Preparation of Biochars from Different Sources and Study on Their Phosphorus Adsorption Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Determination of Modified Biochar
2.2. Influence of Initial Concentration on Phosphorus Adsorption
2.3. Influence of Reaction Time on Phosphorus Adsorption
2.4. Characterization of Biochar
2.4.1. FTIR Spectra of Biochar
2.4.2. XRD Analysis of Biochar
2.4.3. SEM and EDS Analysis of Biochar
3. Materials and Methods
3.1. Preparation of Raw Biochar
3.2. Preparation and Comparison of Modified Biochar
3.3. Adsorption Experiment
3.3.1. Adsorption Isotherm Experiment
3.3.2. Adsorption Kinetics Experiment
3.4. Material Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qu, J.; Akindolie, M.S.; Feng, Y.; Jiang, Z.; Zhang, G.; Jiang, Q.; Deng, F.; Cao, B.; Zhang, Y. One-pot hydrothermal synthesis of NaLa(CO3)2 decorated magnetic biochar for efficient phosphate removal from water: Kinetics, isotherms, thermodynamics, mechanisms and reusability exploration. Chem. Eng. J. 2020, 394, 124915. [Google Scholar] [CrossRef]
- Cao, J.S.; Zhao, W.Y.; Wang, S.N.; Xu, R.Z.; Hao, L.S.; Sun, W. Effects of Calcium on Phosphorus Recovery from Wastewater by Vivianite Crystallization: Interaction and Mechanism Analysis. J. Environ. Chem. Eng. 2023, 11, 9. [Google Scholar] [CrossRef]
- Le Moal, M.; Gascuel-Odoux, C.; Ménesguen, A.; Souchon, Y.; Étrillard, C.; Levain, A.; Moatar, F.; Pannard, A.; Souchu, P.; Lefebvre, A. Eutrophication: A New Wine in an Old Bottle? Sci. Total Environ. 2019, 651, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Lian, G.Q.; Lee, X.Q.; Gao, B.; Li, L.; Liu, T.Z.; Zhang, X.Y.; Zheng, Y.L. Phosphogypsum as a Novel Modifier for Distillers Grains Biochar Removal of Phosphate from Water. Chemosphere 2020, 238, 124684. [Google Scholar] [CrossRef]
- Akram, M.; Gao, B.; Pan, J.; Khan, R.; Inam, M.A.; Xu, X.; Guo, K.; Yue, Q. Enhanced Removal of Phosphate Using Pomegranate Peel-Modified Nickel-Lanthanum Hydroxide. Sci. Total Environ. 2022, 809, 151181. [Google Scholar] [CrossRef]
- Luo, Y.; Xie, K.; Feng, Y.; He, Q.; Zhang, K.; Shen, S.; Wang, F. Synthesis of a La(OH)3 nanorod/walnut shell biochar composite for reclaiming phosphate from aqueous solutions. Colloids Surf. A Physicochem. Eng. Asp. 2021, 610, 125736. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, C.; Chen, S.; Ma, L.; Li, Y.; Lu, Y. Phosphate adsorption characteristics of La(OH)3-modified, canna-derived biochar. Chemosphere 2022, 286, 131773. [Google Scholar] [CrossRef]
- Chen, Q.; Qin, J.; Sun, P.; Cheng, Z.; Shen, G. Cow Dung-Derived Engineered Biochar for Reclaiming Phosphate from Aqueous Solution and Its Validation as Slow-Release Fertilizer in Soil-Crop System. J. Clean. Prod. 2018, 172, 2009–2018. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, X.; Luo, W.; Sun, J.; Xu, Q.; Chen, F.; Zhao, J.; Wang, S.; Yao, F.; Wang, D. Effectiveness and Mechanisms of Phosphate Adsorption on Iron-Modified Biochars Derived from Waste Activated Sludge. Bioresour. Technol. 2018, 247, 537–544. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, S.Y.; Huo, J.B.; Zhang, X.B.; Wen, H.T.; Zhang, D.; Zhao, Y.; Kang, D.J.; Guo, W.S.; Ngo, H.H. Adsorption recovery of phosphorus in contaminated water by calcium modified biochar derived from spent coffee grounds. Sci. Total Environ. 2024, 909, 168426. [Google Scholar] [CrossRef]
