Synthesis of 1-(2-Hydroxy-5-methylphenyl)-5-oxopyrrolidine-3-carboxylic Acid Derivatives as a Promising Scaffold Against Disease-Causing Bacteria Relevant to Public Health
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Synthesis
- 1-(2-Hydroxy-5-methylphenyl)-5-oxopyrrolidine-3-carboxylic acid (2)
- Methyl-1-(2-hydroxy-5-methylphenyl)-5-oxopyrrolidine-3-carboxylate (3)
- 1-(2-Hydroxy-5-methylphenyl)-5-oxopyrrolidine-3-carbohydrazide (4)
- General procedure for the preparation of compounds 5 and 6
- 2-(1-(2-Hydroxy-5-methylphenyl)-5-oxopyrrolidine-3-carbonyl)-N-phenylhydrazine-1-carbothioamide (5)
- 2-(1-(2-Hydroxy-5-methylphenyl)-5-oxopyrrolidine-3-carbonyl)-N-phenylhydrazine-1-carboxamide (6)
- General procedure for the preparation of compounds 7 and 8
- 1-(2-Hydroxy-5-methylphenyl)-4-(4-phenyl-5-thioxo-4,5-dihydro-1H-1,2,4-triazol-3-yl)pyrrolidin-2-one (7)
- 5-(1-(2-Hydroxy-5-methylphenyl)-5-oxopyrrolidin-3-yl)-4-phenyl-2,4-dihydro-3H-1,2,4-triazol-3-one (8)
- General procedure for the preparation of benzimidazoles 9a–d
- 4-(1H-benzo[d]imidazol-2-yl)-1-(2-hydroxy-5-methylphenyl)pyrrolidin-2-one (9a)
- 4-(6-Fluoro-1H-benzo[d]imidazol-2-yl)-1-(2-hydroxy-5-methylphenyl)pyrrolidin-2-one (9b)
- 4-(6-Chloro-1H-benzo[d]imidazol-2-yl)-1-(2-hydroxy-5-methylphenyl)pyrrolidin-2-one (9c)
- 1-(2-Hydroxy-5-methylphenyl)-4-(6-methyl-1H-benzo[d]imidazol-2-yl)pyrrolidin-2-one (9d)
- 1-(2-Ethoxy-5-methylphenyl)-4-(1-ethyl-1H-benzo[d]imidazol-2-yl)pyrrolidin-2-one (10)
- General procedure for the synthesis of hydrazones 11a–d
- 1-(2-Hydroxy-5-methylphenyl)-5-oxo-N′-(thien-2-ylmethylene)pyrrolidine-3-carbohydrazide (11a)
- 1-(2-Hydroxy-5-methylphenyl)-N′-((5-nitrothien-2-yl)methylene)-5-oxopyrrolidine-3-carbohydrazide (11b)
- N′-(furan-2-ylmethylene)-1-(2-hydroxy-5-methylphenyl)-5-oxopyrrolidine-3-carbohydrazide (11c)
- 1-(2-Hydroxy-5-methylphenyl)-N′-((5-nitrofuran-2-yl)methylene)-5-oxopyrrolidine-3-carbohydrazide (11d)
- General procedure for the preparation of hydrazones 12a–j
- N′-benzylidene-1-(2-hydroxy-5-methylphenyl)-5-oxpyrrolidine-3-carbohydrazide (12a)
- N′-(2,4-difluorobenzylidene)-1-(2-hydroxy-5-methylphenyl)-5-oxopyrrolidine-3-carbohydrazide (12b)
- N′-(4-chlorobenzylidene)-1-(2-hydroxy-5-methylphenyl)-5-oxpyrrolidine-3-carbohydrazide (12c)
- N′-(4-brombenzylidene)-1-(2-hydroxy-5-methylphenyl)-5-oxpyrrolidine-3-carbohydrazide (12d)
- 1-(2-Hydroxy-5-methylphenyl)-N′-(4-nitrobenzylidene)-5-oxopyrrolidine-3-carbohydrazide (12e)
- 1-(2-Hydroxy-5-methylphenyl)-N′-(4-methylbenzylidene)-5-oxopyrrolidine-3-carbohydrazide (12f)
- N′-(4-(dimethylamino)benzylidene)-1-(2-hydroxy-5-methylphenyl)-5-oxopyrrolidine-3-carbohydrazide (12g)
- 1-(2-Hydroxy-5-methylphenyl)-5-oxo-N′-(2,3,4-trimethoxybenzylidene)pyrrolidine-3-carbohydrazide (12h)
- 1-(2-Hydroxy-5-methylphenyl)-5-oxo-N′-(3,4,5-trimethoxybenzylidene)pyrrolidine-3-carbohydrazide (12i)
- 1-(2-Hydroxy-5-methylphenyl)-N′-(naphthalen-1-ylmethylene)-5-oxopyrrolidine-3-carbohydrazide (12j)
- General procedure for the preparation of hydrazones 13a, b
- 1-(2-Hydroxy-5-methylpnenyl)-5-oxo-N′-(propan-2-ylidene)pyrrolidine-3-carbohydrazide (13a)
- N′-(butan-2-ylidene)-1-(2-hydroxy-5-methylphenyl)-5-oxopyrrolidine-3-carbohydrazide (13b)
- N′-(1-(4-aminophenyl)ethylidene)-1-(2-hydroxy-5-methylphenyl)-5-oxopyrrolidine-3-carbohydrazide (13c)
