NMR Analysis of Extra Virgin Olive Oil of the Epirus Region of Greece with Emphasis on Selected Phenolic Compounds
Abstract
:1. Introduction
2. Results and Discussion
2.1. NMR Analysis
2.2. Direct Quantification of Phenolic Content
2.3. Concentration of Phenolic Compounds
2.4. Variety Impact on Phenolic Content
2.5. Harvest Month Impact on Phenolic Content
2.6. Effect of Prefecture, Altitude, Rainfall, and Average Temperature on Phenolic Content
2.7. Phenolics Amounts Correlation
3. Materials and Methods
3.1. Chemicals and Standards
3.2. Chemicals and Standards
3.3. Proton Nuclear Magnetic Resonance (1H NMR) Spectroscopic Analyses
3.3.1. General
3.3.2. 1D 1H NMR
3.3.3. Multi-Suppression Experiment (MSE)
3.4. Determination of Phenolic Compounds
3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diamantakos, P.; Giannara, T.; Skarkou, M.; Melliou, E.; Magiatis, P. Influence of Harvest Time and Malaxation Conditions on the Concentration of Individual Phenols in Extra Virgin Olive Oil Related to Its Healthy Properties. Molecules 2020, 25, 2449. [Google Scholar] [CrossRef] [PubMed]
- Harwood, J.L.; Aparicio, R. Handbook of Olive Oil: Analysis and Properties; Aspen: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Kiritsakis, K.; Melliou, E.; Magiatis, P.; Gerasopoulos, D. Enhancement of Bioactive Phenols and Quality Values of Olive Oil by Recycling Olive Mill Waste Water. JAOCS J. Am. Oil Chem. Soc. 2017, 94, 1077–1085. [Google Scholar] [CrossRef]
- Gimeno, E.; Castellote, A.I.; Lamuela-Raventos, R.M.; De la Torre, M.C.; Lopez-Sabater, M.C. The Effects of Harvest and Extraction Methods on the Antioxidant Content (Phenolics, a-Tocopherol, and b-Carotene) in Virgin Olive Oil. Food Chem. 2002, 78, 207–211. [Google Scholar] [CrossRef]
- European Union. Commission Regulation (EU) No 432/2012 of 16 May 2012 Establishing a List of Permitted Health Claims Made on Foods, Other than Those Referring to the Reduction of Disease Risk and to Children’s Development and HealthText with EEA Relevance. Off. J. Eur. Union 2012, 136, 1–40. [Google Scholar]
- Diamantakos, P.; Ioannidis, K.; Papanikolaou, C.; Tsolakou, A.; Rigakou, A.; Melliou, E.; Magiatis, P. A New Definition of the Term “High-Phenolic Olive Oil” Based on Large Scale Statistical Data of Greek Olive Oils Analyzed by Qnmr. Molecules 2021, 26, 1115. [Google Scholar] [CrossRef]
- Diamantakos, P.; Velkou, A.; Killday, K.B.; Gimisis, T.; Melliou, E.; Magiatis, P. Oleokoronal and Oleomissional: New Major Phenolic Ingredients of Extra Virgin Olive Oil. Olivae 2015, 122, 22–32. [Google Scholar]
- Lucas, L.; Cicerale, S.; Keast, R. The Anti-Inflammatory and Pharmacological Actions of Oleocanthal, a Phenolic Contained in Extra Virgin Olive Oil. Anti-Inflamm. Anti-Allergy Agents Med. Chem. 2012, 10, 399–406. [Google Scholar] [CrossRef]
- Romero, C.; Medina, E.; Vargas, J.; Brenes, M.; De Castro, A. In Vitro Activity of Olive Oil Polyphenols against Helicobacter Pylori. J. Agric. Food Chem. 2007, 55, 680–686. [Google Scholar] [CrossRef]
- Beauchamp, G.K.; Keast, R.S.; Morel, D.; Lin, J.; Pika, J.; Han, Q.; Lee, C.H.; Smith, A.B.; Breslin, P.A. Ibuprofen-like Activity in Extra-Virgin Olive O. Nature 2005, 437, 45–46. [Google Scholar] [CrossRef] [PubMed]
