Supramolecular Switch for the Regulation of Antibacterial Efficacy of Near-Infrared Photosensitizer
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of TTQAd and TTQTMA
2.2. Photophysical Properties of TTQAd and TTQTMA
2.3. ROS Generation Abilities of TTQAd and TTQTMA
2.4. Self-Assembly Behavior of TTQAd and TTQTMA
2.5. Antibacterial Efficacy of TTQAd and TTQTMA
2.6. Supramolecular Switch of the Antibacterial Efficacy of TTQAd
2.7. Supramolecular Switch of the Antibacterial Efficacy of ICG
2.8. Biocompatibility Evaluations
3. Materials and Methods
3.1. Chemicals and Instruments
3.2. Synthesis of TTQAd and TTQTMA
3.3. Evaluation of ROS Generation Efficiency
3.3.1. Determination of Total Amount of ROS Using DCFH
3.3.2. Determination of Singlet Oxygen (1O2) Production Using ABDA
3.3.3. Determination of 1O2 Production Using SOSG
3.4. The Binding Constants of TTQAd and TTQTMA with CB7
3.5. The Hydrodynamic Diameter and Zeta Potential of TTQAd and TTQTMA before and after the Addition of CB7
3.6. Bacterial Culture
3.7. Evaluation of the Antibacterial Effect of TTQAd, TTQTMA against E. coli and S. aureus
3.8. Evaluation of the Supramolecular “Switch-off” Effects of CB7 on the Antibacterial Ability of TTQAd
3.9. Comparison of the “Switch-off” Effects of CB7 on TTQAd and TTQTMA
3.10. Evaluation of the Toxicity of TMeAd to E. coli
3.11. Supramolecular “Switch-on” Effects of TMeAd on the Antibacterial Ability of TTQAd-CB7 Supramolecular Complexes
3.12. Evaluation of the Antibacterial Effect of TTQAd, TTQTMA against E. coli and S. aureus
3.13. Cytotoxicity Test
3.14. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ikuta, K.S.; Swetschinski, L.R.; Aguilar, G.R.; Sharara, F.; Mestrovic, T.; Gray, A.P.; Weavver, N.D.; Wool, E.E.; Han, C. Global mortality associated with 33 bacterial pathogens in 2019: A systematic analysis for the global burden of disease study 2019. Lancet 2022, 400, 2221–2248. [Google Scholar] [CrossRef] [PubMed]
- Willyard, C. The drug-resistant bacteria that pose the greatest health threats. Nature 2017, 543, 15. [Google Scholar] [CrossRef]
- Michael, C.A.; Dominey-Howes, D.; Labbate, M. The Antimicrobial resistance crisis: Causes, consequences, and management. Front. Public Health 2014, 2, 145. [Google Scholar] [CrossRef]
- Biondo, C. Bacterial Antibiotic Resistance: The most critical pathogens. Pathogens 2023, 12, 116–117. [Google Scholar] [CrossRef]
- Usui, M.; Yoshii, Y.; Thiriet-Rupert, S.; Ghigo, J.-M.; Beloin, C. Intermittent antibiotic treatment of bacterial biofilms favors the rapid evolution of resistance. Commun. Biol. 2023, 6, 275. [Google Scholar] [CrossRef] [PubMed]
- Fonda-Pascual, P.; Moreno-Arrones, O.M.; Alegre-Sanchez, A.; Saceda-Corralo, D.; Buendia-Castano, D.; Pindado-Ortega, C.; Fernandez-Gonzalez, P.; Velazquez-Kennedy, K.; Calvo-Sánchez, M.I.; Harto-Castaño, A.; et al. In situ production of ROS in the skin by photodynamic therapy as a powerful tool in clinical dermatology. Methods 2016, 109, 190–202. [Google Scholar] [CrossRef] [PubMed]
- Chilakamarthi, U.; Giribabu, L. Photodynamic therapy: Past, present and future. Chem. Rec. 2017, 17, 775–802. [Google Scholar] [CrossRef]
- Wiench, R.; Skaba, D.; Matys, J.; Grzech-Lesniak, K. Efficacy of toluidine blue-mediated antimicrobial photodynamic therapy on Candida spp. A systematic review. Antibiotics 2021, 10, 349. [Google Scholar] [CrossRef]
- Tavares, A.; Carvalho, C.M.B.; Faustino, M.A.; Neves, M.G.P.M.S.; Tome, J.P.C.; Tome, A.C.; Cavaleiro, J.A.S.; Cunha, A.; Gomes, N.C.M.; Alves, E.; et al. Antimicrobial photodynamic therapy: Study of bacterial recovery viability and potential development of resistance after treatment. Mar. Drugs 2010, 8, 91–105. [Google Scholar] [CrossRef]
- Hamblin, M.R. Antimicrobial photodynamic inactivation: A bright new technique to kill resistant microbes. Curr. Opin. Microbiol. 2016, 33, 67–73. [Google Scholar] [CrossRef]
- Gu, B.; Yong, K.T.; Liu, B. Strategies to overcome the limitations of AIEgens in biomedical applications. Small Methods 2018, 2, 1700392. [Google Scholar] [CrossRef]
- Deusenbery, C.; Wang, Y.; Shukla, A. Recent innovations in bacterial infection detection and treatment. ACS Infect. Dis. 2021, 7, 695–720. [Google Scholar] [CrossRef]
- Swamy, P.C.A.; Sivaraman, G.; Priyanka, R.N.; Raja, S.O.; Ponnuvel, K.; Shanmugpriya, J.; Gulyani, A. Near infrared (NIR) absorbing dyes as promising photosensitizer for photo dynamic therapy. Coord. Chem. Rev. 2020, 411, 213233. [Google Scholar] [CrossRef]
- Catania, C.; Thomas, A.W.; Bazan, G.C. Tuning cell surface charge in E. coli with conjugated oligoelectrolytes. Chem. Sci. 2016, 7, 2023–2029. [Google Scholar] [CrossRef]
- Wang, B.; Queenan, B.N.; Wang, S.; Nilsson, K.P.R.; Bazan, G.C. Precisely defined conjugated oligoelectrolytes for biosensing and therapeutics. Adv. Mater. 2019, 31, e1806701. [Google Scholar] [CrossRef]
- Feng, G.; Zhang, G.-Q.; Ding, D. Design of superior phototheranostic agents guided by Jablonski diagrams. Chem. Soc. Rev. 2020, 49, 8179–8234. [Google Scholar] [CrossRef]
- Fu, L.H.; Wan, Y.; Li, C.; Qi, C.; He, T.; Yang, C.; Zhang, Y.; Lin, J.; Huang, P. Biodegradable calcium phosphate nanotheranostics with tumor-specific activatable cascade catalytic reactions-augmented photodynamic therapy. Adv. Funct. Mater. 2021, 31, 2009848. [Google Scholar] [CrossRef]
- Xiao, P.; Shen, Z.; Wang, D.; Pan, Y.Z.; Li, Y.; Gong, J.; Wang, L.; Wang, D.; Tang, B.Z. Precise molecular engineering of type I photosensitizers with near-infrared aggregation-induced emission for image-guided photodynamic killing of multidrug-resistant bacteria. Adv. Sci. 2021, 9, e2104079. [Google Scholar] [CrossRef]
- Limwongyut, J.; Moreland, A.S.; Nie, C.; de Alaniz, J.R.; Bazan, G.C. Amide moieties modulate the antimicrobial activities of conjugated oligoelectrolytes against gram-negative bacteria. ChemistryOpen 2022, 11, e202100260. [Google Scholar] [CrossRef]
- Limwongyut, J.; Nie, C.; Moreland, A.S.; Bazan, G.C. Molecular design of antimicrobial conjugated oligoelectrolytes with enhanced selectivity toward bacterial cells. Chem. Sci. 2020, 11, 8138–8144. [Google Scholar] [CrossRef]
- Wang, B.; Wang, M.; Mikhailovsky, A.; Wang, S.; Bazan, G.C. A membrane-intercalating conjugated oligoelectrolyte with high-efficiency photodynamic antimicrobial activity. Angew. Chem. Int. Ed. 2017, 56, 5031–5034. [Google Scholar] [CrossRef]
- Wang, B.; Feng, G.; Seifrid, M.; Wang, M.; Liu, B.; Bazan, G.C. Antibacterial narrow-band-gap conjugated oligoelectrolytes with high photothermal conversion efficiency. Angew. Chem. Int. Ed. 2017, 56, 16063–16066. [Google Scholar] [CrossRef]
- Du, C.; Gao, D.; Gao, M.; Yuan, H.; Liu, X.; Wang, B.; Xing, C. Property regulation of conjugated oligoelectrolytes with polyisocyanide to achieve efficient photodynamic antibacterial biomimetic hydrogels. ACS Appl. Mater. Interfaces 2021, 13, 27955–27962. [Google Scholar] [CrossRef]
- Shih, C.; Bazan, E.L.; Ruan, L.; Zhou, C. Improving the antimicrobial efficacy against resistant Staphylococcus aureus by a combined use of conjugated oligoelectrolytes. PLoS ONE 2019, 14, e0224816. [Google Scholar] [CrossRef]
- Chilambi, G.S.; Gao, I.H.; Yoon, B.K.; Park, S.; Kawakami, L.M.; Ravikumar, V.; Chan-Park, M.B.; Cho, N.-J.; Bazan, G.C.; Kline, K.A.; et al. Membrane adaptation limitations in Enterococcus faecalis underlie sensitivity and the inability to develop significant resistance to conjugated oligoelectrolytes. RSC Adv. 2018, 8, 10284–10293. [Google Scholar] [CrossRef]
- Chilambi, G.S.; Hinks, J.; Matysik, A.; Zhu, X.; Choo, P.Y.; Liu, X.; Chan-Park, M.B.; Bazan, G.C.; Kline, K.A.; Rice, S.A. Enterococcus faecalis adapts to antimicrobial conjugated oligoelectrolytes by lipid rearrangement and differential expression of membrane stress response genes. Front. Microbiol. 2020, 11, 155. [Google Scholar] [CrossRef]
- Kolesnichenko, I.V.; Anslyn, E.V. Practical applications of supramolecular chemistry. Chem. Soc. Rev. 2017, 46, 2385–2390. [Google Scholar] [CrossRef]
- Barrow, S.J.; Kasera, S.; Rowland, M.J.; del Barrio, J.; Scherman, O.A. Cucurbituril-based molecular recognition. Chem. Rev. 2015, 115, 12320–12406. [Google Scholar] [CrossRef]
- Lagona, J.; Mukhopadhyay, P.; Chakrabarti, S.; Isaacs, L. The cucurbit[n]uril family. Angew. Chem. Int. Ed. 2005, 44, 4844–4870. [Google Scholar] [CrossRef]
- Murray, J.; Kim, K.; Ogoshi, T.; Yao, W.; Gibb, B.C. The aqueous supramolecular chemistry of cucurbit[n]urils, pillar[n]arenes and deep-cavity cavitands. Chem. Soc. Rev. 2017, 46, 2479–2496. [Google Scholar] [CrossRef]
- Xia, D.; Wang, P.; Ji, X.; Khashab, N.M.; Sessler, J.L.; Huang, F. Functional supramolecular polymeric networks: The marriage of covalent polymers and macrocycle-based host–guest interactions. Chem. Rev. 2020, 120, 6070–6123. [Google Scholar] [CrossRef]
- Bai, H.; Yuan, H.; Nie, C.; Wang, B.; Lv, F.; Liu, L.; Wang, S. A supramolecular antibiotic switch for antibacterial regulation. Angew. Chem. Int. Ed. 2015, 54, 13208–13213. [Google Scholar] [CrossRef]
- Yuan, H.; Jia, S.; Li, Z.; Liu, J.; Wang, X.; Qi, R. Regulation of antimicrobial effect of hemicyanine-based photosensitizer via supramolecular assembly. Nanomaterials 2022, 12, 2905. [Google Scholar] [CrossRef]
- Li, S.; Kuok, K.I.; Ji, X.; Xu, A.; Yin, H.; Zheng, J.; Tan, H.; Wang, R. Supramolecular modulation of antibacterial activity of ambroxol by cucurbit[7]uril. ChemPlusChem 2020, 85, 679–683. [Google Scholar] [CrossRef]
- Bai, H.; Fu, X.; Huang, Z.; Lv, F.; Liu, L.; Zhang, X.; Wang, S. Supramolecular germicide switches through host-guest interactions for decelerating emergence of drug-resistant pathogens. ChemistrySelect 2017, 2, 7940–7945. [Google Scholar] [CrossRef]
- Xu, S.-Y.; Peng, Z.-Z.; Wang, Z.-X.; Li, W.-Z.; Ye, Y.-Y.; Lin, X.-W.; Ruan, Y.-R.; Xiao, J.; Li, L.; Wang, W.; et al. A supramolecular antibiotic switch for plug-and-play antibacterial regulation. ChemNanoMat 2022, 8, e202200060. [Google Scholar] [CrossRef]
- Wang, Y.; Jett, S.D.; Crum, J.; Schanze, K.S.; Chi, E.Y.; Whitten, D.G. Understanding the dark and light-enhanced bactericidal action of cationic conjugated polyelectrolytes and oligomers. Langmuir 2013, 29, 781–792. [Google Scholar] [CrossRef]
- Ren, Y.; Liu, H.; Liu, X.; Zheng, Y.; Li, Z.; Li, C.; Yeung, K.W.K.; Zhu, S.; Liang, Y.; Cui, Z.; et al. Photoresponsive materials for antibacterial applications. Cell Rep. Phys. Sci. 2020, 1, 100245. [Google Scholar] [CrossRef]
- Murali, M.G.; Rao, A.D.; Ramamurthy, P.C. New low band gap 2-(4-(trifluoromethyl)phenyl)-1H-benzo[d]imidazole and benzo[1,2-c;4,5-c′]bis[1,2,5]thiadiazole based conjugated polymers for organic photovoltaics. RSC Adv. 2014, 4, 44902–44910. [Google Scholar] [CrossRef]
- Aldrich, P.E.; Hermann, E.C.; Meier, W.E.; Paulshock, M.; Prichard, W.W.; Snyder, J.A.; Watts, J.C. Antiviral agents. 2. structure-activity relationships of compounds related to 1-adamantanamine. J. Med. Chem. 1971, 14, 535–543. [Google Scholar] [CrossRef]
- Secondo, P.; Fages, F. Design and synthesis of bismacrocyclic hexaazatriphenylene derivatives. Org. Lett. 2006, 8, 1311–1314. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.-N.; Tan, M.; He, C.; Wang, J.; Wei, Y.; Jing, N.; Wang, B.; Yang, F.; Zhang, Y.; Li, M. Supramolecular Switch for the Regulation of Antibacterial Efficacy of Near-Infrared Photosensitizer. Molecules 2024, 29, 1040. https://doi.org/10.3390/molecules29051040
Jiang Y-N, Tan M, He C, Wang J, Wei Y, Jing N, Wang B, Yang F, Zhang Y, Li M. Supramolecular Switch for the Regulation of Antibacterial Efficacy of Near-Infrared Photosensitizer. Molecules. 2024; 29(5):1040. https://doi.org/10.3390/molecules29051040
Chicago/Turabian StyleJiang, Yu-Na, Manqi Tan, Chenglong He, Jiaxi Wang, Yi Wei, Ningning Jing, Bing Wang, Fang Yang, Yujie Zhang, and Meng Li. 2024. "Supramolecular Switch for the Regulation of Antibacterial Efficacy of Near-Infrared Photosensitizer" Molecules 29, no. 5: 1040. https://doi.org/10.3390/molecules29051040
APA StyleJiang, Y. -N., Tan, M., He, C., Wang, J., Wei, Y., Jing, N., Wang, B., Yang, F., Zhang, Y., & Li, M. (2024). Supramolecular Switch for the Regulation of Antibacterial Efficacy of Near-Infrared Photosensitizer. Molecules, 29(5), 1040. https://doi.org/10.3390/molecules29051040