One Molecule, Many Faces: Repositioning Cardiovascular Agents for Advanced Wound Healing
Abstract
:1. Introduction
2. Applications of Sartans in the Treatment of Wounds
2.1. Effects of Sartans on Wound Healing
2.2. Effect of Sartans on Scar Formation
2.3. Novel Formulation of Sartans in Wound Healing
3. Applications of Beta-Blockers in the Treatment of Wounds
3.1. Effects of Beta-Blockers on Wound Healing
3.2. Clinical Studies on Timolol
3.3. Antibacterial Potential of Beta-Blockers
3.4. Novel Formulation of Beta-Blockers in Wound Healing
4. Applications of Statins in the Treatment of Wounds
4.1. Antibacterial Activity of Statins in Wound Healing
4.2. Effects of Statins on Wound Healing
4.3. Novel Formulation of Statins in Wound Healing
Drug | Model | Method of Administration/ Dosage/Duration of Treatment | Findings | Author |
---|---|---|---|---|
Atorvastatin | Wistar-Hannover rat model of wound |
| Accelerated tissue repair in rats and modulated expressions of proteins and cytokines associated with cell-growth pathways. | Suzuki-Banhesse et al. [123] |
Simvastatin | Diabetic C57BLKS/J-m+/+Leprdb mice model of wound |
| Significantly accelerated skin wound healing in genetically diabetic mice and enhanced angiogenesis and lymphangiogenesis. | Asai et al. [24] |
Mevastatin | Pathogen-free pigs (Ken-O-Kaw Farms, Windsor, IL) model of wounds |
| Accelerated wound closure, promoted epithelialization and angiogenesis, and modulated critical signaling pathways involved in wound healing. | Sawaya et al. [110] |
Simvastatin | Wistar rats weighing 200–250 g model of burns |
| Expedited wound healing, enhanced collagen deposition, increased myofibroblast population, and upregulated angiogenic genes; Akt/mTOR signaling pathway involvement. | Ramhormozi et al. [125] |
Atorvastatin | Sprague-Dawley rat (180–220 g) model of pressure sores |
| Enhanced paracrine secretion by bone marrow-derived mesenchymal stem cells, accelerated wound healing, improved neovascularization, and enhanced collagen reconstruction. | Xiang et al. [126] |
Simvastatin | Wistar rat model of wound |
| Improved pressure ulcer healing, reduced inflammation, and promoted skin regeneration. | Mousavi-Simakani et al. [127] |
Simvastatin | Wistar rat model of wound |
| Enhanced wound healing efficiency, caused significant reduction in wound area, and improved neovascularization. | Yasasvini et al. [129] |
Atorvastatin | Wistar rat model of wound |
| Favorable physical properties, with distinct drug release profiles across gel, emulgel, and nanoemulgel. Notably, atorvastatin’s skin permeation significantly increased (p < 0.05) when incorporated into nanoemulgel. | Morsy et al. [108] |
Atorvastatin | Wistar rat model of wound |
| Enhanced simvastatin skin permeation and optimized wound-healing effects. | Ahmed et al. [130] |
Simvastatin | Diabetic mice |
| Promising results in accelerating skin wound recovery in diabetic mice. | Janipour et al. [132] |
Simvastatin | Wistar rat model of wound |
| Accelerated wound healing with complete epithelialization and minimal inflammatory cell infiltration. | Aly et al. [133] |
Simvastatin | Wistar rat model of wound |
| Sustained drug release and improved wound closure in excision wound model in rats. | Varshosaz et al. [134] |
5. Other Cardiovascular Drugs
Drug | Model | Method of Administration/ Dosage/Duration of Treatment | Findings | Author |
---|---|---|---|---|
Nifedipine and amlodipine | Healthy Wistar rats |
| Enhanced wound healing, increased tensile strength in granulation tissue. | Bhaskar et al. [140] |
Verapamil | Male Wistar rats aged Between 2 and 3 months |
| Accelerated wound closure rates, higher fibroblast density, increased collagen bundle and vessel volume densities, and larger vessel diameters. | Ashkani-Esfahani et al. [141] |
Amlodipine and amlodipine with phenytoin | New Zealand rabbits |
| Accelerated wound closure (21 days non-treated, 13 days—amlodipine group, 9 days amlodipine/phenytoin group). | Hemmati et al. [142] |
Azelnidipine | Male Sprague-Dawley diabetic rats |
| Faster wound closure, increased nitric oxide synthesis, and improved histologic parameters. | Bagheri et al. [143] |
Nifedipine | Normal and diabetic male Wister rats |
| improved the inflammatory phase in both groups, enhanced the maturation phase in diabetic rats, did not significantly affect the proliferation phase in either group. | Cheraghali et al. [144] |
Nifedipine | Healthy, mature male rabbits |
| 1% ointment significantly increased TGF-β levels on days 7 and 14, faster wound closure; 2% ointment did not increase TGF-β levels, no effect on wound closure. | Al-Dabbagh et al. [145] |
Nifedipine | Female Wister rats |
| Improved wound healing, higher tensile strength, and faster epithelialization. | Samy et al. [146] |
Nifedipine | Three healthy Pietrain pigs |
| Increased polymorphonuclear cell activity and vascular proliferation. Collagen formation decreased in one animal. | Brasileiro et al. [147] |
Captopril | Male Wistar rats |
| No positive impact on inflammation and in wound healing. Local treatment reduced wound closure compared to systemic treatment and controls. | Akershoek et al. [154] |