- Batarseh, Y.S.; Kaddoumi, A. Oleocanthal-Rich Extra-Virgin Olive Oil Enhances Donepezil Effect by Reducing Amyloid-β Load and Related Toxicity in a Mouse Model of Alzheimer’s Disease. J. Nutr. Biochem. 2018, 55, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Bendini, A.; Cerretani, L.; Carrasco-pancorbo, A.; Gómez-caravaca, A.M.; Segura-carretero, A.; Fernández-gutiérrez, A.; Lercker, G. Phenolic Molecules in Virgin Olive Oils: A Survey of Their Sensory Properties, Health Effects, Antioxidant Activity AndAnalytical Methods. An Overview of the Last Decade. Molecules 2007, 12, 1679–1719. [Google Scholar] [CrossRef] [PubMed]
- Filipek, A.; Czerwińska, M.E.; Kiss, A.K.; Wrzosek, M.; Naruszewicz, M. Oleacein Enhances Anti-Inflammatory Activity of Human Macrophages by Increasing CD163 Receptor Expression. Phytomedicine 2015, 22, 1255–1261. [Google Scholar] [CrossRef] [PubMed]
- Naruszewicz, M.; Czerwinska, M.; Kiss, A. Oleacein. Translation from Mediterranean Diet to Potential Antiatherosclerotic Drug. Curr. Pharm. Des. 2015, 21, 1205–1212. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Miranda, B.; Gallardo, I.; Melliou, E.; Cabero, I.; Álvarez, Y.; Magiatis, P.; Hernández, M.; Nieto, M.L. Oleacein Attenuates the Pathogenesis of Experimental Autoimmune Encephalomyelitis through Both Antioxidant and Anti-Inflammatory Effects. Antioxidants 2020, 9, 1161. [Google Scholar] [CrossRef]
- Elamin, M.H.; Daghestani, M.H.; Omer, S.A.; Elobeid, M.A.; Virk, P.; Al-Olayan, E.M.; Hassan, Z.K.; Mohammed, O.B.; Aboussekhra, A. Olive Oil Oleuropein Has Anti-Breast Cancer Properties with Higher Efficiency on ER-Negative Cells. Food Chem. Toxicol. 2013, 53, 310–316. [Google Scholar] [CrossRef]
- Tsiafoulis, C.G.; Liaggou, C.; Garoufis, A.; Magiatis, P.; Roussis, I.G. Nuclear Magnetic Resonance Analysis of Extra Virgin Olive Oil: Classification through Secoiridoids. J. Sci. Food Agric. 2023, 104, 1992–2005. [Google Scholar] [CrossRef]
- Malheiro, R.; Rodrigues, N.; Pereira, J.A. Olive Oil Phenolic Composition as Affected by Geographic Origin, Olive Cultivar, and Cultivation Systems; AOCS Press: Urbana, IL, USA, 2015; ISBN 9781630670429. [Google Scholar]
- Romero, N.; Saavedra, J.; Tapia, F.; Sepúlveda, B.; Aparicio, R. Influence of Agroclimatic Parameters on Phenolic and Volatile Compounds of Chilean Virgin Olive Oils and Characterization Based on Geographical Origin, Cultivar and Ripening Stage. J. Sci. Food Agric. 2016, 96, 583–592. [Google Scholar] [CrossRef]
- Vlahov, G. Application of NMR to the Study of Olive Oils. Prog. Nucl. Magn. Reson. Spectrosc. 1999, 35, 341–357. [Google Scholar] [CrossRef]
- Morales, M.T.; Tsimidou, M. The Role of Volatile Compounds and Polyphenols in Olive Oil Sensory Quality. In Handbook of Olive Oil: Analysis and Properties; Harwood, R.J., Ed.; Aspen Publishers: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Tsimidou, M. Polyphenols and Quality of Virgin Olive Oil in Retrospect. Ital. J. Food Sci. 1998, 10, 99–116. [Google Scholar]
- Dugo, G.; Rotondo, A.; Mallamace, D.; Cicero, N.; Salvo, A.; Rotondo, E.; Corsaro, C. Enhanced Detection of Aldehydes in Extra-Virgin Olive Oil by Means of Band Selective NMR Spectroscopy. Phys. A Stat. Mech. Its Appl. 2015, 420, 258–264. [Google Scholar] [CrossRef]