- 1-(2-Hydroxy-5-methylphenyl)-5-oxo-N′-(2-oxoindolin-3-ylidene)pyrrolidine-3-carbohydrazide (14)
- 4-(3,5-Dimethyl-1H-pyrazol-1-yl)-1-(2-hydroxy-5-methylphenyl)pyrrolidin-2-one (15)
- N-(2,5-dimethyl-1H-pyrrol-1-yl)-1-(2-hydroxy-5-methylphenyl)-5-oxopyrrolidine-3-carboxamide (16)
3.2. Determination of Antimicrobial Activity
3.2.1. Preparation of Bacterial Inoculum
3.2.2. Determination of Minimum Inhibitory Concentration (MIC)
3.2.3. Determination of Minimum Bactericidal Concentration (MBC)
3.2.4. Biofilm Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
O | Oxacillin |
A | Ampicillin |
C | Cefuroxime |
MIC | Minimum Inhibitory Concentration |
MBC | Minimum Bactericidal Concentration |
S. aureus | Staphylococcus aureus subsp. aureus |
References
- Borah, P.; Hazarika, S.; Chettri, A.; Sharma, D.; Deka, S.; Venugopala, K.N.; Shinu, P.; Al-Shar’i, N.A.; Bardaweel, S.K.; Deb, P.K. Heterocyclic compounds as antimicrobial agents. In Viral, Parasitic, Bacterial, and Fungal Infections; Academic Press: Cambridge, MA, USA, 2023; pp. 781–804. [Google Scholar] [CrossRef]
- Qadir, T.; Amin, A.; Sharma, P.K.; Jeelani, I.; Abe, H. A Review on Medicinally Important Heterocyclic Compounds. Open J. Med. Chem. 2022, 16, e187410452202280. [Google Scholar] [CrossRef]
- Anwer, K.E.; El-Hddad, S.S.A.; Abd El-Sattar, N.E.A.; El-Morsy, A.; Khedr, F.; Mohamady, S.; Keshek, D.E.; Salama, S.A.; El-Adl, K.; Hanafy, N.S. Five and Six Membered Heterocyclic Rings Endowed with Azobenzene as Dual EGFRT790M and VEGFR-2 Inhibitors: Design, Synthesis, in Silico ADMET Profile, Molecular Docking, Dynamic Simulation and Anticancer Evaluations. RSC Adv. 2023, 13, 35321–35338. [Google Scholar] [CrossRef] [PubMed]
- Heravi, M.M.; Zadsirjan, V. Prescribed Drugs Containing Nitrogen Heterocycles: An Overview. RSC Adv. 2020, 10, 44247–44311. [Google Scholar] [CrossRef]
- Kabir, E.; Monir Uzzaman, M. A review on biological and medicinal impact of heterocyclic compounds. Results Chem. 2022, 4, 100606. [Google Scholar] [CrossRef]
- Peerzada, M.N.; Hamel, E.; Bai, R.; Supuran, C.T.; Azam, A. Deciphering the key heterocyclic scaffolds in targeting microtubules, kinases and carbonic anhydrases for cancer drug development. Pharmacol. Ther. 2021, 225, 107860. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, A.R.; Farooqui, M.; Satpute, R.H.; Abed, S. Overview on nitrogen containing compounds and their assessment based on International Regulatory Standards. J. Drug Delivery Therap. 2018, 8, 424–428. [Google Scholar] [CrossRef]
- Arora, P.; Arora, V.; Lamba, H.S.; Wadhwa, D. Importance of heterocyclic chemistry: A review. Int. J. Pharm. Sci. Res. 2012, 8, 2947–2954. [Google Scholar] [CrossRef]
- Sharma, P.K.; Qadir, T.; Amin, A.; Sarkar, D. Synthesis of medicinally important indole derivatives: A Review. Open Med. Chem. J. 2021, 15, 1–16. [Google Scholar] [CrossRef]
- Hilal, H.S.; Ali-Shtayeh, M.S.; Arafat, R.; Al-Tel, T.; Voelter, W.; Barakat, A. Synthesis of a new series of heterocyclic scaffolds for medicinal purposes. Eur. J. Med. Chem. 2006, 41, 1017–1024. [Google Scholar] [CrossRef]
- Barbuceanu, S.-F.; Olaru, O.T. Synthesis and Evaluation of Biologically Active Compounds from Heterocycles Class. Molecules 2025, 30, 394. [Google Scholar] [CrossRef]
- Available online: https://www.reachemchemicals.com/blog/applications-of-heterocyclic-compounds-in-pharmaceuticals/ (accessed on 3 March 2025).