Lisinopril | Case study, 71-year-old male patient with a venous leg ulcer |
| Delayed wound healing. | Buscemi et al. [155] |
Captopril | Case report, 18-year-old female patient |
| Marked improvement in keloid: reduced lesion height, eliminated redness and scaling, and reduced itchiness. No cutaneous or systemic side effects observed. | Ardekani et al. [157] |
Enalapril | Case study, 40 patients with multiple keloids w |
| Significant improvement in keloid appearance. | Iannello et al. [158] |
Captopril | New Zealand white rabbits |
| Increase in collagen organization, an 8.50% decrease in collagen organization scale was derived by captopril compared to the vehicle (70% ethanol and 30% propylene glycol). | Ardekani et al. [159] |
Captopril | Male Sprague-Dawley diabetic rats |
| Higher nitric oxide levels. Improved wound healing scores. Elevated vascular endothelial growth factor levels. | Zandifar et al. [161] |
Perindopril | Female Sprague-Dawley rats (ovariectomized with tibial fractures) |
| Enhanced bone healing and improved microstructural parameters of the callus. | Zhao et al. [160] |
6. Safety
7. Summary of Clinical Trials and Case Studies
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Tatarusanu, S.-M.; Lupascu, F.-G.; Profire, B.-S.; Szilagyi, A.; Gardikiotis, I.; Iacob, A.-T.; Caluian, I.; Herciu, L.; Giscă, T.-C.; Baican, M.-C.; et al. Modern Approaches in Wounds Management. Polym. Care 2023, 15, 3648. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, E.; Liu, P.Y.; Schultz, G.S.; Martins-Green, M.M.; Tanaka, R.; Weir, D.; Gould, L.J.; Armstrong, D.G.; Gibbons, G.W.; Wolcott, R.; et al. Chronic Wounds: Treatment Consensus. Wound Repair Regen. 2022, 30, 156–171. [Google Scholar] [CrossRef] [PubMed]
- Sen, C.K. Human Wounds and Its Burden: An Updated Compendium of Estimates. Adv. Wound 2019, 8, 39–48. [Google Scholar] [CrossRef]
- Yang, L.; Rong, G.-C.; Wu, Q.-N. Diabetic Foot Ulcer: Challenges and Future. World J. Diabetes 2022, 13, 1014–1034. [Google Scholar] [CrossRef] [PubMed]
- Andersen, B.M. Prevention of Postoperative Wound Infections. In Prevention and Control of Infections in Hospitals; Springer: Cham, Switzerland, 2018; pp. 377–437. [Google Scholar] [CrossRef]
- Ronghe, V.; Modak, A.; Gomase, K.; Mahakalkar, M.G. From Prevention to Management: Understanding Postoperative Infections in Gynaecology. Cureus 2023, 15, e46319. [Google Scholar] [CrossRef]
- Alma, A.; Marconi, G.D.; Rossi, E.; Magnoni, C.; Paganelli, A. Obesity and Wound Healing: Focus on Mesenchymal Stem Cells. Life 2023, 13, 717. [Google Scholar] [CrossRef]
- Burgess, J.L.; Wyant, W.A.; Abdo Abujamra, B.; Kirsner, R.S.; Jozic, I. Diabetic Wound-Healing Science. Medicina 2021, 57, 1072. [Google Scholar] [CrossRef]
- Alipoor, E.; Mehrdadi, P.; Yaseri, M.; Hosseinzadeh-Attar, M.J. Association of Overweight and Obesity with the Prevalence and Incidence of Pressure Ulcers: A Systematic Review and Meta-Analysis. Clin. Nutr. 2021, 40, 5089–5098. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, G.; Sun, Y.; Ding, P.; Yang, X.; Zhao, Z. The Z-Plasty Contributes to the Coalescence of a Chronic Non-Healing Wound. Int. Wound J. 2021, 18, 796–804. [Google Scholar] [CrossRef]
- Şen, M.; Anadol, A.Z.; Oğuz, M. Effect of Hypercholesterolemia on Experimental Colonic Anastomotic Wound Healing in Rats. World J. Gastroenterol. 2006, 12, 1225–1228. [Google Scholar] [CrossRef]
- Chung, S.W.; Park, H.; Kwon, J.; Choe, G.Y.; Kim, S.H.; Oh, J.H. Effect of Hypercholesterolemia on Fatty Infiltration and Quality of Tendon-to-Bone Healing in a Rabbit Model of a Chronic Rotator Cuff Tear: Electrophysiological, Biomechanical, and Histological Analyses. Am. J. Sports Med. 2016, 44, 1153–1164. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Albadawi, H.; Patel, V.I.; Abbruzzese, T.A.; Yoo, J.-H.; Austen, W.G.; Watkins, M.T. Apolipoprotein E−/− Mice Have Delayed Skeletal Muscle Healing after Hind Limb Ischemia-Reperfusion. J. Vasc. Surg. 2008, 48, 701–708. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Ogawa, R. The Link between Hypertension and Pathological Scarring: Does Hypertension Cause or Promote Keloid and Hypertrophic Scar Pathogenesis? Wound Repair Regen. 2014, 22, 462–466. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.A.; Mooar, P.A.; Kleiner, M.; Torg, J.S.; Miyamoto, C.T. Hypertensive Patients Show Delayed Wound Healing Following Total Hip Arthroplasty. PLoS ONE 2011, 6, e23224. [Google Scholar] [CrossRef] [PubMed]
- Mantri, Y.; Tsujimoto, J.; Donovan, B.; Fernandes, C.C.; Garimella, P.S.; Penny, W.F.; Anderson, C.A.; Jokerst, J.V. Photoacoustic Monitoring of Angiogenesis Predicts Response to Therapy in Healing Wounds. Wound Repair Regen. 2022, 30, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Tostes, J.M.; Watanabe, A.L.; Watanabe, L.M. Effects of Hypertension on Abdominal Wall Healing: Experimental Study in Rats. Surg. Today 2007, 37, 215–219. [Google Scholar] [CrossRef] [PubMed]
- Dabiri, G.; Hammerman, S.; Carson, P.; Falanga, V. Low-Grade Elastic Compression Regimen for Venous Leg Ulcers—An Effective Compromise for Patients Requiring Daily Dressing Changes. Int. Wound J. 2015, 12, 655–661. [Google Scholar] [CrossRef] [PubMed]