- Tsiafoulis, C.G.; Papaemmanouil, C.; Alivertis, D.; Tzamaloukas, O.; Miltiadou, D.; Balayssac, S.; Malet-Martino, M.; Gerothanassis, I.P. NMR-Based Metabolomics of the Lipid Fraction of Organic and Conventional Bovine Milk. Molecules 2019, 24, 1067. [Google Scholar] [CrossRef] [PubMed]
- Lia, F.; Vella, B.; Mangion, M.Z.; Farrugia, C. Application of 1H and 13C NMR Fingerprinting as a Tool for the Authentication of Maltese Extra Virgin Olive Oil. Foods 2020, 9, 689. [Google Scholar] [CrossRef] [PubMed]
- Mannina, L.; Fontanazza, G.; Patumi, M.; Ansanelli, G.; Segre, A. Italian and Argentine Olive Oils: A NMR and Gas Chromatographic Study. Grasas Aceites 2001, 52, 380–388. [Google Scholar] [CrossRef]
- Petrakis, P.V.; Agiomyrgianaki, A.; Christophoridou, S.; Spyros, A.; Dais, P. Geographical Characterization of Greek Virgin Olive Oils (Cv. Koroneiki) Using 1H and 31P NMR Fingerprinting with Canonical Discriminant Analysis and Classification Binary Trees. J. Agric. Food Chem. 2008, 56, 3200–3207. [Google Scholar] [CrossRef] [PubMed]
- Reddy, M.V.R.; Venkatapuram, P.; Mallireddigari, M.R.; Pallela, V.R.; Cosenza, S.C.; Robell, K.A.; Akula, B.; Hoffman, B.S.; Reddy, E.P. Discovery of a Clinical Stage Multi-Kinase Inhibitor Sodium (E)-2-{2-Methoxy-5-[(2′,4′,6′-Trimethoxystyrylsulfonyl)Methyl] Phenylamino}acetate (ON 01910.Na): Synthesis, Structure-Activity Relationship, and Biological Activity. J. Med. Chem. 2011, 54, 6254–6276. [Google Scholar] [CrossRef]
- Christophoridou, S.; Dais, P. Detection and Quantification of Phenolic Compounds in Olive Oil by High Resolution 1H Nuclear Magnetic Resonance Spectroscopy. Anal. Chim. Acta 2009, 633, 283–292. [Google Scholar] [CrossRef]
- Beteinakis, S.; Papachristodoulou, A.; Kolb, P.; Rösch, P.; Schwarzinger, S.; Mikros, E.; Halabalaki, M. NMR-Based Metabolite Profiling and the Application of STOCSY toward the Quality and Authentication Assessment of European EVOOs. Molecules 2023, 28, 1738. [Google Scholar] [CrossRef]
- Del Coco, L.; de Pascali, S.A.; Fanizzi, F.P. NMR-Metabolomic Study on Monocultivar and Blend Salento EVOOs Including Some from Secular Olive Trees. Food Nutr. Sci. 2014, 5, 89–95. [Google Scholar]
- Olmo-Cunillera, A.; López-Yerena, A.; Lozano-Castellón, J.; Tresserra-Rimbau, A.; Vallverdú-Queralt, A.; Pérez, M. NMR Spectroscopy: A Powerful Tool for the Analysis of Polyphenols in Extra Virgin Olive Oil. J. Sci. Food Agric. 2020, 100, 1842–1851. [Google Scholar] [CrossRef]
- Simmler, C.; Napolitano, J.G.; McAlpine, J.B.; Chen, S.N.; Pauli, G.F. Universal Quantitative NMR Analysis of Complex Natural Samples. Curr. Opin. Biotechnol. 2014, 25, 51–59. [Google Scholar] [CrossRef]
- Bharti, S.K.; Roy, R. Quantitative 1H NMR Spectroscopy. TrAC-Trends Anal. Chem. 2012, 35, 5–26. [Google Scholar] [CrossRef]
- Do, N.M.; Olivier, M.A.; Salisbury, J.J.; Wager, C.B. Application of Quantitative 19F and 1H NMR for Reaction Monitoring and in Situ Yield Determinations for an Early Stage Pharmaceutical Candidate. Anal. Chem. 2011, 83, 8766–8771. [Google Scholar] [CrossRef]
