Recent Advances on the Functionalities of Polyoxometalate-Based Ionic Liquids
Abstract
:1. Introduction
2. The Applications of POM-ILs in the Oxidation Reactions
2.1. Oxidative Desulfurization
2.2. Alcohol Oxidation
2.3. Olefin Epoxidation
2.4. Oxidative Degradation of Herbicides
3. The Applications of POM-ILs in the Lysis Reaction
3.1. Degradable Polyethylene Terephthalate
3.2. Lysis of Lignocellulose
4. The Applications of POM-ILs in Other Catalytic Reactions
4.1. Formylation
4.2. Esterification Reaction
4.3. Catalytic Synthesis of Aspirin and Paracetamol
5. The Applications of POM-ILs in Adsorption
6. The Applications of POM-ILs in Lithium-Ion Batteries
7. The Applications of POM-ILs in Antibacterial
8. The Applications of POM-ILs in Other Areas
8.1. Anticorrosion
8.2. Solar Cells
9. Conclusions and Outlooks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DES | Deep eutectic solvents |
PyPS | 3-(Pyridine-1-ium-1-yl) propane-1-sulfonate |
CoMo | Co(OH)6Mo6O183− |
MIM | 1-Alkyl-3-methylimidazolium |
GO | Graphene oxide |
DBT | p-Dibenzothiophene |
Vim | 1-Vinyl-3-amylimidazolium |
PM | H3PM12O40 (M = Mo, W) |
DEDSA | Diethyldisulphoammonium |
DBDSA | Dibutyldisulfoammonium |
PET | Polyethylene terephthalate |
BMIM | 1-Butyl-3-methylimidazolium |
Py | Pyridinium |
TEAPs | 1-(3-sulfonic group) triethylamine |
MIMPs | 1-methyl-3-(3-sulfopropyl)imidazolium |
PMoV | H5PMo10V2O40 |
BSMIM | Butylsulfonate-3-methylimidazolium |
PANI | Polyaniline |
SAILEPs | Surface-active ionic liquid-encapsulated polyoxometalate |
DDVAC | N,N-dimethyl-dodecyl-(4-vinylbenzyl) ammonium chloride |
Co4PW | Na10[Co4(H2O)2(PW9O34)2] |
NCA | LiNi0.8Co0.15Al0.05O2 |
RGO | Reduced GO |
DOTMG | N,N,N′,N′-tetramethyl-N″,N″-dioctylguanidinum |
MIC | Minimum inhibitory concentration |
PMMA | Poly(methylmethacrylate) |
SiW11 | [α-SiW11O39]8− |
P44412, P44414, and P66614 | tribu-tyldodecyl, tributyltetradecyl, and trihexyltetradecyl |
P2W17 | K10[α2-P2W17O61]∙20H2O |
P2V3W15 | K8HP2W15V3O62·9H2O |
TAC | tris(dihexylamino)cyclopropylene |
PSCs | Perovskite solar cells |
Li-TFSI | lithium bistrifluoromethane sulfonimide |
Spiro-OMeTAD | 2,2′,7′-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9′-spirobifluorene |
References
- Walden, P. Molecular Weights and Electrical Conductivity of Several Fused Salts. Bull. Acad. Imp. Sci. St. Petersbourg 1914, 8, 405–422. [Google Scholar]
- Imam, H.T.; Krasňan, V.; Rebroš, M.; Marr, A.C. Applications of Ionic Liquids in Whole-Cell and Isolated Enzyme Biocatalysis. Molecules 2021, 26, 4791. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yao, X.; Yao, H.; Zhou, Q.; Xin, J.; Lu, X.; Zhang, S. Degradation of poly(ethylene terephthalate) catalyzed by metal-free choline-based ionic liquids. Green Chem. 2020, 22, 3122–3131. [Google Scholar] [CrossRef]
- Silva, R.M.A.; Montes-Campos, H.; Lobo Ferreira, A.I.M.C.; Bakis, E.; Santos, L.M.N.B.F. Thermodynamic Study of Alkylsilane and Alkylsiloxane-Based Ionic Liquids. J. Phys. Chem. B 2024, 128, 3742–3754. [Google Scholar] [CrossRef] [PubMed]
- Lebedeva, O.; Kultin, D.; Kustov, L. Advanced research and prospects on polymer ionic liquids: Trends, potential and application. Green Chem. 2023, 25, 9001–9019. [Google Scholar] [CrossRef]
- Deng, H.; Wang, X.; Chen, J.; Zhao, J.; Jiang, Z.; Tian, Z.; Du, P.; Li, Y. Experimental and molecular dynamics study of fuel desulfurization process using deep eutectic solvent. J. Environ. Chem. Eng. 2023, 11, 110277. [Google Scholar] [CrossRef]
