Food Processing: Preparation and Characterization Methods; ACS Publications: Washington, DC, USA, 2022; pp. 189–223. [Google Scholar] [CrossRef]
- Hernández, S.; de Armas, Á.; Montenegro, N.; Hernández, R.; Trujillo, A. Design, elaboration and control of the fluid extract of Parthenium hysterophorus L. “(escoba amarga)”. Rev. Cent. Azúcar 2024, 51, e1064-25. [Google Scholar]
- Chandra, S.; Dutt, P.; Shahi, A.; Kaul, B.; Tava, A. Partial composition of Parthenium hysterophorus oil from the Jammu region of India. J. Essent. Oil Res. 1998, 10, 153–155. [Google Scholar] [CrossRef]
- Mohsenzadeh, F.; Chehregani, A.; Amiri, H. Chemical composition, antibacterial activity and cytotoxicity of essential oils of Tanacetum parthenium in different developmental stages. Pharm. Biol. 2011, 49, 920–926. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Li, A.; Wan, F.; Liu, W.; Johnson, D. Effects of plant essential oils on immature and adult sweetpotato whitefly, Bemisia tabaci biotype B. Crop Prot. 2010, 29, 1200–1207. [Google Scholar] [CrossRef]
- Hampel, H.; Mesulam, M.M.; Cuello, A.C.; Farlow, M.R.; Giacobini, E.; Grossberg, G.T.; Khachaturian, Z.S. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain 2018, 141, 1917–1933. [Google Scholar] [CrossRef] [PubMed]
- Bernal, Y.; Aguiler, D.; Grajeda, P.; Toledo, G.; Moreno, M.; Perera, J.; González, C. Acetylcholinesterase (ache) and butyrylcholinesterase (buche) activity in Mexican populations: A pilot study. Int. J. Environ. Pollut. 2018, 34, 25–32. [Google Scholar] [CrossRef]
- Lan, M.; Gao, X.; Duan, X.; Li, H.; Yu, H.; Li, J.; Wu, G. Nematicidal activity of tirotundin and parthenolide isolated from Tithonia diversifolia and Chrysanthemum parthenium. J. Environ. Sci. Health Part B 2022, 57, 54–61. [Google Scholar] [CrossRef]
- Adams, R. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Texensis Publishing: Gruver, TX, USA, 2017; Volume 5, pp. 46–52. ISBN 978-0-9981557-2-2. [Google Scholar]
- Bashar, M.; Juraimi, A.; Ahmad, M.; Uddin, M.; Asib, N.; Anwar, M.; Rahaman, F. A Mystic Weed, Parthenium hysterophorus: Threats, Potentials and Management. Agronomy 2021, 11, 1514. [Google Scholar] [CrossRef]
- De Miranda, A.; Cardoso, D.; De Carvalho, L.; Figueiredo, C.; Nelson, D.; De Oliveira, C.; De Albuquerque, L. Chemical composition and allelopathic activity of Parthenium hysterophorus and Ambrosia polystachya weeds essential oils. Am. J. Plant Sci. 2014, 5, 1248–1257. [Google Scholar] [CrossRef]
- Khalil, N.; El-Jalel, L.; Yousif, M.; Gonaid, M. Altitude impact on the chemical profile and biological activities of Satureja thymbra L. essential oil. BMC Complement. Med. Ther. 2020, 20, 1–11. [Google Scholar] [CrossRef]
- Nik, Z.; Mirza, M.; Ghaffari, M. Effect of water stress on growth and essential oil content in Parthenium argentatum Gray. J. Essent. Oil Bear. Plants 2008, 11, 423–429. [Google Scholar] [CrossRef]