- Lürling, M.; Mackay, E.; Reitzel, K.; Spears, B.M. Editorial—A critical perspective on geo-engineering for eutrophication management in lakes. Water Res. 2016, 97, 1–10. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Li, A.Y.; Deng, H.; Ye, C.H.; Wu, Y.Q.; Linmu, Y.D.; Hang, H.L. Characteristics of Nitrogen and Phosphorus Adsorption by Mg-Loaded Biochar from Different Feedstocks. Bioresour. Technol. 2019, 276, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.W.; Chen, M.; Wu, P.; Zhang, X.Y.; Wang, S.S.; Yu, Z.B.; Wang, B. Simultaneous Reclaiming Phosphate and Ammonium from Aqueous Solutions by Calcium Alginate-Biochar Composite: Sorption Performance and Governing Mechanisms. Chem. Eng. J. 2022, 429, 15. [Google Scholar] [CrossRef]
- Huang, Y.M.; Lee, X.Q.; Grattieri, M.; Yuan, M.W.; Cai, R.; Macazo, F.C.; Minteer, S.D. Modified Biochar for Phosphate Adsorption in Environmentally Relevant Conditions. Chem. Eng. J. 2020, 380, 12. [Google Scholar] [CrossRef]
- He, R.Z.; Peng, Z.Y.; Lyu, H.H.; Huang, H.; Nan, Q.; Tang, J.C. Synthesis and Characterization of an Iron-Impregnated Biochar for Aqueous Arsenic Removal. Sci. Total Environ. 2018, 612, 1177–1186. [Google Scholar] [CrossRef]
- Shi, W.; Fu, Y.; Jiang, W.; Ye, Y.; Kang, J.; Liu, D.; Ren, Y.; Li, D.; Luo, C.; Xu, Z. Enhanced phosphate removal by zeolite loaded with Mg–Al–La ternary (hydr)oxides from aqueous solutions: Performance and mechanism. Chem. Eng. J. 2019, 357, 33–44. [Google Scholar] [CrossRef]
- Fu, H.; Yang, Y.; Zhu, R.; Liu, J.; Usman, M.; Chen, Q.; He, H. Superior Adsorption of Phosphate by Ferrihydrite-Coated and Lanthanum-Decorated Magnetite. J. Colloid Interface Sci. 2018, 530, 704–713. [Google Scholar] [CrossRef]
- Goscianska, J.; Ptaszkowska-Koniarz, M.; Frankowski, M.; Franus, M.; Panek, R.; Franus, W. Removal of Phosphate from Water by Lanthanum-Modified Zeolites Obtained from Fly Ash. J. Colloid Interface Sci. 2018, 513, 72–81. [Google Scholar] [CrossRef]
- Leng, L.; Huang, H.; Li, H.; Li, J.; Zhou, W. Biochar Stability Assessment Methods: A Review. Sci. Total Environ. 2019, 647, 210–222. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, B.; Feng, Q.; Chen, M.; Zhang, X.; Zhao, R. Recovery of nitrogen and phosphorus in wastewater by red mud-modified biochar and its potential application. Sci. Total Environ. 2023, 860, 160289. [Google Scholar] [CrossRef]
- Ajmal, Z.; Muhmood, A.; Dong, R.J.; Wu, S.B. Probing the Efficiency of Magnetically Modified Biomass-Derived Biochar for Effective Phosphate Removal. J. Environ. Manag. 2020, 253, 109730. [Google Scholar] [CrossRef]
- Cancelliere, R.; Mele, P.; Bartolucci, L.; Cordiner, S.; da Silva Freitas, W.; Mazzuca, C.; Mecheri, B.; Micheli, L.; Mulone, V.; Paialunga, E. Mutual interaction of pyrolysis operating conditions and surface morphology for the electrochemical performance of biochar-modified screen-printed electrodes. J. Environ. Chem. Eng. 2025, 13, 115477. [Google Scholar] [CrossRef]