- Alonso-Salces, R.M.; Moreno-Rojas, J.M.; Holland, M.V.; Reniero, F.; Guillou, C.; Héberger, K. Virgin Olive Oil Authentication by Multivariate Analyses of 1H NMR Fingerprints and Δ13c and Δ2h Data. J. Agric. Food Chem. 2010, 58, 5586–5596. [Google Scholar] [CrossRef]
- Fronimaki, P.; Spyros, A.; Christophoridou, S.; Dais, P. Determination of the Diglyceride Content in Greek Virgin Olive Oils and Some Commercial Olive Oils by Employing 31P NMR Spectroscopy. J. Agric. Food Chem. 2002, 50, 2207–2213. [Google Scholar] [CrossRef] [PubMed]
- Hatzakis, E.; Agiomyrgianaki, A.; Dais, P. Detection and Quantification of Free Glycerol in Virgin Olive Oil by 31P-NMR Spectroscopy. JAOCS J. Am. Oil Chem. Soc. 2010, 87, 29–34. [Google Scholar] [CrossRef]
- Fragaki, G.; Spyros, A.; Siragakis, G.; Salivaras, E.; Dais, P. Detection of Extra Virgin Olive Oil Adulteration with Lampante Olive Oil and Refined Olive Oil Using Nuclear Magnetic Resonance Spectroscopy and Multivariate Statistical Analysis. J. Agric. Food Chem. 2005, 53, 2810–2816. [Google Scholar] [CrossRef] [PubMed]
- Vigli, G.; Philippidis, A.; Spyros, A.; Dais, P. Classification of Edible Oils by Employing 31P and 1H NMR Spectroscopy in Combination with Multivariate Statistical Analysis. A Proposal for the Detection of Seed Oil Adulteration in Virgin Olive Oils. J. Agric. Food Chem. 2003, 51, 5715–5722. [Google Scholar] [CrossRef]
- Angilè, F.; Del Coco, L.; Girelli, C.R.; Calò, F.; Mazzi, L.; Fanizzi, F.P.; Vivaldi, G.A.; Camposeo, S. Proton Nuclear Magnetic Resonance (1H NMR) Metabolic Profiles Discriminate Two Monovarietal Extra Virgin Olive Oils, Cultivars Arbequina and Koroneiki, with Different Geographical Origin. Horticulturae 2023, 9, 66. [Google Scholar] [CrossRef]
- Demopoulos, V.; Karkoula, E.; Magiatis, P.; Melliou, E.; Kotsiras, A.; Mouroutoglou, C. Correlation of Oleocanthal and Oleacein Concentration with Pungency and Bitterness in “koroneiki” Virgin Olive Oil. Acta Hortic. 2015, 1099, 219–224. [Google Scholar] [CrossRef]
- Hatzakis, E.; Dagounakis, G.; Agiomyrgianaki, A.; Dais, P. A Facile NMR Method for the Quantification of Total, Free and Esterified Sterols in Virgin Olive Oil. Food Chem. 2010, 122, 346–352. [Google Scholar] [CrossRef]
- Kalaboki, I.; Koulougliotis, D.; Kleisiari, D.; Melliou, E.; Magiatis, P.; Kampioti, A.; Eriotou, E.; Destouni, A. A Study on the Clustering of Extra Virgin Olive Oils Extracted from Cultivars Growing in Four Ionian Islands (Greece) by Multivariate Analysis of Their Phenolic Profile, Antioxidant Activity and Genetic Markers. Foods 2021, 10, 3009. [Google Scholar] [CrossRef]
- Longobardi, F.; Ventrella, A.; Napoli, C.; Humpfer, E.; Schütz, B.; Schäfer, H.; Kontominas, M.G.; Sacco, A. Classification of Olive Oils According to Geographical Origin by Using 1H NMR Fingerprinting Combined with Multivariate Analysis. Food Chem. 2012, 130, 177–183. [Google Scholar] [CrossRef]
- Karkoula, E.; Skantzari, A.; Melliou, E.; Magiatis, P. Direct Measurement of Oleocanthal and Oleacein Levels in Olive Oil by Quantitative 1 H NMR. Establishment of a New Index for the Characterization of Extra Virgin Olive Oils. J. Agric. Food Chem. 2012, 60, 11696–11703. [Google Scholar] [CrossRef] [PubMed]