- Surendran, S.; Qassadi, F.; Surendran, G.; Lilley, D.; Heinrich, M. Myrcene-what are the potential health benefits of this flavouring and aroma agent? Front. Nutr. 2021, 8, 699666. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, J.; Khan, A.A.; Aziz, T.; Ali, W.; Ahmad, S.; Rahman, S.U.; Iqbal, Z.; Dablool, A.S.; Alruways, M.W.; Almalki, A.A.; et al. Phytochemical Investigation, Antioxidant Properties and In Vivo Evaluation of the Toxic Effects of Parthenium hysterophorus. Molecules 2022, 27, 4189. [Google Scholar] [CrossRef]
- Kasote, D.; Katyare, S.; Hegde, M.; Bae, H. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int. J. Biol. Sci. 2015, 11, 982. [Google Scholar] [CrossRef] [PubMed]
- Sinha, S.; Paul, D. Antioxidant potentials of Parthenium hysterophorus L. leaf extracts. Indian J. Sci. Res. 2014, 3, 80–86. [Google Scholar]
- El-Shiekh, A.; Kassem, H.; Khaleel, A.; Abd El-Mageed, M. Anticholinesterases activity of Murraya koenigii (L.) Spreng. and Murraya paniculata (L.) Jacq. essential oils with GC/MS analysis and molecular docking. Nat. Prod. Res. 2024, 38, 2155–2159. [Google Scholar] [CrossRef]
- Li, J.; Li, F.; Wu, G.; Gui, F.; Li, H.; Xu, L.; Qin, X. Acetylcholinesterase inhibitory activity of sesquiterpenoids isolated from Laggera pterodonta. Front. Plant Sci. 2023, 14, 1074184. [Google Scholar] [CrossRef] [PubMed]
- Jarma, A.; Cardona, C.; Araméndiz, H. Effect of climate change on the physiology of cultivated plants: A review. Rev. UDCA Actual. Divulg. Científica 2012, 15, 63–76. [Google Scholar]
- Pant, P.; Pandey, S.; Dall’Acqua, S. The influence of environmental conditions on secondary metabolites in medicinal plants: A literature review. Chem. Biodivers. 2021, 18, e2100345. [Google Scholar] [CrossRef]
- Yin, H.; Wang, L.; Su, H.; Liang, Y.; Ji, P.; Wang, X.; Xi, Z. Effects of ultraviolet and infrared radiation absence or presence on the aroma volatile compounds in winegrape during veraison. Food Res. Int. 2023, 167, 112662. [Google Scholar] [CrossRef]
- Thakur, M.; Kumar, R. Microclimatic buffering on medicinal and aromatic plants: A review. Ind. Crops Prod. 2021, 160, 113144. [Google Scholar] [CrossRef]
- Machado, C.A.; Oliveira, F.O.; de Andrade, M.A.; Hodel, K.V.S.; Lepikson, H.; Machado, B.A.S. Steam Distillation for Essential Oil Extraction: An Evaluation of Technological Advances Based on an Analysis of Patent Documents. Int. J. Sustain. 2022, 14, 7119. [Google Scholar] [CrossRef]
- Calva, J.; Ludeña, C.; Bec, N.; Larroque, C.; Salinas, M.; Vidari, G.; Armijos, C. Constituents and Selective BuChE Inhibitory Activity of the Essential Oil from Hypericum aciculare Kunth. Plants 2023, 12, 2621. [Google Scholar] [CrossRef] [PubMed]
- León, G.; Osorio, D.; Martínez, R. Comparison of two methods for extraction of essential oil from Citrus sinensis L. Rev. Cuba. 2015, 49, 742–750. [Google Scholar]
- NIST. NIST Chemistry WebBook: Nist Standard Reference Database Number 69. Available online: https://webbook.nist.gov/chemistry/ (accessed on 5 March 2025).
- Van Den Dool, H.; Kratz, P.D. A generalization of the retention rate system involving linear temperature pro-grammed gas-liquid partitioning chromatography. J. Chromatogr. 1963, 11, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Maia, A.; López, M.; Rodríguez, F. Comparison of three methods for determination of plasma cholinesterase activity in dogs. J. Toxicol. 2012, 29, 135–140. [Google Scholar]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Byrne, D.H. Comparison of ABTS, DPPH, FRAP, and ORACassays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Arnao, M. Some methodological problems in the determination of antioxidant activity by means of chromogenic radicals: A case study. Food Sci. Technol. 2000, 11, 419–421. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’hara, R.B.; Oksanen, M.J. Package ‘vegan’. Community Ecol. Package 2013, 2, 1–295. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
5-Phenyl-methylpolysiloxane | ||||||
---|---|---|---|---|---|---|
N◦ | Compounds | LRI a | LRI b | ESP | LOJ | QUI |
% ± SD | ||||||
1 | tricyclene | 921 | 923 | 0.07 ± 0.04 | n.d. | 0.05 ± 0.02 |
2 | α-pinene | 932 | 933 | 0.51 ± 0.05 | 0.29 ± 0.06 | 0.38 ± 0.06 |
3 | camphene | 946 | 950 | 1.18 ± 0.07 | 0.52 ± 0.08 | n.d. |
4 | α-fenchene | 945 | 951 | n.d. | n.d. | 0.68 ± 0.08 |
5 | sabinene | 969 | 974 | 0.30 ± 0.05 | 0.14 ± 0.04 | 0.14 ± 0.04 |
6 | β-pinene | 974 | 980 | 1.50 ± 0.08 | 0.68 ± 0.10 | 0.71 ± 0.08 |
7 | myrcene | 988 | 992 | 11.33 ± 1.06 | 13.95 ± 13.15 | 13.36 ± 0.26 |
8 | limonene | 1024 | 1032 | n.d. | 0.20 ± 0.05 | 0.22 ± 0.06 |
9 | β-phellandrene | 1025 | 1034 | 0.43 ± 0.07 | 0.26 ± 0.06 | 0.22 ± 0.06 |
10 | (Z)-β-ocimene | 1032 | 1039 | 0.10 ± 0.04 | 0.08 ± 0.04 | 0.09 ± 0.04 |
11 | (E)-β-ocimene | 1044 | 1049 | 10.21 ± 0.10 | 10.51 ± 10.11 | 8.54 ± 0.14 |
12 | α-fenchocamphorone | 1104 | 1116 | 0.30 ± 0.06 | 0.22 ± 0.04 | 0.28 ± 0.06 |
13 | bornyl acetate | 1284 | 1292 | 1.25 ± 0.05 | 1.25 ± 1.10 | 0.63 ± 0.10 |
14 | δ-elemene | 1335 | 1337 | n.d. | 0.23 ± 0.05 | 0.29 ± 0.06 |
15 | silphinene | 1345 | 1350 | n.d. | n.d. | 0.06 ± 0.02 |
16 | cyclosativene | 1369 | 1372 | 0.39 ± 0.06 | 0.18 ± 0.03 | 0.11 ± 0.03 |
17 | α-ylangene | 1373 | 1378 | 0.45 ± 0.09 | n.d. | n.d. |
18 | α-copaene | 1374 | 1381 | n.d. | 0.20 ± 0.04 | 0.22 ± 0.04 |
19 | daucene | 1380 | 1380 | n.d. | 0.10 ± 0.03 | n.d. |
20 | β-bourbonene | 1387 | 1386 | 0.11 ± 0.04 | 0.11 ± 0.03 | n.d. |
21 | β-cubebene | 1387 | 1390 | 0.61 ± 0.04 | 0.44 ± 0.07 | n.d. |
22 | sibirene | 1400 | 1391 | n.d. | n.d. | 0.44 ± 0.08 |
23 | β-elemene | 1389 | 1392 | n.d. | 0.14 ± 0.04 | 0.11 ± 0.03 |
24 | sativene | 1390 | 1395 | 0.03 ± 0.03 | n.d. | n.d. |