- Cancelliere, R.; Cosio, T.; Campione, E.; Corvino, M.; D’Amico, M.P.; Micheli, L.; Signori, E.; Contini, G. Label-free electrochemical immunosensor as a reliable point-of-care device for the detection of Interleukin-6 in serum samples from patients with psoriasis. Front. Chem. 2023, 11, 1251360. [Google Scholar] [CrossRef] [PubMed]
- Xiang, W.; Zhang, X.Y.; Chen, J.J.; Zou, W.X.; He, F.; Hu, X.; Tsang, D.C.W.; Ok, Y.S.; Gao, B. Biochar Technology in Wastewater Treatment: A Critical Review. Chemosphere 2020, 252, 126539. [Google Scholar] [CrossRef]
- Zhang, M.; Gao, B. Removal of arsenic, methylene blue, and phosphate by biochar/AlOOH nanocomposite. Chem. Eng. J. 2013, 226, 286–292. [Google Scholar] [CrossRef]
- Mishra, P.C.; Patel, R.K. Use of agricultural waste for the removal of nitrate-nitrogen from aqueous medium. J. Environ. Manag. 2009, 90, 519–522. [Google Scholar] [CrossRef]
- Cheng, N.; Wang, B.; Wu, P.; Lee, X.; Xing, Y.; Chen, M.; Gao, B. Adsorption of emerging contaminants from water and wastewater by modified biochar: A review. Environ. Pollut. 2021, 273, 116448. [Google Scholar] [CrossRef] [PubMed]
- Yin, Q.; Ren, H.; Wang, R.; Zhao, Z. Evaluation of Nitrate and Phosphate Adsorption on Al-Modified Biochar: Influence of Al Content. Sci. Total Environ. 2018, 631–632, 895–903. [Google Scholar] [CrossRef]
- Gao, N.; Du, W.; Zhang, M.; Ling, G.; Zhang, P. Chitosan-modified biochar: Preparation, modifications, mechanisms and applications. Int. J. Biol. Macromol. 2022, 209, 31–49. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, E.; Mishra, R.; Kumar, S. Biochar as Environmental Armour and Its Diverse Role towards Protecting Soil, Water and Air. Sci. Total Environ. 2022, 806, 150444. [Google Scholar] [CrossRef]
- Mansoor, S.; Kour, N.; Manhas, S.; Zahid, S.; Wani, O.A.; Sharma, V.; Wijaya, L.; Alyemeni, M.N.; Alsahli, A.A.; El-Serehy, H.A. Biochar as a tool for effective management of drought and heavy metal toxicity. Chemosphere 2021, 271, 129458. [Google Scholar] [CrossRef]
- Gong, H.; Zhao, L.; Rui, X.; Hu, J.; Zhu, N. A review of pristine and modified biochar immobilizing typical heavy metals in soil: Applications and challenges. J. Hazard. Mater. 2022, 432, 128668. [Google Scholar] [CrossRef] [PubMed]
- Yin, Q.; Wang, R.; Zhao, Z. Application of Mg–Al-modified biochar for simultaneous removal of ammonium, nitrate, and phosphate from eutrophic water. J. Clean. Prod. 2018, 176, 230–240. [Google Scholar] [CrossRef]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W.; Chen, M. Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater. Bioresour. Technol. 2016, 214, 836–851. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, C.; Zhang, C.; Chen, Z. Quantitative Evaluation on Phosphate Adsorption by Modified Biochar: A Meta-Analysis. Process Saf. Environ. Prot. 2023, 177, 42–51. [Google Scholar] [CrossRef]
- Wu, L.; Wei, C.; Zhang, S.; Wang, Y.; Kuzyakov, Y.; Ding, X. MgO-Modified Biochar Increases Phosphate Retention and Rice Yields in Saline-Alkaline Soil. J. Clean. Prod. 2019, 235, 901–909. [Google Scholar] [CrossRef]
- Zhang, M.; Gao, B.; Yao, Y.; Xue, Y.W.; Inyang, M. Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions. Chem. Eng. J. 2012, 210, 26–32. [Google Scholar] [CrossRef]
- Li, X.Y.; Xie, Y.H.; Jiang, F.; Wang, B.; Hu, Q.L.; Tang, Y.; Luo, T.; Wu, T. Enhanced Phosphate Removal from Aqueous Solution Using Resourceable Nano-CaO2/BC Composite: Behaviors and Mechanisms. Sci. Total Environ. 2020, 709, 136123. [Google Scholar] [CrossRef]