- Karkoula, E.; Skantzari, A.; Melliou, E.; Magiatis, P. Quantitative Measurement of Major Secoiridoid Derivatives in Olive. J. Agric. Food Chem. 2014, 62, 600–607. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Aracama, A.; Goicoechea, E.; Guillén, M.D. Direct Study of Minor Extra-Virgin Olive Oil Components without Any Sample Modification. 1H NMR Multisupression Experiment: A Powerful Tool. Food Chem. 2017, 228, 301–314. [Google Scholar] [CrossRef] [PubMed]
- Starec, M.; Calabretti, A.; Berti, F.; Forzato, C. Oleocanthal Quantification Using 1H NMR Spectroscopy and Polyphenols HPLC Analysis of Olive Oil from the Bianchera/Belica Cultivar. Molecules 2021, 26, 242. [Google Scholar] [CrossRef]
- Miho, H.; Díez, C.M.; Mena-Bravo, A.; Sánchez de Medina, V.; Moral, J.; Melliou, E.; Magiatis, P.; Rallo, L.; Barranco, D.; Priego-Capote, F. Cultivar Influence on Variability in Olive Oil Phenolic Profiles Determined through an Extensive Germplasm Survey. Food Chem. 2018, 266, 192–199. [Google Scholar] [CrossRef]
- Klikarová, J.; Rotondo, A.; Cacciola, F.; Česlová, L.; Dugo, P.; Mondello, L.; Rigano, F. The Phenolic Fraction of Italian Extra Virgin Olive Oils: Elucidation Through Combined Liquid Chromatography and NMR Approaches. Food Anal. Methods 2019, 12, 1759–1770. [Google Scholar] [CrossRef]
- Jolayemi, O.S.; Tokatli, F.; Ozen, B. Effects of Malaxation Temperature and Harvest Time on the Chemical Characteristics of Olive Oils. Food Chem. 2016, 211, 776–783. [Google Scholar] [CrossRef]
- Lukić, I.; Žanetić, M.; Jukić Špika, M.; Lukić, M.; Koprivnjak, O.; Brkić Bubola, K. Complex Interactive Effects of Ripening Degree, Malaxation Duration and Temperature on Oblica Cv. Virgin Olive Oil Phenols, Volatiles and Sensory Quality. Food Chem. 2017, 232, 610–620. [Google Scholar] [CrossRef]
- Lukić, I.; Krapac, M.; Horvat, I.; Godena, S.; Kosić, U.; Brkić Bubola, K. Three-Factor Approach for Balancing the Concentrations of Phenols and Volatiles in Virgin Olive Oil from a Late-Ripening Olive Cultivar. LWT Food Sci. Technol. 2018, 87, 194–202. [Google Scholar] [CrossRef]
- Jiménez, B.; Sánchez-Ortiz, A.; Rivas, A. Influence of the Malaxation Time and Olive Ripening Stage on Oil Quality and Phenolic Compounds of Virgin Olive Oils. Int. J. Food Sci. Technol. 2014, 49, 2521–2527. [Google Scholar] [CrossRef]
- Ben Youssef, N.; Zarrouk, W.; Carrasco-Pancorbo, A.; Ouni, Y.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Daoud, D.; Zarrouk, M. Effect of Olive Ripeness on Chemical Properties and Phenolic Composition of Chétoui Virgin Olive Oil. J. Sci. Food Agric. 2010, 90, 199–204. [Google Scholar] [CrossRef]
- Baccouri, O.; Guerfel, M.; Baccouri, B.; Cerretani, L.; Bendini, A.; Lercker, G.; Zarrouk, M.; Daoud Ben Miled, D. Chemical Composition and Oxidative Stability of Tunisian Monovarietal Virgin Olive Oils with Regard to Fruit Ripening. Food Chem. 2008, 109, 743–754. [Google Scholar] [CrossRef] [PubMed]
- Calò, F.; Girelli, C.R.; Wang, S.C.; Fanizzi, F.P. Geographical Origin Assessment of Extra Virgin Olive Oil via NMR and MS Combined with Chemometrics as Analytical Approaches. Foods 2022, 11, 113. [Google Scholar] [CrossRef] [PubMed]
- El.Wikipedia. Available online: https://el.wikipedia.org/wiki (accessed on 10 June 2023).