- El-hoshoudy, A.N.; Soliman, F.S.; Abd El-Aty, D.M. Extractive desulfurization using choline chloride-based DES/molybdate nanofluids; Experimental and theoretical investigation. J. Mol. Liq. 2020, 318, 114307. [Google Scholar] [CrossRef]
- Wang, H.; Kang, X.; Han, B. Electrocatalysis in deep eutectic solvents: From fundamental properties to applications. Chem. Sci. 2024, 15, 9949–9976. [Google Scholar] [CrossRef] [PubMed]
- Protsenko, V.S.; Bobrova, L.S.; Korniy, S.A.; Danilov, F.I. Electrochemical synthesis and characterization of electrocatalytic materials for hydrogen production using Cr(III) baths based on a deep eutectic solvent. Mater. Lett. 2022, 313, 131800. [Google Scholar] [CrossRef]
- Wang, S.-S.; Yang, G.-Y. Recent Advances in Polyoxometalate-Catalyzed Reactions. Chem. Rew. 2015, 115, 4893–4962. [Google Scholar] [CrossRef]
- Li, D.; Ma, P.; Niu, J.; Wang, J. Recent advances in transition-metal-containing Keggin-type polyoxometalate-based coordination polymers. Coord. Chem. Rev. 2019, 392, 49–80. [Google Scholar] [CrossRef]
- Wei, Z.; Wang, J.; Yu, H.; Han, S.; Wei, Y. Recent Advances of Anderson-Type Polyoxometalates as Catalysts Largely for Oxidative Transformations of Organic Molecules. Molecules 2022, 27, 5212. [Google Scholar] [CrossRef] [PubMed]
- Anyushin, A.V.; Vanhaecht, S.; Parac-Vogt, T.N. A Bis-organosilyl-Functionalized Wells–Dawson Polyoxometalate as a Platform for Facile Amine Postfunctionalization. Inorg. Chem. 2020, 59, 10146–10152. [Google Scholar] [CrossRef]
- Wang, C.; Dai, Z.; Zhang, Q.; Li, X.; Ma, M.; Shi, Z.; Zhang, J.; Liu, Q.; Chen, H. A bifunctional biomineralized polyoxometalate enabling efficient Non-Inflammatory NIR-II photothermal tumor therapy. Chem. Eng. J. 2024, 490, 151601. [Google Scholar] [CrossRef]
- Li, N.; Liu, J.; Dong, B.X.; Lan, Y.Q. Polyoxometalate-Based Compounds for Photo- and Electrocatalytic Applications. Angew. Chem. Int. Ed. 2020, 59, 20779–20793. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, T.; Shao, H.; Li, F.; Li, D.; Yang, Y.; Yu, H.; Dong, X. First one-dimensional Cu2ZnSnS4-based gas sensor and enhanced performance at room temperature by polyoxometalate electron acceptor. Sens. Actuator B-Chem. 2023, 380, 133405. [Google Scholar] [CrossRef]
- Goura, J.; Bassil, B.S.; Bindra, J.K.; Rutkowska, I.A.; Kulesza, P.J.; Dalal, N.S.; Kortz, U. FeIII48-Containing 96-Tungsto-16-Phosphate: Synthesis, Structure, Magnetism and Electrochemistry. Chem.-Eur. J. 2020, 26, 15821–15824. [Google Scholar] [CrossRef]
- Jiang, F.; Wang, J.; Li, B.; Wu, L. Organic-Cation Modulated Assembly Behaviors of a Ureidopyrimidone-Grafting Cluster. Molecules 2023, 28, 3677. [Google Scholar] [CrossRef]
- Wang, Y.; Duan, F.; Liu, X.; Li, B. Cations Modulated Assembly of Triol-Ligand Modified Cu-Centered Anderson-Evans Polyanions. Molecules 2022, 27, 2933. [Google Scholar] [CrossRef]
- Chang, T.; Qu, D.; Li, B.; Wu, L. Organic/Inorganic Species Synergistically Supported Unprecedented Vanadomolybdates. Molecules 2022, 27, 7447. [Google Scholar] [CrossRef]
- Guan, W.; Wang, G.; Li, B.; Wu, L. Organic macrocycle-polyoxometalate hybrids. Coord. Chem. Rev. 2023, 481, 215039. [Google Scholar] [CrossRef]