- Cebeci, Y.U.; Batur, Ö.Ö.; Boulebd, H. Design, synthesis, theoretical studies, and biological activity evaluation of new nitrogen-containing poly heterocyclic compounds as promising antimicrobial agents. J. Mol. Struct. 2024, 1299, 137115. [Google Scholar] [CrossRef]
- Sadek, K.U.; Mekheimer, R.A.; Abd-Elmonem, M.; Abo-Elsoud, F.A.; Hayallah, A.M.; Mostafa, S.M.; Abdellattif, M.H.; Abourehab, M.A.S.; Farghaly, T.A.; Elkamhawy, A. Recent developments in the synthesis of hybrid heterocycles, a promising approach to develop multi-target antibacterial agents. J. Mol. Struct. 2023, 1286, 135616. [Google Scholar] [CrossRef]
- Gomtsyan, A. Heterocycles in Drugs and Drug Discovery. Chem. Heterocycl. Comp. 2012, 48, 7–10. [Google Scholar] [CrossRef]
- Barreca, M.; Spanò, V.; Rocca, R.; Bivacqua, R.; Gualtieri, G.; Raimondi, M.V.; Gaudio, E.; Bortolozzi, R.; Manfreda, L.; Bai, R.; et al. Identification of Pyrrolo [3′,4′:3,4]Cyclohepta[1,2-d][1,2]Oxazoles as Promising New Candidates for the Treatment of Lymphomas. Eur. J. Med. Chem. 2023, 254, 115372. [Google Scholar] [CrossRef]
- Grillone, K.; Riillo, C.; Rocca, R.; Ascrizzi, S.; Spanò, V.; Scionti, F.; Polerà, N.; Maruca, A.; Barreca, M.; Juli, G.; et al. The New Microtubule-Targeting Agent SIX2G Induces Immunogenic Cell Death in Multiple Myeloma. Int. J. Mol. Sci. 2022, 23, 10222. [Google Scholar] [CrossRef]
- Lee, B.; Kim, D.G.; Lee, A.; Kim, Y.M.; Cui, L.; Kim, S.; Choi, I. Synthesis and Discovery of the First Potent Proteolysis Targeting Chimaera (PROTAC) Degrader of AIMP2-DX2 as a Lung Cancer Drug. J. Enzym. Inhib. Med. Chem. 2023, 38, 51–66. [Google Scholar] [CrossRef]
- Bivacqua, R.; Barreca, M.; Spanò, V.; Raimondi, M.V.; Romeo, I.; Alcaro, S.; Andrei, G.; Barraja, P.; Montalbano, A. Insight into Non-Nucleoside Triazole-Based Systems as Viral Polymerases Inhibitors. Eur. J. Med. Chem. 2023, 249, 115136. [Google Scholar] [CrossRef]
- Fesatidou, M.; Petrou, A.; Athina, G. Heterocycle Compounds with Antimicrobial Activity. Curr. Pharm. Des. 2020, 26, 867–904. [Google Scholar] [CrossRef] [PubMed]
- Rusu, A.; Moga, I.-M.; Uncu, L.; Hancu, G. The Role of Five-Membered Heterocycles in the Molecular Structure of Antibacterial Drugs Used in Therapy. Pharmaceutics 2023, 15, 2554. [Google Scholar] [CrossRef]
- Shi, Z.; Zhang, J.; Tian, L.; Xin, L.; Liang, C.; Ren, X.; Li, M. A Comprehensive Overview of the Antibiotics Approved in the Last Two Decades: Retrospects and Prospects. Molecules 2023, 28, 1762. [Google Scholar] [CrossRef]
- Cheddie, A.; Shintre, S.A.; Bantho, A.; Mocktar, C.; Koorbanally, N.A. Synthesis and antibacterial activity of a series of 2-trifluoromethylbenzimidazole-thiazolidinone derivatives. J. Heterocycl. Chem. 2020, 57, 299–307. [Google Scholar] [CrossRef]
- Hassoun, A.; Linden, P.K.; Friedman, B. Incidence, prevalence, and management of MRSA bacteremia across patient populations—A review of recent developments in MRSA management and treatment. Crit. Care 2017, 21, 211–221. [Google Scholar] [CrossRef]
- Abd El-Aleam, R.H.; George, R.F.; Georgey, H.H.; Hamdy, M.; Abdel-Rahman, H.M. Bacterial virulence factors: A target for heterocyclic compounds to combat bacterial resistance. RSC Adv. 2021, 11, 36459–36482. [Google Scholar] [CrossRef]
- Kavaliauskas, P.; Sapijanskaitė-Banevič, B.; Grybaitė, B.; Mickevičiūtė, E.; Anusevičius, K.; Garcia, A.; Naing, E.; Petraitienė, R.; Petraitis, V.; Grigalevičiūtė, R.; et al. Synthesis and In Vitro Anticancer Activity of Pyrrolidone Derivatives Bearing 3,4,5-Trimethoxyphenyl Moiety as a Promising Anticancer Scaffold. Appl. Sci. 2024, 14, 11784. [Google Scholar] [CrossRef]
- Kairytė, K.; Vaickelionienė, R.; Grybaitė, B.; Anusevičius, K.; Mickevičius, V.; Petrikaitė, V. The Effect of 4-(Dimethylamino)phenyl-5-oxopyrrolidines on Breast and Pancreatic Cancer Cell Colony Formation, Migration, and Growth of Tumor Spheroids. Int. J. Mol. Sci. 2024, 25, 1834. [Google Scholar] [CrossRef]
- Balandis, B.; Mickevičius, V.; Petrikaitė, V. Exploration of Benzenesulfonamide-Bearing Imidazole Derivatives Activity in Triple-Negative Breast Cancer and Melanoma 2D and 3D Cell Cultures. Pharmaceuticals 2021, 14, 1158. [Google Scholar] [CrossRef] [PubMed]
- Kavaliauskas, P.; Grybaite, B.; Mickevicius, V.; Petraitiene, R.; Grigaleviciute, R.; Planciuniene, R.; Gialanella, P.; Pockevicius, A.; Petraitis, V. Synthesis, ADMET Properties, and In Vitro Antimicrobial and Antibiofilm Activity of 5-Nitro-2-thiophenecarbaldehyde N-((E)-(5-Nitrothienyl)methylidene)hydrazone (KTU-286) against Staphylococcus aureus with Defined Resistance Mechanisms. Antibiotics 2020, 9, 612. [Google Scholar] [CrossRef]
- Šiugždaitė, J.; Lelešius, R.; Grybaitė, B.; Vaickelionienė, R.; Mickevičius, V. Synthesis and biological studies of new 2-benzoxazolinone derivatives as antibacterial agents. Appl. Sci. 2024, 14, 4783. [Google Scholar] [CrossRef]
- Ferraz, E.R.A.; de Oliveira, G.A.R.; de Oliveira, D.P. The impact of aromatic amines on the environment: Risks and damages. Front. Biosci. 2012, 4, 914–923. [Google Scholar] [CrossRef]
- Sirviö, J.A.; Kantola, A.M.; Komulainen, S.; Filonenko, S. Aqueous Modification of Chitosan with Itaconic Acid to Produce Strong Oxygen Barrier Film. Biomacromolecules 2021, 22, 2119–2128. [Google Scholar] [CrossRef]
- Paytash, P.L.; Sparrow, E.; Gathe, J.C. The reaction of itaconic acid with primary amines. J. Am. Chem. Soc. 1950, 72, 1415–1416. [Google Scholar] [CrossRef]
- Lin, J.L.; Liang, Y.Q.; Liao, X.J.; Yang, J.T.; Li, D.C.; Huang, Y.L.; Jiang, Z.H.; Xu, S.H.; Zhao, B.X. Acanthophoraine A, a new pyrrolidine alkaloid from the red alga Acanthophora spicifera. Nat. Prod. Res 2020, 34, 2065–2070. [Google Scholar] [CrossRef] [PubMed]
- Ahankar, H.; Ramazani, A.; Ślepokura, K.; Lis, T.; Joo, S.W. Synthesis of pyrrolidinone derivatives from aniline, an aldehyde and diethyl acetylenedicarboxylate in an ethanolic citric acid solution under ultrasound irradiation. Green. Chem. 2016, 18, 3582–3593. [Google Scholar] [CrossRef]
- Mickevicius, M.; Beresnevicius, Z.J.; Mickevicius, V.; Mikulskiene, G. Condensation products of 1-Aryl-4-carboxy2-pyrrolidinones with o-diaminoarenes, o-aminophenol, and their structural studies. Heteroat. Chem. 2006, 17, 47–56. [Google Scholar] [CrossRef]
- Srivastava, R.; Gupta, S.K.; Naaz, F.; Gupta, P.S.S.; Yadav, M.; Singh, V.K.; Singh, A.; Rana, M.K.; Gupta, S.K.; Schols, D.; et al. Alkylated benzimidazoles: Design, synthesis, docking, DFT analysis, ADMET property, molecular dynamics and activity against HIV and YFV. Comput. Biol. Chem. 2020, 89, 107400. [Google Scholar] [CrossRef]
- Ershov, A.Y.; Lagoda, I.V.; Yakimovich, S.I.; Zerova, I.V.; Pakalnis, V.V.; Shamanin, V.V. Structure of the condensation products of 3-sulfanylpropionic acid hydrazide with aldehydes, ketones, and aldoses. Russ. J. Org. Chem. 2009, 45, 1488–1495. [Google Scholar] [CrossRef]
- Levrand, B.; Fieber, W.; Lehn, J.-M.; Herrmann, A. Controlled Release of Volatile Aldehydes and Ketones from Dynamic Mixtures Generated by Reversible Hydrazone Formation. Helv. Chim. Acta 2007, 90, 2281–2314. [Google Scholar] [CrossRef]
- Czelen, P.; Skotnicka, A.; Szefler, B. Designing and Synthesis of New Isatin Derivatives as Potential CDK2 Inhibitors. Int. J. Mol. Sci. 2022, 23, 8046. [Google Scholar] [CrossRef]
- Xu, J.; Lin, Q.; Sheng, M.; Ding, T.; Li, B.; Gao, Y.; Tan, Y. Antibiofilm Effect of Cinnamaldehyde-Chitosan Nanoparticles against the Biofilm of Staphylococcus Aureus. Antibiotics 2022, 11, 1403. [Google Scholar] [CrossRef]
- Fotopoulou, E.T.; Jenkins, C.; Paiset, A.; Amar, C. Listeria monocytogenes: The silent assassin. J. Med. Microbiol. 2024, 73, 001800. [Google Scholar] [CrossRef]
- Kohanski, A.A.; Dwyer, D.J.; Collins, J.J. How antibiotics kill bacteria: From targets to networks. Nat. Rev. Microbiol. 2010, 8, 423–435. [Google Scholar] [CrossRef] [PubMed]
- Pitt, T.L.; McClure, J.; Parker, M.D.; Amezquita, A.; McClure, P.J. Bacillus cereus in personal care products: Risk to consumers. Int. J. Cosmet. Sci. 2015, 37, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Ballén, V.; Ratia, V.; Gabasa, Y.; Soto, S.M. Clinical Escherichia coli: From Biofilm Formation to New Antibiofilm Strategies. Microorganisms 2022, 10, 1103. [Google Scholar] [CrossRef] [PubMed]
- Kashi, M.; Noei, M.; Chegini, Z.; Shariati, A. Natural Compounds in the Fight against Staphylococcus Aureus Biofilms: A Review of Antibiofilm Strategies. Front. Pharmacol. 2024, 15, 1491363. [Google Scholar] [CrossRef]
- Didehdar, M.; Chegini, Z.; Tabaeian, S.P.; Razavi, S.; Shariati, A. Cinnamomum: The New Therapeutic Agents for Inhibition of Bacterial and Fungal Biofilm-Associated Infection. Front. Cell. Infect. Microbiol. 2022, 12, 930624. [Google Scholar] [CrossRef]
- Christensen, G.D.; Simpson, W.A.; Binso, A.L.; Beachey, E.H. Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infect. Immun. 1982, 37, 318–326. [Google Scholar] [CrossRef]
- Tan, L.; Huang, Y.; Shang, W.; Yang, Y. Accessory Gene Regulator (agr) Allelic Variants in Cognate Staphylococcus aureus Strain Display Similar Phenotypes. Front. Microbiol. 2022, 13, 2022. [Google Scholar] [CrossRef]