- HNMS. Climatic Data for Selected Stations in Greece. Available online: http://www.emy.gr/emy/en/climatology/climatology_city?perifereia=Epirus&poli=Arta (accessed on 20 June 2023).
- Schober, P.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Melliou, E.; Magiatis, P.; Killday, K.B. A New Ultra Rapid Screening Method for Olive Oil Health Claim Evaluation Using Selective Pulse NMR Spectroscopy, 1st ed.; Capozzi, F., Laghi, L., Belton, P.S., Eds.; Royal Society of Chemistry: London, UK, 2015; ISBN 9781782622741. [Google Scholar]
- Gottstein, V.; Müller, M.; Günther, J.; Kuballa, T.; Vetter, W. Direct 1H NMR Quantitation of Valuable Furan Fatty Acids in Fish Oils and Fish Oil Fractions. J. Agric. Food Chem. 2019, 67, 11788–11795. [Google Scholar] [CrossRef] [PubMed]
Variety | Region | Total Phenolics (mg/kg) |
---|---|---|
Kalamon | Thesprotia | 1100 |
Kalamon | Thesprotia | 1039 |
Lianolia | Thesprotia | 683 |
Lianolia | Preveza | 680 |
Lianolia | Preveza | 622 |
Lianolia | Preveza | 586 |
Koroneiki | Preveza | 567 |
Lianolia | Thesprotia | 525 |
Koroneiki | Zakynthos | 520 |
Koroneiki | Zakynthos | 514 |
Lianolia | Preveza | 502 |
Variety | Region | Oleocanthal (3) (mg/kg) | Oleacein (4) (mg/kg) | D1 (mg/kg) |
---|---|---|---|---|
Kalamon | Thesprotia | 863 a | 101 | 964 |
Kalamon | Thesprotia | 712 | 208 | 920 |
Lianolia | Thesprotia | 344 | 243 | 587 |
Lianolia | Preveza | 291 | 288 b | 579 |
Lianolia | Preveza | 303 | 216 | 519 |
Lianolia | Preveza | 318 | 192 | 510 |
Lianolia | Thesprotia | 320 | 161 | 481 |
Amfissis | Arta | 393 | 57 | 450 |
Lianolia | Preveza | 273 | 169 | 442 |
Koroneiki | Arta | 241 | 182 | 423 |
Total Phenolics | Oleocanthal (3) | Oleacein (4) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Variety | N | Avg. | Med. | N | Avg. | Med. | N | Avg. | Med. | |||
Amfissis | 34 | 188 ± 21 | 164 | Kruskal–Wallis 18.70 df 6 sig 0.005 | 34 | 93 ± 12 | 89 | Kruskal–Wallis 28.88 df 6 sig <0.001 | 34 | 39 ± 7 | 28 | Kruskal–Wallis 27.64 df 6 sig <0.001 |
Koroneiki | 26 | 249 ± 29 | 229 | 26 | 92 ± 11 | 87 | 26 | 68 ± 10 | 54 | |||
Lianolia | 63 | 297 ± 20 | 287 | 63 | 160 ± 11 | 153 | 63 | 88 ± 8 | 78 | |||
Mesokarpos | 14 | 243 ± 33 | 254 | 14 | 111 ± 21 | 98 | 14 | 53 ± 12 | 38 | |||
Table olives | 27 | 182 ± 23 | 154 | 27 | 75 ± 9 | 65 | 27 | 42 ± 7 | 40 | |||
Kalamon | 10 | 321 ± 128 | 163 | 10 | 221 ± 98 | 77 | 10 | 52 ± 20 | 38 | |||
Agria | 4 | 162 ± 29 | 187 | 4 | 93 ± 15 | 101 | 4 | 31 ± 8 | 35 |
Total Phenolics | Oleocanthal (3) | Oleacein (4) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Harvest Month | N | Avg. | Med. | N | Avg. | Med. | N | Avg. | Med. | |||
October | 20 | 285 ± 51 | 238 | Kruskal–Wallis 42.90 df = 3 sig < 0.001 | 20 | 160 ± 41 | 106 | Kruskal–Wallis 52.85 df = 3 sig < 0.001 | 20 | 61 ± 12 | 51 | Kruskal–Wallis 39.56 df = 3 sig < 0.001 |