- Bourlinos, A.B.; Raman, K.; Herrera, R.; Zhang, Q.; Archer, L.A.; Giannelis, E.P. A Liquid Derivative of 12-Tungstophosphoric Acid with Unusually High Conductivity. J. Am. Chem. Soc. 2004, 126, 15358–15359. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Guo, Z.; Hou, W.; Wang, Q.; Wang, J. Polyoxometalate-based phase transfer catalysis for liquid–solid organic reactions: A review. Catal. Sci. Technol. 2015, 5, 4324–4335. [Google Scholar] [CrossRef]
- Gao, Y.; Choudhari, M.; Such, G.K.; Ritchie, C. Polyoxometalates as chemically and structurally versatile components in self-assembled materials. Chem. Sci. 2022, 13, 2510–2527. [Google Scholar] [CrossRef]
- Misra, A.; Kozma, K.; Streb, C.; Nyman, M. Beyond Charge Balance: Counter-Cations in Polyoxometalate Chemistry. Angew. Chem. Int. Ed. 2019, 59, 596–612. [Google Scholar] [CrossRef]
- Ahmadian, M.; Anbia, M. Oxidative Desulfurization of Liquid Fuels Using Polyoxometalate-Based Catalysts: A Review. Energy Fuels 2021, 35, 10347–10373. [Google Scholar] [CrossRef]
- Taghizadeh, M.; Mehrvarz, E.; Taghipour, A. Polyoxometalate as an effective catalyst for the oxidative desulfurization of liquid fuels: A critical review. Rev. Chem. Eng. 2020, 36, 831–858. [Google Scholar] [CrossRef]
- Li, J.; Yang, Z.; Li, S.; Jin, Q.; Zhao, J. Review on oxidative desulfurization of fuel by supported heteropolyacid catalysts. J. Ind. Eng. Chem. 2020, 82, 1–16. [Google Scholar] [CrossRef]
- Zhang, H.; Fu, S. Polyoxometalate as an Effective Catalyst for Catalytic Lignin into Value-Added Molecules. ChemCatChem 2024, 16, e202301204. [Google Scholar] [CrossRef]
- Qiao, Y.; Shi, E.; Wei, X.; Hou, Z. Ionic liquid-stabilized metal oxoclusters: From design to catalytic application. Green Chem. 2024, 26, 5127–5149. [Google Scholar] [CrossRef]
- Berardi, S.; Carraro, M.; Sartorel, A.; Modugno, G.; Bonchio, M. Hybrid Polyoxometalates: Merging Organic and Inorganic Domains for Enhanced Catalysis and Energy Applications. Isr. J. Chem. 2011, 51, 259–274. [Google Scholar] [CrossRef]
- Han, Z.; Bond, A.M.; Zhao, C. Recent trends in the use of polyoxometalate-based material for efficient water oxidation. Sci. China Chem. 2011, 54, 1877–1887. [Google Scholar] [CrossRef]
- Wang, M.-Y.; Ma, R.; He, L.-N. Polyoxometalate-based ionic liquids-promoted CO2 conversion. Sci. China Chem. 2016, 59, 507–516. [Google Scholar] [CrossRef]
- Martinetto, Y.; Pégot, B.; Roch-Marchal, C.; Cottyn-Boitte, B.; Floquet, S. Designing Functional Polyoxometalate-Based Ionic Liquid Crystals and Ionic Liquids. Eur. J. Inorg. Chem. 2019, 2020, 228–247. [Google Scholar] [CrossRef]
- Nogueira, L.S.; Ribeiro, S.; Granadeiro, C.M.; Pereira, E.; Feio, G.; Cunha-Silva, L.; Balula, S.S. Novel polyoxometalate silica nano-sized spheres: Efficient catalysts for olefin oxidation and the deep desulfurization process. Dalton Trans. 2014, 43, 9518–9528. [Google Scholar] [CrossRef] [PubMed]
- Dupont, J.; Leal, B.C.; Lozano, P.; Monteiro, A.L.; Migowski, P.; Scholten, J.D. Ionic Liquids in Metal, Photo-, Electro-, and (Bio) Catalysis. Chem. Rew. 2024, 124, 5227–5420. [Google Scholar] [CrossRef]
- Liang, J.; Wang, W.; Wu, W.; Wu, M.; Hua, J.; Liu, Y.; Liu, C. Cationic Exchange of Evans-Showell Polyoxometalate to Construct Efficient Hydrodesulfurization Catalyst. ChemistrySelect 2023, 8, e202300004. [Google Scholar] [CrossRef]
- Lin, R.; Pan, H.; Xu, W.; Zhang, L.; Wang, X.; Zhang, J.; Chen, K. Hydrodesulfurization of benzothiophene on Ni2P surface. Energy Explor. Exploit. 2020, 38, 2711–2728. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, J.; Li, H.; Wei, Y.; Fu, Y.; Liao, W.; Zhu, L.; Chen, G.; Zhu, W.; Li, H. Tuning the electrophilicity of vanadium-substituted polyoxometalate based ionic liquids for high-efficiency aerobic oxidative desulfurization. Appl. Catal. B-Environ. 2020, 271, 118936. [Google Scholar] [CrossRef]
- Xing, X.-X.; Guo, H.-L.; He, T.-M.; An, X.; Li, H.-P.; Zhu, W.-S.; Li, H.-M.; Pang, J.-Y.; Dang, D.-B.; Bai, Y. Tungstovanadate-Based Ionic Liquid Catalyst [C2(MIM)2]2VW12O40 Used in Deep Desulfurization for Ultraclean Fuel with Simultaneous Recovery of the Sulfone Product. ACS Sustain. Chem. Eng. 2022, 10, 11533–11543. [Google Scholar] [CrossRef]
- de Rink, R.; Klok, J.B.M.; van Heeringen, G.J.; Sorokin, D.Y.; ter Heijne, A.; Zeijlmaker, R.; Mos, Y.M.; de Wilde, V.; Keesman, K.J.; Buisman, C.J.N. Increasing the Selectivity for Sulfur Formation in Biological Gas Desulfurization. Environ. Sci. Technol. 2019, 53, 4519–4527. [Google Scholar] [CrossRef]
- Jia, T.; Zhang, L.; Zhao, Q.; Peng, Y. The effect of biofilm growth on the sulfur oxidation pathway and the synergy of microorganisms in desulfurization reactors under different pH conditions. J. Hazard. Mater. 2022, 432, 128638. [Google Scholar] [CrossRef]
- Li, J.; Lei, X.-J.; Tang, X.-D.; Zhang, X.-P.; Wang, Z.-Y.; Jiao, S. Acid Dicationic Ionic Liquids as Extractants for Extractive Desulfurization. Energy Fuels 2019, 33, 4079–4088. [Google Scholar] [CrossRef]
- Cheng, H.; Cui, Y.; Ge, Z.; Wang, R.; Qin, Z.; Chen, L.; Qi, Z. Insight into the mechanism of tuned extractive desulfurization by aqueous tetrabutylphosphonium bromide. Sep. Purif. Technol. 2021, 262, 118342. [Google Scholar] [CrossRef]
- Zheng, M.; Hu, H.; Ye, Z.; Huang, Q.; Chen, X. Adsorption desulfurization performance and adsorption-diffusion study of B2O3 modified Ag-CeOx/TiO2-SiO2. J. Hazard. Mater. 2019, 362, 424–435. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, H.; Zhao, J.; Liu, Y.; Liu, C. Ultra-deep desulfurization by reactive adsorption desulfurization on copper-based catalysts. J. Energy Chem. 2019, 29, 8–16. [Google Scholar] [CrossRef]
- Piera, J.; Bäckvall, J.E. Catalytic Oxidation of Organic Substrates by Molecular Oxygen and Hydrogen Peroxide by Multistep Electron Transfer—A Biomimetic Approach. Angew. Chem. Int. Ed. 2008, 47, 3506–3523. [Google Scholar] [CrossRef]
- Chi, M.; Su, T.; Sun, L.; Zhu, Z.; Liao, W.; Ren, W.; Zhao, Y.; Lü, H. Biomimetic oxygen activation and electron transfer mechanism for oxidative desulfurization. Appl. Catal. B-Environ. 2020, 275, 119134. [Google Scholar] [CrossRef]
- Xing, X.-X.; Guo, H.-L.; Feng, T.; He, T.-M.; Zhu, W.-S.; Li, H.-M.; Pang, J.-Y.; Bai, Y.; Dang, D.-B. Design and Synthesis of Amphiphilic Catalyst [C16mim]5VW12O40Br and Its Application in Deep Desulfurization with Superior Cyclability at Room Temperature. Inorg. Chem. 2023, 62, 5780–5790. [Google Scholar] [CrossRef]
- Mohammadi-Nejati, F.; Shahhosseini, S. Covalent immobilization of POM-based ILs on magnetic graphene oxide for efficient catalytic oxidative desulfurization of model fuel under solvent-free and moderate reaction conditions. Fuel Process. Technol. 2023, 252, 107980. [Google Scholar] [CrossRef]
- Mao, S.-X.; Zhou, Q.-H.; Guo, H.-L.; Du, M.; Zhu, W.-S.; Li, H.-M.; Pang, J.-Y.; Dang, D.-B.; Bai, Y. Porous phosphomolybdate-based poly(ionic liquid) hybrids with reversible water absorption for enhancement of oxidative desulfurization. Fuel 2023, 333, 126392. [Google Scholar] [CrossRef]
- Gao, Y.; Cheng, L.; Gao, R.; Hu, G.; Zhao, J. Deep desulfurization of fuels using supported ionic liquid-polyoxometalate hybrid as catalyst: A comparison of different types of ionic liquids. J. Hazard. Mater. 2021, 401, 123267. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Lv, Z.; Gao, R.; Hu, G.; Zhao, J. Dawson type polyoxometalate based-poly ionic liquid supported on different carbon materials for high-efficiency oxidative desulfurization with molecular oxygen as the oxidant. New J. Chem. 2020, 44, 20358–20366. [Google Scholar] [CrossRef]
- Gao, Y.; Yang, L.; Liu, Z.; Gao, R.; Hu, G.; Zhao, J. Poly(ionic liquid)–polyoxometalate/graphene oxide composites as catalysts for deep desulfurization. New J. Chem. 2022, 46, 756–766. [Google Scholar] [CrossRef]
- Li, S.-W.; Wang, W.; Zhao, J.-S. The quantity and type of ILs needed to form magnetic-heteropolyacid mesoporous catalysts and their highly performance for DBT removal. Sustain. Energ. Fuels 2020, 4, 2422–2437. [Google Scholar] [CrossRef]
- Mao, S.-X.; Song, J.-Y.; Zhu, W.-S.; Li, H.-M.; Pang, J.-Y.; Dang, D.-B.; Bai, Y. Heterogeneous oxidative desulfurization of fuels using amphiphilic mesoporous phosphomolybdate-based poly(ionic liquid) over a wide temperature range. Fuel 2023, 352, 128982. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, B.; Zhang, Q.; Deng, W.; Wang, Y.; Yang, Y. Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry. Chem. Soc. Rev. 2014, 43, 3480. [Google Scholar] [CrossRef]
- Wang, J.-X.; Zhou, X.-T.; Han, Q.; Guo, X.-X.; Liu, X.-H.; Xue, C.; Ji, H.-B. Efficient and selective oxidation of alcohols to carbonyl compounds at room temperature by a ruthenium complex catalyst and hydrogen peroxide. New J. Chem. 2019, 43, 19415–19421. [Google Scholar] [CrossRef]
- Zheng, W.; Wu, M.; Yang, C.; Chen, Y.; Tan, R.; Yin, D. Alcohols selective oxidation with H2O2 catalyzed by robust heteropolyanions intercalated in ionic liquid-functionalized graphene oxide. Mater. Chem. Phys. 2020, 256, 123681. [Google Scholar] [CrossRef]
- Kashyap, N.; Das, S.; Borah, R. Solvent responsive self-separation behaviour of Brønsted acidic ionic liquid-polyoxometalate hybrid catalysts on H2O2 mediated oxidation of alcohols. Polyhedron 2021, 196, 114993. [Google Scholar] [CrossRef]
- Zhang, S.; Hong, B.; Fan, Z.; Lu, J.; Xu, Y.; Pera-Titus, M. Aquivion–Carbon Composites with Tunable Amphiphilicity for Pickering Interfacial Catalysis. ACS Appl. Mater. Interfaces 2018, 10, 26795–26804. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, Y.; Liu, Y.; Wang, Y.; Wu, F.; Zhou, Z.; Zhang, Z. Polyoxometalate-Supported Ionic Liquid@Core–Shell Polymer Nanoparticles: Novel Pickering Interfacial Catalysts for Efficient and Safe Epoxidation of Allyl Chloride with Low-Concentration H2O2. ACS Sustain. Chem. Eng. 2023, 11, 12934–12945. [Google Scholar] [CrossRef]
- Kashyap, N.; Kalita, S.; Bora, D.B.; Das, S.; Yashmin, F.; Guha, A.K.; Borah, R. A mechanistic study on solar energized degradation of herbicide into value-added product using -SO3H functionalized ionic liquid-polyoxometalate based heterogeneous catalyst in aqueous medium. J. Mol. Struct. 2024, 1311, 138372. [Google Scholar] [CrossRef]