- Sackheim, K.; De Araujo, T.S.; Kirsner, R.S. Compression Modalities and Dressings: Their Use in Venous Ulcers. Dermatol. Ther. 2006, 19, 338–347. [Google Scholar] [CrossRef] [PubMed]
- Jockenhöfer, F.; Gollnick, H.; Herberger, K.; Isbary, G.; Renner, R.; Stücker, M.; Valesky, E.; Wollina, U.; Weichenthal, M.; Karrer, S.; et al. Aetiology, Comorbidities and Cofactors of Chronic Leg Ulcers: Retrospective Evaluation of 1000 Patients from 10 Specialised Dermatological Wound Care Centers in Germany. Int. Wound J. 2016, 13, 821–828. [Google Scholar] [CrossRef]
- Low, Z.Y.; Farouk, I.A.; Lal, S.K. Drug Repositioning: New Approaches and Future Prospects for Life-Debilitating Diseases and the COVID-19 Pandemic Outbreak. Viruses 2020, 12, 1058. [Google Scholar] [CrossRef]
- Bhatia, T.; Sharma, S. Drug Repurposing: Insights into Current Advances and Future Applications. Curr. Med. Chem. 2024, 31, 1–42. [Google Scholar] [CrossRef]
- Huang, Y.; Li, J.; Wang, Y.; Chen, D.; Huang, J.; Dai, W.; Peng, P.; Guo, L.; Lei, Y. Intradermal Delivery of an Angiotensin II Receptor Blocker Using a Personalized Microneedle Patch for Treatment of Hypertrophic Scars. Biomater. Sci. 2023, 11, 583–595. [Google Scholar] [CrossRef]
- Asai, J.; Takenaka, H.; Hirakawa, S.; Sakabe, J.; Hagura, A.; Kishimoto, S.; Maruyama, K.; Kajiya, K.; Kinoshita, S.; Tokura, Y.; et al. Topical Simvastatin Accelerates Wound Healing in Diabetes by Enhancing Angiogenesis and Lymphangiogenesis. Am. J. Pathol. 2012, 181, 2217–2224. [Google Scholar] [CrossRef]
- Danigo, A.; Nasser, M.; Bessaguet, F.; Javellaud, J.; Oudart, N.; Achard, J.-M.; Demiot, C. Candesartan Restores Pressure-Induced Vasodilation and Prevents Skin Pressure Ulcer Formation in Diabetic Mice. Cardiovasc. Diabetol. 2015, 14, 26. [Google Scholar] [CrossRef]
- Pello Lázaro, A.M.; Blanco-Colio, L.M.; Franco Peláez, J.A.; Tuñón, J. Anti-Inflammatory Drugs in Patients with Ischemic Heart Disease. J. Clin. Med. 2021, 10, 2835. [Google Scholar] [CrossRef]
- Hashemzehi, M.; Rahmani, F.; Khoshakhlagh, M.; Avan, A.; Asgharzadeh, F.; Barneh, F.; Moradi-Marjaneh, R.; Soleimani, A.; Fiuji, H.; Ferns, G.A.; et al. Angiotensin Receptor Blocker Losartan Inhibits Tumor Growth of Colorectal Cancer. EXCLI J. 2021, 20, 506–521. [Google Scholar] [CrossRef]
- Le, D.E.; Pascotto, M.; Leong-Poi, H.; Sari, I.; Micari, A.; Kaul, S. Anti-Inflammatory and pro-Angiogenic Effects of Beta Blockers in a Canine Model of Chronic Ischemic Cardiomyopathy: Comparison between Carvedilol and Metoprolol. Basic Res. Cardiol. 2013, 108, 384–387. [Google Scholar] [CrossRef]
- Chang, S.-H.; Chang, C.-C.; Wang, L.-J.; Chen, W.-C.; Fan, S.-Y.; Zang, C.-Z.; Hsu, Y.-H.; Lin, M.-C.; Tseng, S.-H.; Wang, D.-Y. A Multi-Analyte LC-MS/MS Method for Screening and Quantification of Nitrosamines in Sartans. J. Food Drug Anal. 2020, 28, 292–301. [Google Scholar] [CrossRef]
- Olschewski, D.N.; Hofschröer, V.; Nielsen, N.; Seidler, D.G.; Schwab, A.; Stock, C. The Angiotensin II Type 1 Receptor Antagonist Losartan Affects NHE1-Dependent Melanoma Cell Behavior. Cell Physiol. Biochem. 2018, 45, 2560–2576. [Google Scholar] [CrossRef]
- Lee, H.W.; Kim, S.; Jo, Y.; Kim, Y.; Ye, B.S.; Yu, Y.M. Neuroprotective Effect of Angiotensin II Receptor Blockers on the Risk of Incident Alzheimer’s Disease: A Nationwide Population-Based Cohort Study. Front. Aging Neurosci. 2023, 15, 1137197. [Google Scholar] [CrossRef]
- Villapol, S.; Saavedra, J.M. Neuroprotective Effects of Angiotensin Receptor Blockers. Am. J. Hypertens. 2015, 28, 289–299. [Google Scholar] [CrossRef]
- Bhardwaj, G. How the Antihypertensive Losartan Was Discovered. Expert Opin. Drug Discov. 2006, 1, 609–618. [Google Scholar] [CrossRef]
- Kamber, M.; Papalazarou, V.; Rouni, G.; Papageorgopoulou, E.; Papalois, A.; Kostourou, V. Angiotensin II Inhibitor Facilitates Epidermal Wound Regeneration in Diabetic Mice. Front. Physiol. 2015, 6, 170. [Google Scholar] [CrossRef]
- Yahata, Y.; Shirakata, Y.; Tokumaru, S.; Yang, L.; Dai, X.; Tohyama, M.; Tsuda, T.; Sayama, K.; Iwai, M.; Horiuchi, M.; et al. A Novel Function of Angiotensin II in Skin Wound Healing: Induction of Fibroblast and Keratinocyte Migration by Angiotensin Ii via Heparin-Binding Epidermal Growth Factor (Egf)-like Growth Factor-Mediated Egf Receptor Transactivation*. J. Biol. Chem. 2006, 281, 13209–13216. [Google Scholar] [CrossRef]
- Abadir, P.; Hosseini, S.; Faghih, M.; Ansari, A.; Lay, F.; Smith, B.; Beselman, A.; Vuong, D.; Berger, A.; Tian, J.; et al. Topical Reformulation of Valsartan for Treatment of Chronic Diabetic Wounds. J. Investig. Dermatol. 2018, 138, 434–443. [Google Scholar] [CrossRef]
- Fang, Q.-Q.; Wang, X.-F.; Zhao, W.-Y.; Ding, S.-L.; Shi, B.-H.; Xia, Y.; Yang, H.; Wu, L.-H.; Li, C.-Y.; Tan, W.-Q. Angiotensin-Converting Enzyme Inhibitor Reduces Scar Formation by Inhibiting Both Canonical and Noncanonical TGF-Β1 Pathways. Sci. Rep. 2018, 8, 3332. [Google Scholar] [CrossRef]