November | 99 | 297 ± 16 | 276 | 99 | 149 ± 10 | 136 | 99 | 81 ± 5 | 74 | |||
December | 41 | 162 ± 19 | 142 | 41 | 77 ± 9 | 64 | 41 | 36 ± 7 | 20 | |||
January to March | 18 | 116 ± 26 | 72 | 18 | 36 ± 3 | 22 | 18 | 27 ± 9 | 11 |
Total Phenolics | Oleocanthal (3) | Oleacein (4) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Prefecture | N | Avg. | Med. | N | Avg. | Med. | N | Avg. | Med. | |||
Arta | 62 | 185 ± 14 | 170 | Kruskal–Wallis 12.48 df = 2 sig = 0.002 | 62 | 81 ± 8 | 72 | Kruskal–Wallis 20.27 df = 2 sig < 0.001 | 62 | 43 ± 5 | 37 | Kruskal–Wallis 14.86 df = 2 sig < 0.001 |
Preveza | 52 | 269 ± 22 | 251 | 52 | 136 ± 11 | 122 | 52 | 81 ± 8 | 72 | |||
Thesprotia | 63 | 287 ± 25 | 261 | 63 | 151 ± 18 | 119 | 63 | 67 ± 7 | 45 |
Variables | Correlation Coefficient | Sig. (2-Tailed) |
---|---|---|
Total phenolics—D1 | +0.924 | <0.001 |
Total phenolics—D2 | +0.717 | <0.001 |
Total phenolics—D3 | +0.462 | <0.001 |
Epirus | Ionian Islands | |||||||
---|---|---|---|---|---|---|---|---|
Variety | Arta | Preveza | Thesprotia | Messinia | Crete | Corfu | Zakynthos | Total Number |
Amfissis | 31 | 2 | 1 | - | - | - | - | 34 |
Koroneiki | 10 | 9 | 7 | 3 | 2 | 5 | 3 | 39 |
Lianolia | 2 | 41 | 20 | 4 | - | - | 3 | 70 |
Mesokarpos | - | - | 14 | - | - | - | - | 14 |
Table olives | 18 | - | 9 | - | - | - | - | 27 |
Kalamon | 1 | 1 | 8 | - | - | - | - | 10 |
Agria | - | - | 4 | - | - | - | - | 4 |
Total number | 62 | 53 | 63 | 7 | 2 | 5 | 6 | 198 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsolis, T.; Kyriakou, D.; Sifnaiou, E.; Thomos, D.; Glykos, D.; Tsiafoulis, C.G.; Garoufis, A. NMR Analysis of Extra Virgin Olive Oil of the Epirus Region of Greece with Emphasis on Selected Phenolic Compounds. Molecules 2024, 29, 1111. https://doi.org/10.3390/molecules29051111
Tsolis T, Kyriakou D, Sifnaiou E, Thomos D, Glykos D, Tsiafoulis CG, Garoufis A. NMR Analysis of Extra Virgin Olive Oil of the Epirus Region of Greece with Emphasis on Selected Phenolic Compounds. Molecules. 2024; 29(5):1111. https://doi.org/10.3390/molecules29051111
Chicago/Turabian StyleTsolis, Theodoros, Dimitra Kyriakou, Evangelia Sifnaiou, Dimitrios Thomos, Dimitrios Glykos, Constantinos G. Tsiafoulis, and Achilleas Garoufis. 2024. "NMR Analysis of Extra Virgin Olive Oil of the Epirus Region of Greece with Emphasis on Selected Phenolic Compounds" Molecules 29, no. 5: 1111. https://doi.org/10.3390/molecules29051111
APA StyleTsolis, T., Kyriakou, D., Sifnaiou, E., Thomos, D., Glykos, D., Tsiafoulis, C. G., & Garoufis, A. (2024). NMR Analysis of Extra Virgin Olive Oil of the Epirus Region of Greece with Emphasis on Selected Phenolic Compounds. Molecules, 29(5), 1111. https://doi.org/10.3390/molecules29051111