25 | β-longipinene | 1400 | 1399 | 0.04 ± 0.04 | n.d. | n.d. |
26 | α-cis-bergamotene | 1411 | 1416 | n.d. | n.d. | 0.04 ± 0.03 |
27 | (E)-caryophyllene | 1417 | 1424 | 7.93 ± 0.08 | 3.98 ± 3.13 | 5.37 ± 0.12 |
28 | α-trans-bergamotene | 1432 | 1431 | 0.26 ± 0.07 | 0.20 ± 0.03 | 0.04 ± 0.03 |
29 | γ-elemene | 1434 | 1435 | n.d. | n.d. | 0.27 ± 0.07 |
30 | α-guaiene | 1437 | 1439 | n.d. | 0.08 ± 0.03 | 0.05 ± 0.03 |
31 | 6.9-guaiadiene | 1442 | 1445 | 0.13 ± 0.04 | n.d. | 0.19 ± 0.05 |
32 | (E)-β-farnesene | 1454 | 1455 | 0.27 ± 0.07 | 0.33 ± 0.06 | 0.56 ± 0.10 |
33 | α-humulene | 1452 | 1461 | 1.40 ± 0.12 | 0.84 ± 0.09 | 0.08 ± 0.12 |
34 | 9-epi-(E)-caryophyllene | 1464 | 1465 | 0.05 ± 0.03 | n.d. | n.d. |
35 | dauca-5,8-diene | 1471 | 1478 | n.d. | 0.10 ± 0.04 | 0.19 ± 0.05 |
36 | γ-muurolene | 1480 | 1481 | 0.22 ± 0.07 | 0.14 ± 0.04 | 0.15 ± 0.04 |
37 | germacrene D | 1493 | 1489 | 35.27 ± 1.41 | 28.30 ± 28.30 | 32.22 ± 0.20 |
38 | bicyclogermacrene | 1500 | 1502 | 1.89 ± 0.05 | 1.42 ± 1.12 | 1.57 ± 0.12 |
39 | (E, E)-α-farnesene | 1505 | 1507 | 4.99 ± 0.08 | 3.64 ± 3.14 | 6.77 ± 0.16 |
40 | δ-amorphene | 1511 | 1509 | n.d. | 2.82 ± 2.12 | 3.07 ± 0.16 |
41 | α-bulnesene | 1509 | 1514 | 0.22 ± 0.06 | n.d. | 0.07 ± 0.04 |
42 | γ-cadinene | 1513 | 1520 | n.d. | n.d. | 0.48 ± 0.12 |
43 | δ-cadinene | 1522 | 1524 | 1.35 ± 0.05 | 0.87 ± 0.12 | 0.55 ± 0.10 |
44 | β-sesquiphellandrene | 1521 | 1529 | 0.41 ± 0.06 | 0.29 ± 0.07 | n.d. |
45 | γ-cuprenene | 1532 | 1539 | 0.21 ± 0.06 | 0.06 ± 0.02 | n.d. |
46 | α-copaen-11-ol | 1539 | 1539 | n.d. | n.d. | 0.04 ± 0.03 |
47 | trans-cadinene ether | 1557 | 1555 | n.d. | n.d. | 1.19 ± 0.12 |
48 | (E)-nerolidol | 1561 | 1567 | 0.70 ± 0.05 | 0.96 ± 0.11 | 0.15 ± 0.05 |
49 | 1α,10α-epoxy-amorph-4-ene | 1570 | 1575 | n.d. | 0.53 ± 0.09 | n.d. |
50 | spathulenol | 1577 | 1576 | 0.35 ± 0.07 | n.d. | n.d. |
51 | not identified | 1582 | n.d. | 1.95 ± 1.10 | n.d. | |
52 | β-copaen-4-α-ol | 1590 | 1582 | 1.27 ± 0.06 | n.d. | 1.02 ± 0.14 |
53 | not identified | 1590 | 1.16 ± 0.04 | 1.59 ± 1.14 | 1.79 ± 0.14 | |
54 | cis-dihydro-mayurone | 1595 | 1594 | 1.51 ± 0.07 | 0.61 ± 0.11 | n.d. |
55 | isolongifolan-7-α-ol | 1618 | 1614 | 2.05 ± 0.05 | 8.26 ± 8.12 | 2.33 ± 0.16 |
56 | β-atlantol | 1608 | 1618 | n.d. | n.d. | 0.85 ± 0.12 |
57 | 1,10-di-epi-cubenol | 1618 | 1623 | n.d. | 0.54 ± 0.11 | 0.15 ± 0.05 |
58 | epi-α-cadinol | 1638 | 1634 | 0.21 ± 0.07 | 0.45 ± 0.11 | 0.27 ± 0.08 |
59 | muurola-4,10(14)-dien-1-β-ol | 1630 | 1639 | n.d. | n.d. | 0.02 ± 0.02 |
60 | β-acorenol | 1636 | 1639 | 0.26 ± 0.06 | n.d. | n.d. |
61 | cis-guaia-3,9-dien-11-ol | 1648 | 1654 | 0.87 ± 0.06 | 0.90 ± 0.12 | n.d. |
62 | 14-hydroxy-9-epi-(E)-caryophyllene | 1668 | 1663 | 0.05 ± 0.04 | 0.37 ± 0.09 | 0.03 ± 0.02 |
63 | germacra-4(15),5,10(14)-trein-1- α-ol | 1685 | 1681 | 5.18 ± 0.08 | 8.00 ± 7.15 | 5.69 ± 0.09 |
64 | junicedranol | 1692 | 1689 | n.d. | 0.57 ± 0.11 | 0.41 ± 0.06 |
65 | eudesma-4(15),7-dien-1β-ol | 1687 | 1698 | 0.64 ± 0.01 | 0.82 ± 0.08 | 0.64 ± 0.09 |
66 | 14-hydroxy-α-humulene | 1713 | 1709 | n.d. | n.d. | 0.09 ± 0.04 |
67 | 14-hydroxy-α-muurolene | 1779 | 1781 | n.d. | 0.11 ± 0.05 | n.d. |
68 | (E)-isovalencenol | 1793 | 1786 | n.d. | n.d. | 0.05 ± 0.03 |
69 | 14-hydroxy-δ-Cadinene | 1803 | 1797 | n.d. | n.d. | 0.04 ± 0.03 |
70 | n-heneicosane | 2100 | 2095 | n.d. | 0.04 ± 0.02 | n.d. |
Total identified (%) | 96.51 | 94.73 | 94.06 | |||
Alcohols (%) | 3.87 | 11.04 | 4.07 | |||
Ketones (%) | 1.51 | 0.61 | 0 | |||
Monoterpene hydrocarbons (%) | 25.64 | 26.63 | 24.37 | |||
Sesquiterpene hydrocarbons (%) | 56.23 | 44.47 | 54.81 | |||
Oxygenated monoterpenoids (%) | 1.55 | 1.47 | 0.91 | |||
Oxygenated sesquiterpenes (%) | 7.71 | 10.517 | 9.9 |
Sample | AChE IC50 (µg/mL) | DPPH IC50 (µg/mL) | ABTS IC50 (µg/mL) |
---|---|---|---|
ESP | 14.78 ± 1.02 | 93.16 ± 1.10 | 16.38 ± 0.7 |
LOJ | 16.65 ± 1.02 | 158.43 ± 1.61 | 36.18 ± 1.15 |
QUI | 10.69 ± 1.02 | 92.98 ± 1.06 | 14.50 ± 0.7 |
Donepezil (AChE control) | 12.40 ± 1.35 | — | — |
Trolox (antioxidant control) | — | 35.54 ± 1.04 | 29.09 ± 1.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calva, J.; Cuenca, M.B.; León, A.; Benítez, Á. Chemical Composition, Acetylcholinesterase-Inhibitory Potential and Antioxidant Activity of Essential Oils from Three Populations of Parthenium hysterophorus L. in Ecuador. Molecules 2025, 30, 2712. https://doi.org/10.3390/molecules30132712
Calva J, Cuenca MB, León A, Benítez Á. Chemical Composition, Acetylcholinesterase-Inhibitory Potential and Antioxidant Activity of Essential Oils from Three Populations of Parthenium hysterophorus L. in Ecuador. Molecules. 2025; 30(13):2712. https://doi.org/10.3390/molecules30132712
Chicago/Turabian StyleCalva, James, María Belén Cuenca, Andrea León, and Ángel Benítez. 2025. "Chemical Composition, Acetylcholinesterase-Inhibitory Potential and Antioxidant Activity of Essential Oils from Three Populations of Parthenium hysterophorus L. in Ecuador" Molecules 30, no. 13: 2712. https://doi.org/10.3390/molecules30132712
APA StyleCalva, J., Cuenca, M. B., León, A., & Benítez, Á. (2025). Chemical Composition, Acetylcholinesterase-Inhibitory Potential and Antioxidant Activity of Essential Oils from Three Populations of Parthenium hysterophorus L. in Ecuador. Molecules, 30(13), 2712. https://doi.org/10.3390/molecules30132712