- Høiby, N.; Ciofu, O.; Johansen, H.K.; Song, Z. The clinical impact of bacterial biofilms. Int. J. Oral Sci. 2011, 3, 55–65. [Google Scholar] [CrossRef]
- Dostert, M.; Trimble, M.J.; Hancock, R.E.W. Antibiofilm peptides: Overcoming biofilm-related treatment failure. RSC Adv. 2021, 11, 2718–2728. [Google Scholar] [CrossRef]
- Chapman, J.E.; George, S.E.; Wolz, C.; Olson, M.E. Biofilms: A developmental niche for vancomycin-intermediate Staphylococcus aureus. Infect. Genet. Evol. 2024, 117, 105545. [Google Scholar] [CrossRef]
- Stewart, P.S.; Costerton, J.W. Antibiotic resistance of bacteria in biofilms. Lancet 2001, 358, 135–138. [Google Scholar] [CrossRef] [PubMed]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in Vitro Evaluating Antimicrobial Activity: A Review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Shree, P.; Singh, C.K.; Sodhi, K.K.; Surya, J.N.; Singh, D.K. Biofilms: Understanding the structure and contribution towards bacterial resistance in antibiotics. Med. Microecol. 2023, 16, 100084. [Google Scholar] [CrossRef]
Structure No. | Chemical Structure | Yield, % | Structure No. | Chemical Structure | Yield, % |
---|---|---|---|---|---|
2 | 88 | 12a | 69 | ||
3 | 97 | 12b | 66 | ||
4 | 67 | 12c | 87 | ||
5 | 69 | 12d | 92 | ||
6 | 91 | 12e | 98 | ||
7 | 83 | 12f | 87 | ||
8 | 38 | 12g | 83 | ||
9a | 45 | 12h | 88 | ||
9b | 11 | 12i | 75 | ||
9c | 15 | 12j | 50 | ||
9d | 67 | 13a | 86 | ||
10 | 34 | 13b | 77 | ||
11a | 73 | 13c | 55 | ||
11b | 73 | 14 | 48 | ||
11c | 57 | 15 | 46 | ||
11d | 63 | 16 | 48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krikštaponis, K.; Šiugždaitė, J.; Vaickelionienė, R.; Mickevičius, V.; Grybaitė, B. Synthesis of 1-(2-Hydroxy-5-methylphenyl)-5-oxopyrrolidine-3-carboxylic Acid Derivatives as a Promising Scaffold Against Disease-Causing Bacteria Relevant to Public Health. Molecules 2025, 30, 2639. https://doi.org/10.3390/molecules30122639
Krikštaponis K, Šiugždaitė J, Vaickelionienė R, Mickevičius V, Grybaitė B. Synthesis of 1-(2-Hydroxy-5-methylphenyl)-5-oxopyrrolidine-3-carboxylic Acid Derivatives as a Promising Scaffold Against Disease-Causing Bacteria Relevant to Public Health. Molecules. 2025; 30(12):2639. https://doi.org/10.3390/molecules30122639
Chicago/Turabian StyleKrikštaponis, Karolis, Jūratė Šiugždaitė, Rita Vaickelionienė, Vytautas Mickevičius, and Birutė Grybaitė. 2025. "Synthesis of 1-(2-Hydroxy-5-methylphenyl)-5-oxopyrrolidine-3-carboxylic Acid Derivatives as a Promising Scaffold Against Disease-Causing Bacteria Relevant to Public Health" Molecules 30, no. 12: 2639. https://doi.org/10.3390/molecules30122639
APA StyleKrikštaponis, K., Šiugždaitė, J., Vaickelionienė, R., Mickevičius, V., & Grybaitė, B. (2025). Synthesis of 1-(2-Hydroxy-5-methylphenyl)-5-oxopyrrolidine-3-carboxylic Acid Derivatives as a Promising Scaffold Against Disease-Causing Bacteria Relevant to Public Health. Molecules, 30(12), 2639. https://doi.org/10.3390/molecules30122639