- Cui, L.Q.; Noerpel, M.R.; Scheckel, K.G.; Ippolito, J.A. Wheat Straw Biochar Reduces Environmental Cadmium Bioavailability. Environ. Int. 2019, 126, 69–75. [Google Scholar] [CrossRef]
- Liu, L.; Fan, S.S. Removal of cadmium in aqueous solution using wheat straw biochar: Effect of minerals and mechanism. Environ. Sci. Pollut. Res. 2018, 25, 8688–8700. [Google Scholar] [CrossRef]
- Song, Y.; Wang, F.; Bian, Y.R.; Kengara, F.O.; Jia, M.Y.; Xie, Z.B.; Jiang, X. Bioavailability assessment of hexachlorobenzene in soil as affected by wheat straw biochar. J. Hazard. Mater. 2012, 217, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Malik, A. Environmental challenge vis a vis opportunity: The case of water hyacinth. Environ. Int. 2007, 33, 122–138. [Google Scholar] [CrossRef] [PubMed]
- Gaurav, G.K.; Mehmood, T.; Cheng, L.; Klemes, J.J.; Shrivastava, D.K. Water Hyacinth as a Biomass: A Review. J. Clean. Prod. 2020, 277, 17. [Google Scholar] [CrossRef]
- Su, J.Z.; Guo, Z.L.; Zhang, M.Y.; Xie, Y.M.; Shi, R.; Huang, X.F.; Tuo, Y.; He, X.H.; Xiang, P. Mn-Modified Bamboo Biochar Improves Soil Quality and Immobilizes Heavy Metals in Contaminated Soils. Environ. Technol. Innov. 2024, 34, 12. [Google Scholar] [CrossRef]
- Chen, D.G.; Yu, X.Z.; Song, C.; Pang, X.L.; Huang, J.; Li, Y.J. Effect of Pyrolysis Temperature on the Chemical Oxidation Stability of Bamboo Biochar. Bioresour. Technol. 2016, 218, 1303–1306. [Google Scholar] [CrossRef]
- Li, H.Y.; Zhou, C.; Wang, L.H.; Yang, F.; Liang, J.Y.; Wang, F.; Li, P.Y.; Li, C.; Wu, Z.G.; Ren, T.B. A Novel Eco-Friendly Bamboo-Based Composite Biochar for Effective Removing Oxytetracycline Hydrochloride. Adv. Compos. Hybrid Mater. 2025, 8, 16. [Google Scholar] [CrossRef]
- Kayiranga, A.; Luo, Z.X.; Ndayishimiye, J.C.; Nkinahamira, F.; Cyubahiro, E.; Habumugisha, T.; Yan, C.Z.; Guo, J.H.; Zhen, Z.; Tuyishimire, A.; et al. Insights into Thallium Adsorption onto the Soil, Bamboo-Derived Biochar, and Biochar Amended Soil in Pomelo Orchard. Biochar 2021, 3, 315–328. [Google Scholar] [CrossRef]
- Klein, A.R.; Bone, S.E.; Bakker, E.; Chang, Z.Q.; Aristilde, L. Abiotic Phosphorus Recycling from Adsorbed Ribonucleotides on a Ferrihydrite-Type Mineral: Probing Solution and Surface Species. J. Colloid Interface Sci. 2019, 547, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.X.; Zhang, G.Q.; Qiao, S.; Zhou, J.T. Magnetic Fe0/Iron Oxide-Coated Diatomite as a Highly Efficient Adsorbent for Recovering Phosphorus from Water. Chem. Eng. J. 2021, 412, 13. [Google Scholar] [CrossRef]
- Do, Q.C.; Ko, S.O.; Jang, A.; Kim, Y.; Kang, S. Incorporation of Iron (Oxyhydr)oxide Nanoparticles with Expanded Graphite for Phosphorus Removal and Recovery from Aqueous Solutions. Chemosphere 2020, 259, 127395. [Google Scholar] [CrossRef]
- Liang, D.H.; Chang, J.F.; Wu, Y.; Wang, S.; Wang, X.; Ren, N.Q.; Li, N. The Screening of Iron Oxides for Long-Term Transformation into Vivianite to Recover Phosphorus from Sewage. Water Res. 2024, 265, 122250. [Google Scholar] [CrossRef] [PubMed]