- George, N.; Kurian, T. Recent Developments in the Chemical Recycling of Postconsumer Poly(ethylene terephthalate) Waste. Ind. Eng. Chem. Res. 2014, 53, 14185–14198. [Google Scholar] [CrossRef]
- Liao, Z.; Duan, Y.; Guo, L.; Zheng, R.; Wang, L.; Chen, Y.; Zhang, L.; Qian, X. Preparation of a heteropoly acid ionic liquid and its application in the catalytic degradation of bottle-grade PET. New J. Chem. 2023, 47, 4337–4345. [Google Scholar] [CrossRef]
- Fang, P.; Zheng, X.; Zhang, R.; Xu, J.; Yan, D.; Zhou, Q.; Xin, J.; Shi, C.; Xia, S.; Lu, X. Accurate Layer Spacing Matching of Polyoxometalate (POM) Anion-based Ionic Liquids (ILs) to Promote PET Alcoholysis. ChemCatChem 2023, 15, e202200712. [Google Scholar] [CrossRef]
- Wang, M.; Wang, F. Catalytic Scissoring of Lignin into Aryl Monomers. Adv. Mater. 2019, 31, 1901866. [Google Scholar] [CrossRef] [PubMed]
- Ragauskas, A.J.; Beckham, G.T.; Biddy, M.J.; Chandra, R.; Chen, F.; Davis, M.F.; Davison, B.H.; Dixon, R.A.; Gilna, P.; Keller, M.; et al. Lignin Valorization: Improving Lignin Processing in the Biorefinery. Science 2014, 344, 1246843. [Google Scholar] [CrossRef]
- Luo, X.; Li, Y.; Gupta, N.K.; Sels, B.; Ralph, J.; Shuai, L. Protection Strategies Enable Selective Conversion of Biomass. Angew. Chem. Int. Ed. 2020, 59, 11704–11716. [Google Scholar] [CrossRef]
- Xin, X.; Li, Z.; Chi, M.; Zhang, M.; Dong, Y.; Lv, H.; Yang, G.-Y. A recoverable polyoxometalate-ionic liquid catalyst for selective cleavage of lignin β-O-4 models under mild conditions. Green Chem. 2023, 25, 2815–2824. [Google Scholar] [CrossRef]
- Cai, Z.; Chen, R.; Zhang, H.; Li, F.; Long, J.; Jiang, L.; Li, X. One-pot production of diethyl maleate via catalytic conversion of raw lignocellulosic biomass. Green Chem. 2021, 23, 10116–10122. [Google Scholar] [CrossRef]
- Dai, X.; Wang, B.; Wang, A.; Shi, F. Amine formylation with CO2 and H2 catalyzed by heterogeneous Pd/PAL catalyst. Chin. J. Catal. 2019, 40, 1141–1146. [Google Scholar] [CrossRef]
- Liao, H.; Chen, M.; Ma, Y.; Peng, Q.; Wei, X.; Hou, Z. Solvent-Assisted Ruthenium Complex Catalyzes Hydrogenation and the Reductive Amination of Carbon Dioxide. Ind. Eng. Chem. Res. 2022, 61, 15156–15168. [Google Scholar] [CrossRef]
- Zhang, L.-L.; Sun, M.-J.; Liu, C.-G. CO oxidation on the phosphotungstic acid supported Rh single–atom catalysts via Rh–assisted Mans–van Krevelen mechanism. Mol. Catal. 2019, 462, 37–45. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, C.; Jiang, Y.; Wei, X.; Liu, Y.; Liao, H.; Wang, H.; Dai, S.; An, P.; Hou, Z. Ruthenium Single-Atom Anchored in Polyoxometalate-Ionic Liquids for N-Formylation of Amines with CO2 and H2. ACS Catal. 2023, 13, 10295–10308. [Google Scholar] [CrossRef]
- de Lima, A.L.; Ronconi, C.M.; Mota, C.J.A. Heterogeneous basic catalysts for biodiesel production. Catal. Sci. Technol. 2016, 6, 2877–2891. [Google Scholar] [CrossRef]
- Xie, W.; Wan, F. Immobilization of polyoxometalate-based sulfonated ionic liquids on UiO-66-2COOH metal-organic frameworks for biodiesel production via one-pot transesterification-esterification of acidic vegetable oils. Chem. Eng. J. 2019, 365, 40–50. [Google Scholar] [CrossRef]
- Rafiee, E.; Eavani, S. Heterogenization of heteropoly compounds: A review of their structure and synthesis. RSC Adv. 2016, 6, 46433–46466. [Google Scholar] [CrossRef]
- Xie, W.; Wang, H. Synthesis of heterogenized polyoxometalate-based ionic liquids with Brönsted-Lewis acid sites: A magnetically recyclable catalyst for biodiesel production from low-quality oils. J. Ind. Eng. Chem. 2020, 87, 162–172. [Google Scholar] [CrossRef]
- Jung, S.; Tsukuda, Y.; Kawashima, R.; Ishiki, T.; Matsumoto, A.; Nakaniwa, A.; Takagi, M.; Noguchi, T.; Imai, N. Convenient synthesis of acetaminophen analogues containing α-amino acids and fatty acids via their mixed carbonic carboxylic anhydrides in aqueous organic solvent. Tetrahedron Lett. 2013, 54, 5718–5720. [Google Scholar] [CrossRef]
- Majedi, A.; Davar, F.; Abbasi, A. Sucrose-mediated sol–gel synthesis of nanosized pure and S-doped zirconia and its catalytic activity for the synthesis of acetyl salicylic acid. J. Ind. Eng. Chem. 2014, 20, 4215–4223. [Google Scholar] [CrossRef]
- Maleki, A.; Azizi, M.; Emdadi, Z. A novel poly(ethyleneoxide)-based magnetic nanocomposite catalyst for highly efficient multicomponent synthesis of pyran derivatives. Green Chem. Lett. Rev. 2018, 11, 573–582. [Google Scholar] [CrossRef]
- Nasiri, E.; Kooshki, F.; Kooti, M.; Rezaeinasab, R. Functionalized nanomagnetic graphene by ion liquid containing phosphomolybdic acid for facile and fast synthesis of paracetamol and aspirin. Appl. Organomet. Chem. 2021, 35, e6413. [Google Scholar] [CrossRef]
- Duan, F.; Liu, X.; Qu, D.; Li, B.; Wu, L. Polyoxometalate-Based Ionic Frameworks for Highly Selective CO2 Capture and Separation. CCS Chem. 2021, 3, 2676–2687. [Google Scholar] [CrossRef]
- Mohammadi, M.D.; Abbas, F.; Louis, H.; Mathias, G.E.; Unimuke, T.O. Trapping of CO, CO2, H2S, NH3, NO, NO2, and SO2 by polyoxometalate compound. Comput. Theor. Chem. 2022, 1215, 113826. [Google Scholar] [CrossRef]
- Ranjbari, S.; Ayati, A.; Niknam Shahrak, M.; Tanhaei, B.; Hamidi Tabrizi, S. Design of [BmIm]3PW12O40 Ionic Liquid Encapsulated-ZIF-8 Nanocomposite for Cationic Dye Adsorptive Removal: Modeling by Response Surface Methodology. Ind. Eng. Chem. Res. 2023, 62, 4636–4645. [Google Scholar] [CrossRef]
- Qi, L.; Gong, Y.; Fang, M.; Jia, Z.; Cheng, N.; Yu, L. Surface-Active Ionic-Liquid-Encapsulated Polyoxometalate Nanospheres: Construction, Self-Assembly, Adsorption Behavior, and Application for Dye Removal. ACS Appl. Nano Mater. 2020, 3, 375–383. [Google Scholar] [CrossRef]
- Yang, J.; Chu, N.; Chen, X. Preparation of Polyoxometalate-Based Composite by Solidification of Highly Active Cobalt-Containing Polytungstate on Polymeric Ionic Liquid for the Efficient Isolation of Proteinase K. Molecules 2023, 28, 3307. [Google Scholar] [CrossRef]
- Cheng, X.-B.; Zhang, R.; Zhao, C.-Z.; Zhang, Q. Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chem. Rew. 2017, 117, 10403–10473. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Eshetu, G.G.; Judez, X.; Li, C.; Rodriguez-Martínez, L.M.; Armand, M. Electrolyte Additives for Lithium Metal Anodes and Rechargeable Lithium Metal Batteries: Progress and Perspectives. Angew. Chem. Int. Ed. 2018, 57, 15002–15027. [Google Scholar] [CrossRef]
- Meng, J.; Lei, M.; Lai, C.; Wu, Q.; Liu, Y.; Li, C. Lithium Ion Repulsion-Enrichment Synergism Induced by Core–Shell Ionic Complexes to Enable High-Loading Lithium Metal Batteries. Angew. Chem. Int. Ed. 2021, 60, 23256–23266. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Chu, Y.; Wang, Y.; Fang, Z.; Liu, Z.; Deng, Y.; Dong, Q.; Hao, Z. Nanohybridization of Keggin polyoxometalate clusters and reduced graphene oxide for lithium-ion batteries. J. Nanopart. Res. 2021, 23, 41. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Li, G.; Luan, D.; Yuan, Q.; Wei, Y.; Wang, X. Antibacterial Adhesion of Borneol-Based Polymer via Surface Chiral Stereochemistry. ACS Appl. Mater. Interfaces 2014, 6, 19371–19377. [Google Scholar] [CrossRef]
- Lin, W.; Ni, Y.; Pang, J. Microfluidic spinning of poly (methyl methacrylate)/konjac glucomannan active food packaging films based on hydrophilic/hydrophobic strategy. Carbohydr. Polym. 2019, 222, 114986. [Google Scholar] [CrossRef]
- Enderle, A.G.; Franco-Castillo, I.; Atrián-Blasco, E.; Martín-Rapún, R.; Lizarraga, L.; Culzoni, M.J.; Bollini, M.; de la Fuente, J.M.; Silva, F.; Streb, C.; et al. Hybrid Antimicrobial Films Containing a Polyoxometalate-Ionic Liquid. ACS Appl. Polym. Mater. 2022, 4, 4144–4153. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Hu, Y.; Zhang, B. Phosphonium-based ionic liquids as antifungal agents for conservation of heritage sandstone. RSC Adv. 2022, 12, 1922–1931. [Google Scholar] [CrossRef]
- Eyssautier-Chuine, S.; Franco-Castillo, I.; Misra, A.; Hubert, J.; Vaillant-Gaveau, N.; Streb, C.; Mitchell, S.G. Evaluating the durability and performance of polyoxometalate-ionic liquid coatings on calcareous stones: Preventing biocolonisation in outdoor environments. Sci. Total Environ. 2023, 884, 163739. [Google Scholar] [CrossRef]
- Herrmann, S.; Kostrzewa, M.; Wierschem, A.; Streb, C. Polyoxometalate Ionic Liquids as Self-Repairing Acid-Resistant Corrosion Protection. Angew. Chem. Int. Ed. 2014, 53, 13596–13599. [Google Scholar] [CrossRef]
- Majeed, I.; Ahmad, Z.; AlMasoud, N.; Alomar, T.S.; Hussain, S.; Asif, H.M.; Mansoor, F.; Nazar, Z.; El-Bahy, Z.M. Preparation of polyoxometalate ionic liquids (POM-ILs) coated on metal coins for anticorrosion activity. Polyhedron 2023, 243, 116577. [Google Scholar] [CrossRef]
- Curnow, O.J.; Senthooran, R. Ionic liquid Keggin polyoxometallates with the tris(dihexylamino)cyclopropenium cation. Polyhedron 2023, 233, 116318. [Google Scholar] [CrossRef]
- Cruz, H.; Pinto, A.L.; Lima, J.C.; Branco, L.C.; Gago, S. Application of polyoxometalate-ionic liquids (POM-ILs) in dye-sensitized solar cells (DSSCs). Mater. Lett.-X 2020, 6, 100033. [Google Scholar] [CrossRef]
- Hu, B.; Zhang, J.; Yang, Y.; Dong, Y.; Wang, J.; Wang, W.; Lin, K.; Xia, D. Dual-functional POM@IL complex modulate hole transport layer properties and interfacial charge dynamics for highly efficient and stable perovskite solar cells. Chin. Chem. Lett. 2024, 35, 108933. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Li, B. Recent Advances on the Functionalities of Polyoxometalate-Based Ionic Liquids. Molecules 2024, 29, 3216. https://doi.org/10.3390/molecules29133216
Wang H, Li B. Recent Advances on the Functionalities of Polyoxometalate-Based Ionic Liquids. Molecules. 2024; 29(13):3216. https://doi.org/10.3390/molecules29133216
Chicago/Turabian StyleWang, Hongxue, and Bao Li. 2024. "Recent Advances on the Functionalities of Polyoxometalate-Based Ionic Liquids" Molecules 29, no. 13: 3216. https://doi.org/10.3390/molecules29133216
APA StyleWang, H., & Li, B. (2024). Recent Advances on the Functionalities of Polyoxometalate-Based Ionic Liquids. Molecules, 29(13), 3216. https://doi.org/10.3390/molecules29133216