- Zhao, W.-Y.; Zhang, L.-Y.; Wang, Z.-C.; Fang, Q.-Q.; Wang, X.-F.; Du, Y.-Z.; Shi, B.-H.; Lou, D.; Xuan, G.-D.; Tan, W.-Q. The Compound Losartan Cream Inhibits Scar Formation via TGF-β/Smad Pathway. Sci. Rep. 2022, 12, 14327. [Google Scholar] [CrossRef]
- Kurt, M.; Akoz Saydam, F.; Bozkurt, M.; Serin, M.; Caglar, A. The Effects of Valsartan on Scar Maturation in an Experimental Rabbit Ear Wound Model. J. Plast. Surg. Hand Surg. 2020, 54, 382–387. [Google Scholar] [CrossRef]
- Hedayatyanfard, K.; Ziai, S.A.; Niazi, F.; Habibi, I.; Habibi, B.; Moravvej, H. Losartan Ointment Relieves Hypertrophic Scars and Keloid: A Pilot Study. Wound Repair Regen. 2018, 26, 340–343. [Google Scholar] [CrossRef]
- Anggraini, Y.E.; Trisnowati, N.; Martien, R.; Danarti, R. A Randomised Clinical Trial Study Assessing the Efficacy of 5% Losartan Potassium Loaded in Ethosomal Gel to Treat Human Keloids: A Trial Protocol. Trials 2024, 25, 12. [Google Scholar] [CrossRef]
- Pande, S. Liposomes for Drug Delivery: Review of Vesicular Composition, Factors Affecting Drug Release and Drug Loading in Liposomes. Artif. Cells Nanomed. Biotechnol. 2023, 51, 428–440. [Google Scholar] [CrossRef]
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering Precision Nanoparticles for Drug Delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar] [CrossRef]
- Nidadavolu, L.S.; Stern, D.; Lin, R.; Wang, Y.; Li, Y.; Wu, Y.; Marin, S.; Antonio, M.J.; Yenokyan, G.; Boronina, T.; et al. Valsartan Nano-Filaments Alter Mitochondrial Energetics and Promote Faster Healing in Diabetic Rat Wounds. Wound Repair Regen. 2021, 29, 927–937. [Google Scholar] [CrossRef]
- El-Salamouni, N.S.; Gowayed, M.A.; Seiffein, N.L.; Abdel-Moneim, R.A.; Kamel, M.A.; Labib, G.S. Valsartan Solid Lipid Nanoparticles Integrated Hydrogel: A Challenging Repurposed Use in the Treatment of Diabetic Foot Ulcer, In-Vitro/In-Vivo Experimental Study. Int. J. Pharm. 2021, 592, 120091. [Google Scholar] [CrossRef]
- Ilomuanya, M.O.; Okafor, P.S.; Amajuoyi, J.N.; Onyejekwe, J.C.; Okubanjo, O.O.; Adeosun, S.O.; Silva, B.O. Polylactic Acid-Based Electrospun Fiber and Hyaluronic Acid-Valsartan Hydrogel Scaffold for Chronic Wound Healing. Beni-Suef Univ. J. Basic Appl. Sci. 2020, 9, 31. [Google Scholar] [CrossRef]
- El-Salamouni, N.S.; Gowayed, M.A.; Younis, S.E.; Abdel-Bary, A.; Kamel, M.A.; Labib, G.S. Pentoxifylline/Valsartan Co-Delivery in Liposomal Gel Alters the Inflammatory HMGB-1/ TLR Pathway and Promotes Faster Healing in Burn Wounds: A Promising Repurposed Approach. Int. J. Pharm. 2022, 625, 122129. [Google Scholar] [CrossRef]
- Xu, X.; Wang, D.W. The Progress and Controversial of the Use of Beta Blockers in Patients with Heart Failure with a Preserved Ejection Fraction. Int. J. Cardiol. Heart Vasc. 2019, 26, 100451. [Google Scholar] [CrossRef]
- Du, Q.; Sun, Y.; Ding, N.; Lu, L.; Chen, Y. Beta-Blockers Reduced the Risk of Mortality and Exacerbation in Patients with COPD: A Meta-Analysis of Observational Studies. PLoS ONE 2014, 9, e113048. [Google Scholar] [CrossRef]
- Chrysant, S.G.; Chrysant, G.S.; Dimas, B. Current and Future Status of Beta-Blockers in the Treatment of Hypertension. Clin. Cardiol. 2008, 31, 249–252. [Google Scholar] [CrossRef]
- Jackson, J.L.; Kuriyama, A.; Kuwatsuka, Y.; Nickoloff, S.; Storch, D.; Jackson, W.; Zhang, Z.-J.; Hayashino, Y. Beta-Blockers for the Prevention of Headache in Adults, a Systematic Review and Meta-Analysis. PLoS ONE 2019, 14, e0212785. [Google Scholar] [CrossRef]
- Oda, N.; Miyahara, N.; Ichikawa, H.; Tanimoto, Y.; Kajimoto, K.; Sakugawa, M.; Kawai, H.; Taniguchi, A.; Morichika, D.; Tanimoto, M.; et al. Long-Term Effects of Beta-Blocker Use on Lung Function in Japanese Patients with Chronic Obstructive Pulmonary Disease. Int. J. Chron. Obs. Pulmon. Dis. 2017, 12, 1119–1124. [Google Scholar] [CrossRef]
- He, D.; Hu, J.; Li, Y.; Zeng, X. Preventive Use of Beta-Blockers for Anthracycline-Induced Cardiotoxicity: A Network Meta-Analysis. Front. Cardiovasc. Med. 2022, 9, 968534. [Google Scholar] [CrossRef]
- Souza, B.R.; Santos, J.S.; Costa, A.M. Blockade of Β1- and Β2-Adrenoceptors Delays Wound Contraction and Re-Epithelialization in Rats. Clin. Exp. Pharmacol. Physiol. 2006, 33, 421–430. [Google Scholar] [CrossRef]
- Sivamani, R.K.; Pullar, C.E.; Manabat-Hidalgo, C.G.; Rocke, D.M.; Carlsen, R.C.; Greenhalgh, D.G.; Isseroff, R.R. Stress-Mediated Increases in Systemic and Local Epinephrine Impair Skin Wound Healing: Potential New Indication for Beta Blockers. PLoS Med. 2009, 6, e1000012. [Google Scholar] [CrossRef]
- Romana-Souza, B.; Porto, L.C.; Monte-Alto-Costa, A. Cutaneous Wound Healing of Chronically Stressed Mice Is Improved through Catecholamines Blockade. Exp. Dermatol. 2010, 19, 821–829. [Google Scholar] [CrossRef]
- Romana-Souza, B.; Nascimento, A.P.; Monte-Alto-Costa, A. Propranolol Improves Cutaneous Wound Healing in Streptozotocin-Induced Diabetic Rats. Eur. J. Pharmacol. 2009, 611, 77–84. [Google Scholar] [CrossRef]
- Gosain, A.; Jones, S.B.; Shankar, R.; Gamelli, R.L.; DiPietro, L.A. Norepinephrine Modulates the Inflammatory and Proliferative Phases of Wound Healing. J. Trauma. 2006, 60, 736–744. [Google Scholar] [CrossRef]
- Ulger, B.V.; Kapan, M.; Uslukaya, O.; Bozdag, Z.; Turkoglu, A.; Alabalık, U.; Onder, A. Comparing the Effects of Nebivolol and Dexpanthenol on Wound Healing: An Experimental Study. Int. Wound J. 2016, 13, 367–371. [Google Scholar] [CrossRef]
- Elsherif, N.I.; Al-Mahallawi, A.M.; Abdelkhalek, A.A.; Shamma, R.N. Investigation of the Potential of Nebivolol Hydrochloride-Loaded Chitosomal Systems for Tissue Regeneration: In Vitro Characterization and In Vivo Assessment. Pharmaceutics 2021, 13, 700. [Google Scholar] [CrossRef]
- Zheng, Z.; Liu, Y.; Yang, Y.; Tang, J.; Cheng, B. Topical 1% Propranolol Cream Promotes Cutaneous Wound Healing in Spontaneously Diabetic Mice. Wound Repair Regen. 2017, 25, 389–397. [Google Scholar] [CrossRef]
- Freiha, M.; Achim, M.; Gheban, B.-A.; Moldovan, R.; Filip, G.A. In Vivo Study of the Effects of Propranolol, Timolol, and Minoxidil on Burn Wound Healing in Wistar Rats. J. Burn Care Res. 2023, 44, 1466–1477. [Google Scholar] [CrossRef]
- Vestita, M.; Bonamonte, D.; Filoni, A. Topical Propranolol for a Chronic Recalcitrant Wound. Dermatol. Ther. 2016, 29, 148–149. [Google Scholar] [CrossRef]
- Prabha, N.; Chhabra, N.; Arora, R. Beta-Blockers in Dermatology. Indian J. Dermatol. Venereol. Leprol. 2017, 83, 399. [Google Scholar] [CrossRef]
- Fu, R.; Zou, Y.; Wu, Z.; Jin, P.; Cheng, J.; Bai, H.; Huang, M.; Huan, X.; Yuan, H. Safety of Oral Propranolol for Neonates with Problematic Infantile Hemangioma: A Retrospective Study in an Asian Population. Sci. Rep. 2023, 13, 5956. [Google Scholar] [CrossRef]
- Ruitenberg, G.; Young-Afat, D.; Graaf, M.; Pasmans, S.; Breugem, C. Ulcerated Infantile Haemangiomas: The Effect of the Selective Beta-Blocker Atenolol on Wound Healing. Br. J. Dermatol. 2016, 175, 1357–1360. [Google Scholar] [CrossRef]
- Moreira, A.C.; Moreira, M.; Gurgel, S.J.T.; Moreira, Y.C.; Martins, E.R.; Hartmann, R.C.B.; Fagundes, D.J. Atenolol Prevents the Formation of Expansive Hematoma after Rhytidoplasty. Rev. Col. Bras. Cir. 2014, 41, 305–310. [Google Scholar] [CrossRef]
- Calderón-Castrat, X.; Velásquez, F.; Castro, R.; Ballona, R. Oral Atenolol for Infantile Hemangioma: Case Series of 46 Infants. Actas Dermo-Sifiliográficas 2020, 111, 59–62. [Google Scholar] [CrossRef]
- Romana-Souza, B.; Santos, J.S.; Monte-Alto-Costa, A. Beta-1 and Beta-2, but Not Alpha-1 and Alpha-2, Adrenoceptor Blockade Delays Rat Cutaneous Wound Healing. Wound Repair Regen. 2009, 17, 230–239. [Google Scholar] [CrossRef]
- Raut, S.B.; Nerlekar, S.R.; Pawar, S.; Patil, A.N. An Evaluation of the Effects of Nonselective and Cardioselective β-Blockers on Wound Healing in Sprague Dawley Rats. Indian J. Pharmacol. 2012, 44, 629. [Google Scholar] [CrossRef]
- Cahn, B.A.; Kaur, R.; Hirt, P.A.; Tchanque-Fossuo, C.; Dahle, S.E.; Kirsner, R.S.; Isseroff, R.R.; Lev-Tov, H. Use of Topical Timolol Maleate as Re-Epithelialization Agent for Treatment of Recalcitrant Wounds of Varying Etiologies. J. Drugs Dermatol. 2020, 19, 1252–1256. [Google Scholar] [CrossRef]
- Joo, J.S.; Isseroff, R.R. Application of Topical Timolol After CO2 Laser Resurfacing Expedites Healing. Dermatol. Surg. 2021, 47, 429. [Google Scholar] [CrossRef]
- Braun, L.R.; Lamel, S.A.; Richmond, N.A.; Kirsner, R.S. Topical Timolol for Recalcitrant Wounds. JAMA Dermatol. 2013, 149, 1400–1402. [Google Scholar] [CrossRef]
- Waldman, R.A.; Lin, G.; Sloan, B. Clinical Pearl: Topical Timolol for Refractory Hypergranulation. Cutis 2019, 104, 118–119. [Google Scholar]
- Tang, J.C.; Dosal, J.; Kirsner, R.S. Topical Timolol for a Refractory Wound. Dermatol. Surg. 2012, 38, 135–138. [Google Scholar] [CrossRef]
- Chiaverini, C.; Passeron, T.; Lacour, J.-P. Topical Timolol for Chronic Wounds in Patients with Junctional Epidermolysis Bullosa. J. Am. Acad. Dermatol. 2016, 75, e223–e224. [Google Scholar] [CrossRef]
- Valluru, S.; Ramachandra, R.; Chandana, J.S. Local Application of Timolol 0.5% Solution in Treating Chronic Non-Healing Ulcers—A Prospective Study. J. Fundam. Appl. Pharm. Sci. 2023, 4, 31–37. [Google Scholar] [CrossRef]
- Thomas, B.; Kurien, J.S.; Jose, T.; Ulahannan, S.E.; Varghese, S.A. Topical Timolol Promotes Healing of Chronic Leg Ulcer. J. Vasc. Surg. Venous Lymphat. Disord. 2017, 5, 844–850. [Google Scholar] [CrossRef]
- Alsaad, A.M.S.; Alsaad, S.M.; Fathaddin, A.; Al-Khenaizan, S. Topical Timolol for Vasculitis Ulcer: A Potential Healing Approach. JAAD Case Rep. 2019, 5, 812–814. [Google Scholar] [CrossRef]
- Manahan, M.N.; Peters, P.; Scuderi, S.; Surjana, D.; Beardmore, G.L. Topical Timolol for a Chronic Ulcer—A Case with Its Own Control. Med. J. Aust. 2014, 200, 49–50. [Google Scholar] [CrossRef]
- Rai, A.K.; Janani, K.; Rai, R. Efficacy of Topical Timolol versus Saline in Chronic Venous Ulcers: A Randomized Controlled Trial. J. Cutan. Aesthet. Surg. 2020, 13, 18–23. [Google Scholar] [CrossRef]
- Vestita, M.; Filoni, A.; Bonamonte, D.; Annoscia, P.; Giudice, G. Abstract: Topical 0.5% Timolol for Chronic Refractory Wounds. An Observational Prospective Study. Plast. Reconstr. Surg. Glob. Open 2017, 5, 21. [Google Scholar] [CrossRef]
- Baltazard, T.; Senet, P.; Momar, D.; Picard, C.; Joachim, C.; Adas, A.; Lok, C.; Chaby, G. Evaluation of Timolol Maleate Gel for Management of Hard-to-Heal Chronic Venous Leg Ulcers. Phase II Randomised-Controlled Study. Ann. Dermatol. Vénéréo. 2021, 148, 228–232. [Google Scholar] [CrossRef]
- Zawadzka, K.; Bernat, P.; Felczak, A.; Różalska, S.; Lisowska, K. Antibacterial Activity of High Concentrations of Carvedilol against Gram-Positive and Gram-Negative Bacteria. Int. J. Antimicrob. Agents 2018, 51, 458–467. [Google Scholar] [CrossRef]
- Zawadzka, K.; Nowak, M.; Piwoński, I.; Lisowska, K. The Synergy of Ciprofloxacin and Carvedilol against Staphylococcus aureus—Prospects of a New Treatment Strategy? Molecules 2019, 24, 4104. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Gao, Z.; Mao, X.; Cheng, J.; Huang, L.; Tang, J. Advances in Wound Dressing Based on Electrospinning Nanofibers. J. Appl. Polym. Sci. 2024, 141, e54746. [Google Scholar] [CrossRef]
- Paczkowska-Walendowska, M.; Miklaszewski, A.; Michniak-Kohn, B.; Cielecka-Piontek, J. The Antioxidant Potential of Resveratrol from Red Vine Leaves Delivered in an Electrospun Nanofiber System. Antioxidants 2023, 12, 1777. [Google Scholar] [CrossRef]
- Patel, P.; Thanki, A.; Viradia, D.; Shah, P. Honey-Based Silver Sulfadiazine Microsponge-Loaded Hydrogel: In Vitro and In Vivo Evaluation for Burn Wound Healing. Curr. Drug Deliv. 2023, 20, 608–628. [Google Scholar] [CrossRef]
- Zaeri, S.; Karami, F.; Assadi, M. Propranolol-Loaded Electrospun Nanofibrous Wound Dressing: From Fabrication and Characterization to Preliminary Wound Healing Evaluation. Iran. J. Basic Med. Sci. 2021, 24, 1279–1291. [Google Scholar] [CrossRef]
- Pandit, A.P.; Patel, S.A.; Bhanushali, V.P.; Kulkarni, V.S.; Kakad, V.D. Nebivolol-Loaded Microsponge Gel for Healing of Diabetic Wound. AAPS PharmSciTech 2017, 18, 846–854. [Google Scholar] [CrossRef]
- Endo, A. A Historical Perspective on the Discovery of Statins. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2010, 86, 484–493. [Google Scholar] [CrossRef]
- Alhassani, R.Y.; Bagadood, R.M.; Balubaid, R.N.; Barno, H.I.; Alahmadi, M.O.; Ayoub, N.A. Drug Therapies Affecting Renal Function: An Overview. Cureus 2021, 13, e19924. [Google Scholar] [CrossRef]
- Salami, J.A.; Warraich, H.; Valero-Elizondo, J.; Spatz, E.S.; Desai, N.R.; Rana, J.S.; Virani, S.S.; Blankstein, R.; Khera, A.; Blaha, M.J.; et al. National Trends in Statin Use and Expenditures in the US Adult Population from 2002 to 2013: Insights From the Medical Expenditure Panel Survey. JAMA Cardiol. 2017, 2, 56–65. [Google Scholar] [CrossRef]
- Mufarreh, A.; Shah, A.J.; Vaccarino, V.; Kulshreshtha, A. Trends in Provision of Medications and Lifestyle Counseling in Ambulatory Settings by Gender and Race for Patients with Atherosclerotic Cardiovascular Disease, 2006–2016. JAMA Netw. Open 2023, 6, e2251156. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-W.; Kang, H.-J.; Jhon, M.; Kim, J.-W.; Lee, J.-Y.; Walker, A.J.; Agustini, B.; Kim, J.-M.; Berk, M. Statins and Inflammation: New Therapeutic Opportunities in Psychiatry. Front. Psychiatry 2019, 10, 103. [Google Scholar] [CrossRef]
- Sultan, S.; D’Souza, A.; Zabetakis, I.; Lordan, R.; Tsoupras, A.; Kavanagh, E.P.; Hynes, N. Chapter 6—Statins: Rationale, mode of action, and side effects. In The Impact of Nutrition and Statins on Cardiovascular Diseases; Zabetakis, I., Lordan, R., Tsoupras, A., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 171–200. ISBN 978-0-12-813792-5. [Google Scholar]
- Evans, M.D.; McDowell, S.A. Pleiotropic Effects of Statins: New Therapeutic Approaches to Chronic, Recurrent Infection by Staphylococcus aureus. Pharmaceutics 2021, 13, 2047. [Google Scholar] [CrossRef] [PubMed]
- De Giorgi, R.; Rizzo Pesci, N.; Quinton, A.; De Crescenzo, F.; Cowen, P.J.; Harmer, C.J. Statins in Depression: An Evidence-Based Overview of Mechanisms and Clinical Studies. Front. Psychiatry 2021, 12, 702617. [Google Scholar] [CrossRef]
- Matusewicz, L.; Czogalla, A.; Sikorski, A.F. Attempts to Use Statins in Cancer Therapy: An Update. Tumour Biol. 2020, 42, 1010428320941760. [Google Scholar] [CrossRef] [PubMed]
- McFarland, A.J.; Anoopkumar-Dukie, S.; Arora, D.S.; Grant, G.D.; McDermott, C.M.; Perkins, A.V.; Davey, A.K. Molecular Mechanisms Underlying the Effects of Statins in the Central Nervous System. Int. J. Mol. Sci. 2014, 15, 20607–20637. [Google Scholar] [CrossRef]
- Irvin, S.; Clarke, M.A.; Trabert, B.; Wentzensen, N. Systematic Review and Meta-Analysis of Studies Assessing the Relationship between Statin Use and Risk of Ovarian Cancer. Cancer Causes Control 2020, 31, 869–879. [Google Scholar] [CrossRef]
- Jeong, S.-M.; Shin, D.W.; Yoo, T.G.; Cho, M.H.; Jang, W.; Lee, J.; Kim, S. Association between Statin Use and Alzheimer’s Disease with Dose Response Relationship. Sci. Rep. 2021, 11, 15280. [Google Scholar] [CrossRef]
- Zahedipour, F.; Hosseini, S.A.; Reiner, Ž.; Tedeschi-Reiner, E.; Jamialahmadi, T.; Sahebkar, A. Therapeutic Effects of Statins: Promising Drug for Topical and Transdermal Administration. Curr. Med. Chem. 2024, 30, 3149–3166. [Google Scholar] [CrossRef] [PubMed]
- Fox, J.; Baquerizo-Nole, K.L.; MacQuhae, F.; Herskovitz, I.; Freedman, J.B.; Vileikyte, L.; Margolis, D.J.; Kirsner, R.S. Statins May Be Associated with Six-week Diabetic Foot Ulcer Healing. Wound Repair Regen. 2016, 24, 454–457. [Google Scholar] [CrossRef]
- Jull, A.; Lu, H.; Jiang, Y. Statins and Venous Leg Ulcer Healing: Secondary Analysis of Data from a Cohort of Three Randomised Controlled Trials. Wound Repair Regen. 2021, 30, 186–189. [Google Scholar] [CrossRef]
- Telgenhoff, D.; Prajapati, M. The Effects of LDL Cholesterol and Pitavastatin Treatment on Fibroblast Migration, SREBP-2, and LDLr Expression. Biol. Sci. 2022, 2, 302–310. [Google Scholar] [CrossRef]
- Inobhas, A.; Chansangpetch, S.; Manassakorn, A.; Tantisevi, V.; Rojanapongpun, P. Effect of Oral Statin Use on Mitomycin-C Augmented Trabeculectomy Outcomes. PLoS ONE 2021, 16, e0245429. [Google Scholar] [CrossRef] [PubMed]
- Morsy, M.A.; Abdel-Latif, R.G.; Nair, A.B.; Venugopala, K.N.; Ahmed, A.F.; Elsewedy, H.S.; Shehata, T.M. Preparation and Evaluation of Atorvastatin-Loaded Nanoemulgel on Wound-Healing Efficacy. Pharmaceutics 2019, 11, 609. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yang, P.; Yang, S.; Hsieh, K.; Tseng, S.; Lin, Y. Topical Simvastatin Promotes Healing of Staphylococcus Aureus-contaminated Cutaneous Wounds. Int. Wound J. 2015, 13, 1150–1157. [Google Scholar] [CrossRef] [PubMed]
- Sawaya, A.P.; Pastar, I.; Stojadinovic, O.; Lazovic, S.; Davis, S.C.; Gil, J.; Kirsner, R.S.; Tomic-Canic, M. Topical Mevastatin Promotes Wound Healing by Inhibiting the Transcription Factor C-Myc via the Glucocorticoid Receptor and the Long Non-Coding RNA Gas5. J. Biol. Chem. 2018, 293, 1439–1449. [Google Scholar] [CrossRef] [PubMed]
- Falcone, M.; De Angelis, B.; Pea, F.; Scalise, A.; Stefani, S.; Tasinato, R.; Zanetti, O.; Dalla Paola, L. Challenges in the Management of Chronic Wound Infections. J. Glob. Antimicrob. Resist. 2021, 26, 140–147. [Google Scholar] [CrossRef]
- Puca, V.; Marulli, R.Z.; Grande, R.; Vitale, I.; Niro, A.; Molinaro, G.; Prezioso, S.; Muraro, R.; Di Giovanni, P. Microbial Species Isolated from Infected Wounds and Antimicrobial Resistance Analysis: Data Emerging from a Three-Years Retrospective Study. Antibiotics 2021, 10, 1162. [Google Scholar] [CrossRef]
- Gui, Q.; Yang, Y.; Zhang, J. Effects of Statins on the Development of Sepsis and Organ Dysfunction in Hospitalized Older Patients in China. Braz. J. Infect. Dis. 2017, 21, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.-Y.; Singh, N. Antimicrobial and Immunomodulatory Attributes of Statins: Relevance in Solid-Organ Transplant Recipients. Clin. Infect. Dis. 2009, 48, 745–755. [Google Scholar] [CrossRef]
- Tleyjeh, I.M.; Kashour, T.; Hakim, F.A.; Zimmerman, V.A.; Erwin, P.J.; Sutton, A.J.; Ibrahim, T. Statins for the Prevention and Treatment of Infections: A Systematic Review and Meta-Analysis. Arch. Intern. Med. 2009, 169, 1658–1667. [Google Scholar] [CrossRef]
- Abdelaziz, A.A.; El-Barrawy, M.A.; El-Nagar, R.a.M. Potent Synergistic Combination of Rosuvastatin and Levofloxacin against Staphylococcus Aureus: In Vitro and in Vivo Study. J. Appl. Microbiol. 2021, 131, 182–196. [Google Scholar] [CrossRef]
- Thangamani, S.; Mohammad, H.; Abushahba, M.F.N.; Hamed, M.I.; Sobreira, T.J.P.; Hedrick, V.E.; Paul, L.N.; Seleem, M.N. Exploring Simvastatin, an Antihyperlipidemic Drug, as a Potential Topical Antibacterial Agent. Sci. Rep. 2015, 5, 16407. [Google Scholar] [CrossRef]
- Ting, M.; Whitaker, E.J.; Albandar, J.M. Systematic Review of the in Vitro Effects of Statins on Oral and Perioral Microorganisms. Eur. J. Oral. Sci. 2015, 124, 4–10. [Google Scholar] [CrossRef]
- Kamińska, M.; Aliko, A.; Hellvard, A.; Bielecka, E.; Binder, V.; Marczyk, A.; Potempa, J.; Delaleu, N.; Kantyka, T.; Mydel, P. Effects of Statins on Multispecies Oral Biofilm Identify Simvastatin as a Drug Candidate Targeting Porphyromonas gingivalis. J. Periodontol. 2018, 90, 637–646. [Google Scholar] [CrossRef]
- Hannachi, N.; Fournier, P.-E.; Martel, H.; Habib, G.; Camoin-Jau, L. Statins Potentiate the Antibacterial Effect of Platelets on Staphylococcus aureus. Platelets 2021, 32, 671–676. [Google Scholar] [CrossRef] [PubMed]
- Ahmadvand, A.; Yazdanfar, A.; Yasrebifar, F.; Mohammadi, Y.; Mahjub, R.; Mehrpooya, M. Evaluating the Effects of Oral and Topical Simvastatin in the Treatment of Acne Vulgaris: A Double-Blind, Randomized, Placebo-Controlled Clinical Trial. Curr. Clin. Pharmacol. 2018, 13, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Liao, J.; Zheng, L.; Ding, L.; Teng, X.; Lin, X.; Wang, L. Current Knowledge of Leptin in Wound Healing: A Collaborative Review. Front. Pharmacol. 2022, 13, 968142. [Google Scholar] [CrossRef]
- Suzuki-Banhesse, V.F.; Azevedo, F.F.; Araujo, E.P.; do Amaral, M.E.C.; Caricilli, A.M.; Saad, M.J.A.; Lima, M.H.M. Effect of Atorvastatin on Wound Healing in Rats. Biol. Res. Nurs. 2015, 17, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Sawaya, A.P.; Jozic, I.; Stone, R.C.; Pastar, I.; Egger, A.N.; Stojadinovic, O.; Glinos, G.D.; Kirsner, R.S.; Tomic-Canic, M. Mevastatin Promotes Healing by Targeting Caveolin-1 to Restore EGFR Signaling. JCI Insight 2019, 4, e129320. [Google Scholar] [CrossRef] [PubMed]
- Ramhormozi, P.; Ansari, J.M.; Simorgh, S.; Asgari, H.R.; Najafi, M.; Barati, M.; Babakhani, A.; Nobakht, M. Simvastatin Accelerates the Healing Process of Burn Wound in Wistar Rats through Akt/mTOR Signaling Pathway. Ann. Anat. 2021, 236, 151652. [Google Scholar] [CrossRef] [PubMed]
- Xiang, J.; Zhou, L.; Xie, Y.; Zhu, Y.; Xiao, L.; Chen, Y.; Zhou, W.; Chen, D.; Wang, M.; Cai, L.; et al. Mesh-like Electrospun Membrane Loaded with Atorvastatin Facilitates Cutaneous Wound Healing by Promoting the Paracrine Function of Mesenchymal Stem Cells. Stem Cell Res. Ther. 2022, 13, 190. [Google Scholar] [CrossRef] [PubMed]
- Mousavi-Simakani, S.M.; Azadi, A.; Tanideh, N.; Omidifar, N.; Ghasemiyeh, P.; Mohammadi-Samani, S. Simvastatin-Loaded Nanostructured Lipid Carriers as Topical Drug Delivery System for Wound Healing Purposes: Preparation, Characterization, and In Vivo Histopathological Studies. Adv. Pharm. Bull. 2023, 13, 761–771. [Google Scholar] [CrossRef] [PubMed]
- Saghafi, F.; Ramezani, V.; Jafari-Nedooshan, J.; Zarekamali, J.; Kargar, S.; Tabatabaei, S.M.; Sahebnasagh, A. Efficacy of Topical Atorvastatin-Loaded Emulgel and Nano-Emulgel 1% on Post-Laparotomy Pain and Wound Healing: A Randomized Double-Blind Placebo-Controlled Clinical Trial. Int. Wound J. 2023, 20, 4006–4014. [Google Scholar] [CrossRef] [PubMed]
- Yasasvini, S.; Anusa, R.S.; VedhaHari, B.N.; Prabhu, P.C.; RamyaDevi, D. Topical Hydrogel Matrix Loaded with Simvastatin Microparticles for Enhanced Wound Healing Activity. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 72, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, L.M.; Hassanein, K.M.A.; Mohamed, F.A.; Elfaham, T.H. Formulation and Evaluation of Simvastatin Cubosomal Nanoparticles for Assessing Its Wound Healing Effect. Sci. Rep. 2023, 13, 17941. [Google Scholar] [CrossRef]
- Karami, Z.; Hamidi, M. Cubosomes: Remarkable Drug Delivery Potential. Drug Discov. Today 2016, 21, 789–801. [Google Scholar] [CrossRef]
- Janipour, Z.; Najafi, H.; Abolmaali, S.S.; Heidari, R.; Azarpira, N.; Özyılmaz, E.D.; Tamaddon, A.M. Simvastatin-Releasing Nanofibrous Peptide Hydrogels for Accelerated Healing of Diabetic Wounds. ACS Appl. Bio Mater. 2023, 6, 4620–4628. [Google Scholar] [CrossRef]
- Farghaly Aly, U.; Abou-Taleb, H.A.; Abdellatif, A.A.; Sameh Tolba, N. Formulation and Evaluation of Simvastatin Polymeric Nanoparticles Loaded in Hydrogel for Optimum Wound Healing Purpose. Drug Des. Dev. Ther. 2019, 13, 1567–1580. [Google Scholar] [CrossRef] [PubMed]
- Varshosaz, J.; Taymouri, S.; Minaiyan, M.; Rastegarnasab, F.; Baradaran, A. Development and In Vitro/In Vivo Evaluation of HPMC/Chitosan Gel Containing Simvastatin Loaded Self-Assembled Nanomicelles as a Potent Wound Healing Agent. Drug Dev. Ind. Pharm. 2018, 44, 276–288. [Google Scholar] [CrossRef] [PubMed]
- Godfraind, T. Discovery and Development of Calcium Channel Blockers. Front. Pharmacol. 2017, 8, 286. [Google Scholar] [CrossRef] [PubMed]
- Tejada, T.; Fornoni, A.; Lenz, O.; Materson, B.J. Combination Therapy with Renin-Angiotensin System Blockers: Will Amlodipine Replace Hydrochlorothiazide? Curr. Hypertens. Rep. 2007, 9, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Godfraind, T. Calcium Channel Blockers in Cardiovascular Pharmacotherapy. J. Cardiovasc. Pharmacol. Ther. 2014, 19, 501–515. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.C.; Ping, J.A. Calcium Antagonists Retard Extracellular Matrix Production in Connective Tissue Equivalent. J. Surg. Res. 1990, 49, 463–466. [Google Scholar] [CrossRef] [PubMed]
- Uchino, Y.; Matsumoto, J.; Watanabe, T.; Hamabashiri, M.; Tsuchiya, T.; Kimura, I.; Yamauchi, A.; Kataoka, Y. Nifedipine Prevents Sodium Caprate-Induced Barrier Dysfunction in Human Epidermal Keratinocyte Cultures. Biol. Pharm. Bull. 2015, 38, 926–929. [Google Scholar] [CrossRef] [PubMed]
- Bhaskar, H.N.; Udupa, S.L.; Udupa, A.L. Effect of Nifedipine and Amlodipine on Dead Space Wound Healing in Rats. Indian J. Exp. Biol. 2005, 43, 294–296. [Google Scholar] [PubMed]
- Ashkani-Esfahani, S.; Hosseinabadi, O.K.; Moezzi, P.; Moafpourian, Y.; Kardeh, S.; Rafiee, S.; Fatheazam, R.; Noorafshan, A.; Nadimi, E.; Mehrvarz, S.; et al. Verapamil, a Calcium-Channel Blocker, Improves the Wound Healing Process in Rats with Excisional Full-Thickness Skin Wounds Based on Stereological Parameters. Adv. Skin Wound Care 2016, 29, 271–274. [Google Scholar] [CrossRef]
- Hemmati, A.A.; Mojiri Forushani, H.; Mohammad Asgari, H. Wound Healing Potential of Topical Amlodipine in Full Thickness Wound of Rabbit. Jundishapur J. Nat. Pharm. Prod. 2014, 9, e15638. [Google Scholar] [CrossRef]
- Bagheri, M.; Jahromi, B.M.; Mirkhani, H.; Solhjou, Z.; Noorafshan, A.; Zamani, A.; Amirghofran, Z. Azelnidipine, a New Calcium Channel Blocker, Promotes Skin Wound Healing in Diabetic Rats. J. Surg. Res. 2011, 169, e101–e107. [Google Scholar] [CrossRef] [PubMed]
- Cheraghali, M.; Ebadi, A.; Cheraghali, A.; Qoshoni, H.; Eimani, H. Healing Effect of Topical Nifedipine on Skin Wounds of Diabetic Rats. Daru 2003, 11, 19–22. [Google Scholar]
- Al-Dabbagh, W.J.; Al-Mashhadane, F.A.; