Preparation and Screening of SRB Gel Particles Used for Deep Purification of Acid Mine Drainage
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preliminary Screening of Sulfate-Reducing Bacteria
2.2. Growth Curve and SO42− Reduction Effect of SRB Strain
2.3. Analysis of Physical and Chemical Properties of SRB Strains
2.4. The Effect of Different pH Values on the Reduction of SO42− by an SRB Strain
2.5. The Effect of Different Temperatures on the Reduction of SO42− by an SRB Strain
2.6. Research on SRB Gel Particles
2.6.1. Physical and Chemical Characteristic Analysis
2.6.2. Conductivity
2.6.3. Water Loss Rate and Cross-Linking Time
2.6.4. The Removal Rate of Sulfate Ions in the Treatment of AMD
2.7. Microbial Abundance Analysis
3. Materials and Methods
3.1. Materials
3.2. Preparation of the Materials
3.3. Experimental Methods
3.4. Analytical Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, Y.; Li, B.; Li, T.; Liu, P.; Zhang, B.B.; Che, L.L. A review of treatment technologies for acid mine drainage and sustainability assessment. J. Water Process Eng. 2023, 55, 104213. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, X.M.; Wang, S.; Hu, S.M.; Wei, L.Z.; Wu, Q.H.; Luo, D.G.; Xiao, T.F. Hydrogeochemical evolution of groundwater impacted by acid mine drainage (AMD) from polymetallic mining areas (South China). J. Contam. Hydrol. 2023, 259, 104254. [Google Scholar] [CrossRef]
- Luo, J.Z.; Cai, Y.Y. Mechanism of the pore and molecular structure evolution of coal exposed to acid mine drainage (AMD). Sci. Total Environ. 2024, 906, 167836. [Google Scholar] [CrossRef]
- Ngole-Jeme, V.M.; Ndava, J. The implications of AMD induced acidity, high metal concentrations and ochre precipitation on aquatic organisms. Pol. J. Environ. Stud. 2023, 32, 2959–2980. [Google Scholar] [CrossRef]
- Jiao, Y.N.; Zhang, C.H.; Su, P.D.; Tang, Y.H.; Huang, Z.P.; Ma, T. A review of acid mine drainage: Formation mechanism, treatment technology, typical engineering cases and resource utilization. Process Saf. Environ. 2023, 170, 1240–1260. [Google Scholar] [CrossRef]
- Mosai, A.K.; Ndlovu, G.; Tutu, H. Improving acid mine drainage treatment by combining treatment technologies: A review. Sci. Total Environ. 2024, 919, 170806. [Google Scholar] [CrossRef]
- Shi, W.Z.; Zhao, C.H.; Liang, Y.P.; Han, Z.T.; Xie, H.; Tang, C.L. Genetic mechanism analysis of low Ca/Mg value of acid goaf water in coal mine drainage. Carsologica Sin. 2022, 41, 511–521. [Google Scholar]
- Liang, Y.P.; Shen, H.Y.; Gao, X.B. Review of research progress of karst groundwater in northern China. Bull. Geol. Sci. Technol. 2022, 41, 199–219. [Google Scholar]
- Zhao, C.H.; Liang, Y.P.; Wang, Z.H.; Tang, C.L.; Shen, H.Y. Dynamic characteristics and evolution mechanism of “goaf water” of coal mine in Shandi River Basin, Yangquan, Shanxi Province and its environmental effects on Niangziguan Spring Area. Geol. China 2023, 50, 1471–1485. [Google Scholar]
- Zhang, H.G.; Li, M.; Yang, Z.Q.; Sun, Y.Q.; Yan, J.; Chen, D.Y.; Chen, Y.H. Isolation of a non-traditional sulfate reducing-bacteria Citrobacter freundii sp. and bioremoval of thallium and sulphate. Ecol. Eng. 2017, 102, 397–403. [Google Scholar] [CrossRef]
- Pape, P.L.; Battaglia-Brunet, F.; Parmentier, M.; Joulian, C.; Gassaud, C.; Fernandez-Rojo, L.; Guigner, J.M.; Ikogou, M.; Stetten, L. Complete removal of arsenic and zinc from a heavily contaminated acid mine drainage via an indigenous SRB consortium. J. Hazard. Mater. 2017, 321, 764–772. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Zhong, K.Q.; Wang, S.J.; Chen, Z.X.; Hu, H.S.; Jian, Z.Y.; Wen, H.J.; Zhang, H.G. Carbon metabolism and sulfate respiration by a non-conventional Citrobacter freundii strain SR10 with potential application in removal of metals and metalloids. Int. Biodeter. Biodegr. 2018, 133, 238–246. [Google Scholar] [CrossRef]
- Miao, Y.H.; Qi, S.Y.; Chen, J.; Wang, J.; Tian, B.Y.; Xin, B.P. Application of sulphate reducing bacteria in acid mine drainage treatment: A review. Appl. Chem. Ind. 2021, 50, 3074–3078+3086. [Google Scholar]
- Zhang, Z.; Zhang, C.H.; Yang, Y.; Zhang, Z.W.; Tang, Y.H.; Su, P.D.; Lin, Z.W. A review of sulfate-reducing bacteria: Metabolism, influencing factors and application in wastewater treatment. J. Clean. Prod. 2022, 376, 134109. [Google Scholar] [CrossRef]
- Guo, X.Y.; Hu, Z.Y.; Dong, Y.G.; Fu, S.O.; Li, Y. Study of the preparation of Maifan stone and SRB immobilized particles and their effect on treatment of acid mine drainage. RSC Adv. 2022, 12, 4595–4604. [Google Scholar] [CrossRef] [PubMed]
- Novair, S.B.; Atigh, Z.B.Q.; Lajayer, B.A.; Shu, W.X.; Price, G.W. The role of sulphate-reducing bacteria (SRB) in bioremediation of sulphate-rich wastewater: Focus on the source of electron donors. Process Saf. Environ. 2024, 184, 190–207. [Google Scholar] [CrossRef]
- Hwang, S.K.; Jho, E.H. Heavy metal and sulfate removal from sulfate-rich synthetic mine drainages using sulfate reducing bacteria. Sci. Total Environ. 2018, 635, 1308–1316. [Google Scholar] [CrossRef]
- Magowo, W.E.; Sheridan, C.; Rumbold, K. Global co-occurrence of acid mine drainage and organic rich industrial and domestic effluent: Biological sulfate reduction as a co-treatment-option. J. Water Process Eng. 2020, 38, 101650. [Google Scholar] [CrossRef]
- Chen, X.Y.; Feng, J.; Wang, H.M.; Liu, D.; Dou, Y.F.; Zhang, J.H.; Ma, L.Y. Isolation and identification of sulfate-reducing bacteria in goaf water in Yangquan of Shanxi Province and domestication for the reduction. Acta Microbiol. Sin. 2022, 62, 2104–2118. [Google Scholar]
- Diao, C.Y.; Ye, W.Z.; Yan, J.; Hao, T.W.; Huang, L.; Chen, Y.H.; Long, J.Y.; Xiao, T.F.; Zhang, H.G. Application of microbial sulfate-reduction process for sulfate-laden wastewater treatment: A review. J. Water Process Eng. 2023, 52, 103537. [Google Scholar] [CrossRef]
- Zhang, H.G.; Li, M.; Pang, B.; Wu, Y.J.; Sun, Y.Q.; Chen, D.Y.; Chen, Y.H. Bioremoval of Tl (I) by PVA-immobilized Sulfate-Reducing Bacteria. Pol. J. Environ. Stud. 2017, 26, 1865–1873. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.G.; Li, M.; Li, H.S.; Li, M.; Luo, D.G.; Chen, Y.H.; Chen, D.Y.; Luo, H.L.; Chen, Z.X.; Li, K.K. Immobilizing metal-resistant sulfate-reducing bacteria for cadmium removal from aqueous solutions. Pol. J. Environ. Stud. 2018, 27, 2851–2859. [Google Scholar] [CrossRef] [PubMed]
- Xin, Z.J.; Wang, X.Y.; Li, L.; Li, Y.; Deng, M.; Yao, Z. Components optimization of immobilized SRB-embeded particles and study on the treatment effect of sulfate-containing wastewater. Ind. Water Treat. 2024, 44, 112–119. [Google Scholar]
- Zhang, L.; Chen, Y.; Zhang, L.; Song, R.K.; Wang, Q.; Liu, C.J.; Mu, Y.D. Preparation of ZrO2/γ-Al2O3 albumen type catalyst and its catalytic performance for carbonyl sulfide hydrolysis. Appl. Phys. A 2024, 130, 170. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Q.; Zhao, H.C.; Song, R.K.; Chen, Y.; Liu, C.J.; Han, Z.K. Synthesis and surface strengthening modification of Silica aerogel from fly ash. Materials 2024, 17, 1614. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Song, R.K.; Jia, Y.; Zou, Z.R.; Chen, Y.; Wang, Q. Purification of quinoline insolubles in heavy coal tar and preparation of meso-carbon microbeads by catalytic polycondensation. Materials 2024, 17, 143. [Google Scholar] [CrossRef]
- Yuan, Y.G.; Leng, C.P.; Zhou, Y.L.; Yuan, Y.; Niu, Y.X.; Xu, R.Y.; Zhong, H.Y.; Li, F.P.; Zhou, H.X.; Wang, H. Impact of separate concentrations of polyethylene microplastics on the ability of pollutants removal during the operation of constructed wetland-microbial fuel cell. J. Environ. Manag. 2023, 341, 118107. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.Y.; Yang, Z.N.; Niu, Y.X.; Xu, D.; Wang, J.; Han, J.L.; Wang, H. Removal of microplastics and attached heavy metals from secondary effluent of wastewater treatment plant using interpenetrating bipolar plate electrocoagulation. Sep. Purif. Technol. 2022, 290, 120905. [Google Scholar] [CrossRef]
- Wang, H.; Zhong, Y.L.; Bo, G.Z. Existing forms and changes of nitrogen inside of horizontal subsurface constructed wetlands. Environ. Sci. Pollut. Res. 2018, 25, 771–781. [Google Scholar] [CrossRef]
Strain Name | Fermentation pH Value | Blackening Time of Medium |
---|---|---|
Strain 1 | 8.71 | 27 |
Strain 2 | 8.60 | 40 |
Strain 3 | 8.03 | 50 |
Strain 4 | 7.89 | 48 |
Strain 5 | 8.52 | 48 |
Strain 6 | 8.88 | 24 |
Strain 7 | 8.60 | 29 |
Strain 8 | 8.21 | 42 |
Strain 9 | 8.74 | 25 |
Strain 10 | 8.82 | 26 |
Strain Name | Gram Stain | Electron Receptor Experiment | Gelatin Liquification Experiments | V-P Test | Sugar Fermentation Experiment | Electron Acceptor Utilization Experiment | |||
---|---|---|---|---|---|---|---|---|---|
Glucose | Sucrose | Lactose | Na2SO4 | Sulfur | |||||
SRB-1 | - | + | + | - | - | + | + | + | + |
SRB-6 | - | + | + | - | - | + | + | + | + |
SRB-9 | - | + | - | - | - | + | + | + | + |
SRB-10 | - | + | + | - | - | + | + | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leng, C.; He, X.; Liu, Y.; Shi, L.; Li, F.; Wang, H.; Zhao, C.; Yi, S.; Yu, L. Preparation and Screening of SRB Gel Particles Used for Deep Purification of Acid Mine Drainage. Molecules 2024, 29, 3217. https://doi.org/10.3390/molecules29133217
Leng C, He X, Liu Y, Shi L, Li F, Wang H, Zhao C, Yi S, Yu L. Preparation and Screening of SRB Gel Particles Used for Deep Purification of Acid Mine Drainage. Molecules. 2024; 29(13):3217. https://doi.org/10.3390/molecules29133217
Chicago/Turabian StyleLeng, Chunpeng, Xi He, Yukuo Liu, Lifeng Shi, Fuping Li, Hao Wang, Cong Zhao, Siyu Yi, and Lei Yu. 2024. "Preparation and Screening of SRB Gel Particles Used for Deep Purification of Acid Mine Drainage" Molecules 29, no. 13: 3217. https://doi.org/10.3390/molecules29133217
APA StyleLeng, C., He, X., Liu, Y., Shi, L., Li, F., Wang, H., Zhao, C., Yi, S., & Yu, L. (2024). Preparation and Screening of SRB Gel Particles Used for Deep Purification of Acid Mine Drainage. Molecules, 29(13), 3217. https://doi.org/10.3390/molecules29133217