- Vikrant, K.; Kim, K.H.; Ok, Y.S.; Tsang, D.C.W.; Tsang, Y.F.; Giri, B.S.; Singh, R.S. Engineered/Designer Biochar for the Removal of Phosphate in Water and Wastewater. Sci. Total Environ. 2018, 616–617, 1242–1260. [Google Scholar] [CrossRef] [PubMed]
- Goh, K.H.; Lim, T.T.; Dong, Z. Application of Layered Double Hydroxides for Removal of Oxyanions: A Review. Water Res. 2008, 42, 1343–1368. [Google Scholar] [CrossRef]
- Li, J.; Li, B.; Huang, H.; Lv, X.; Zhao, N.; Guo, G.; Zhang, D. Removal of Phosphate from Aqueous Solution by Dolomite-Modified Biochar Derived from Urban Dewatered Sewage Sludge. Sci. Total Environ. 2019, 687, 460–469. [Google Scholar] [CrossRef]
- Liu, H.B.; Shan, J.H.; Chen, Z.B.; Lichtfouse, E. Efficient Recovery of Phosphate from Simulated Urine by Mg/Fe Bimetallic Oxide Modified Biochar as a Potential Resource. Sci. Total Environ. 2021, 784, 147546. [Google Scholar] [CrossRef]
- Zhang, T.; Wu, X.S.; Shaheen, S.M.; Zhao, Q.; Liu, X.J.; Rinklebe, J.; Ren, H.Q. Ammonium nitrogen recovery from digestate by hydrothermal pretreatment followed by activated hydrochar sorption. Chem. Eng. J. 2020, 379, 14. [Google Scholar] [CrossRef]
- Yu, J.; Li, X.D.; Wu, M.; Lin, K.; Xu, L.H.; Zeng, T.; Shi, H.X.; Zhang, M. Synergistic role of inherent calcium and iron minerals in paper mill sludge biochar for phosphate adsorption. Sci. Total Environ. 2022, 834, 155193. [Google Scholar] [CrossRef]
- Islam, M.S.; Kwak, J.H.; Nzediegwu, C.; Wang, S.Y.; Palansuriya, K.; Kwon, E.E.; Naeth, M.A.; El-Din, M.G.; Ok, Y.S.; Chang, S.X. Biochar Heavy Metal Removal in Aqueous Solution Depends on Feedstock Type and Pyrolysis Purging Gas. Environ. Pollut. 2021, 281, 117094. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.D.; Kong, L.J.; Long, J.Y.; Su, M.H.; Diao, Z.H.; Chang, X.Y.; Chen, D.Y.; Song, G.; Shih, K.M. Adsorption of Phosphorus by Calcium-Flour Biochar: Isotherm, Kinetic and Transformation Studies. Chemosphere 2018, 195, 666–672. [Google Scholar] [CrossRef]
- Xue, P.; Hou, R.; Fu, Q.; Li, T.; Wang, J.; Zhou, W.; Shen, W.; Su, Z.; Wang, Y. Potentially Migrating and Residual Components of Biochar: Effects on Phosphorus Adsorption Performance and Storage Capacity of Black Soil. Chemosphere 2023, 336, 139250. [Google Scholar] [CrossRef]
- Yin, H.B.; Kong, M.; Fan, C.X. Batch Investigations on P Immobilization from Wastewaters and Sediment Using Natural Calcium Rich Sepiolite as a Reactive Material. Water Res. 2013, 47, 4247–4258. [Google Scholar] [CrossRef] [PubMed]
- Palansooriya, K.N.; Kim, S.; Igalavithana, A.D.; Hashimoto, Y.; Choi, Y.E.; Mukhopadhyay, R.; Sarkar, B.; Ok, Y.S. Fe(III) loaded chitosan-biochar composite fibers for the removal of phosphate from water. J. Hazard. Mater. 2021, 415, 125464. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y. New insights into pseudo-second-order kinetic equation for adsorption. Colloids Surf. A Physicochem. Eng. Asp. 2008, 320, 275–278. [Google Scholar] [CrossRef]
- Fu, X.; Wang, P.; Wu, J.; Zheng, P.; Wang, T.; Li, X.; Ren, M. Hydrocotyle Vulgaris Derived Novel Biochar Beads for Phosphorus Removal: Static and Dynamic Adsorption Assessment. J. Environ. Chem. Eng. 2022, 10, 10. [Google Scholar] [CrossRef]
- Wang, Z.H.; Huang, Z.L.; Zheng, B.Y.; Wu, D.S.; Zheng, S.L. Efficient Removal of Phosphate and Ammonium from Water by Mesoporous Tobermorite Prepared from Fly Ash. J. Environ. Chem. Eng. 2022, 10, 10. [Google Scholar] [CrossRef]
- Xiong, W.P.; Tong, J.; Yang, Z.H.; Zeng, G.M.; Zhou, Y.Y.; Wang, D.B.; Song, P.P.; Xu, R.; Zhang, C.; Cheng, M. Adsorption of Phosphate from Aqueous Solution Using Iron-Zirconium Modified Activated Carbon Nanofiber: Performance and Mechanism. J. Colloid Interface Sci. 2017, 493, 17–23. [Google Scholar] [CrossRef]
- Lv, X.S.; Zhang, Y.L.; Fu, W.Y.; Cao, J.Z.; Zhang, J.; Ma, H.B.; Jiang, G.M. Zero-valent iron nanoparticles embedded into reduced graphene oxide-alginate beads for efficient chromium (VI) removal. J. Colloid Interface Sci. 2017, 506, 633–643. [Google Scholar] [CrossRef]
- Qiu, Y.P.; Cheng, H.Y.; Xu, C.; Sheng, D. Surface characteristics of crop-residue-derived black carbon and lead(II) adsorption. Water Res. 2008, 42, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.Y.; Peng, X.J.; Kong, L.H.; Zhu, F. The Mechanism for Promoted Oxygenation of V(IV) by Goethite: Positive Effect of Surface Hydroxyl Groups. J. Hazard. Mater. 2019, 369, 254–260. [Google Scholar] [CrossRef]
- Machala, L.; Tucek, J.; Zboril, R. Polymorphous Transformations of Nanometric Iron(III) Oxide: A Review. Chem. Mater. 2011, 23, 3255–3272. [Google Scholar] [CrossRef]
- Ristic, M.; Opacak, I.; Stajdohar, J.; Music, S. The influence of CTAB and gum arabic on the precipitation of α-FeOOH in a highly alkaline medium. J. Mol. Struct. 2015, 1090, 129–137. [Google Scholar] [CrossRef]
Modified Biochar | Langmuir Parameters | Freundlich Parameters | ||||
---|---|---|---|---|---|---|
KL (L mg−1) | Qm (mg g−1) | R2 | KF (mg g−1)(L·mg−1)1/n | n | R2 | |
Fe-WBC | 0.253 | 31.76 | 0.948 | 8.212 | 2.195 | 0.921 |
Fe-BBC | 0.270 | 25.31 | 0.960 | 7.515 | 2.618 | 0.975 |
Fe-HBC | 0.400 | 27.14 | 0.965 | 9.533 | 2.717 | 0.938 |
Modified Biochar | Pseudo-First-Order Kinetic Equation | Pseudo-Second-Order Kinetic Equation | ||||
---|---|---|---|---|---|---|
K1 (min−1) | Qe1 (mg g−1) | R2 | K2 (g mg−1·min−1) | Qe2 (mg g−1) | R2 | |
Fe-WBC | 0.1471 | 29.172 | 0.8980 | 6.43 × 10−3 | 32.29 | 0.9633 |
Fe-BBC | 0.2194 | 21.391 | 0.7401 | 1.12 × 10−2 | 27.86 | 0.9628 |
Fe-HBC | 0.2096 | 25.519 | 0.8903 | 1.33 × 10−2 | 23.54 | 0.8915 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, Y.; Hu, A.; Jiang, Y.; Wang, X.; Li, J.; Liu, G. Preparation of Biochars from Different Sources and Study on Their Phosphorus Adsorption Properties. Molecules 2025, 30, 2633. https://doi.org/10.3390/molecules30122633
Shao Y, Hu A, Jiang Y, Wang X, Li J, Liu G. Preparation of Biochars from Different Sources and Study on Their Phosphorus Adsorption Properties. Molecules. 2025; 30(12):2633. https://doi.org/10.3390/molecules30122633
Chicago/Turabian StyleShao, Yinlong, Anqi Hu, Yongcan Jiang, Xianbiao Wang, Jingchen Li, and Guanglong Liu. 2025. "Preparation of Biochars from Different Sources and Study on Their Phosphorus Adsorption Properties" Molecules 30, no. 12: 2633. https://doi.org/10.3390/molecules30122633
APA StyleShao, Y., Hu, A., Jiang, Y., Wang, X., Li, J., & Liu, G. (2025). Preparation of Biochars from Different Sources and Study on Their Phosphorus Adsorption Properties. Molecules, 30(12), 2633. https://doi.org/10.3390/molecules30122633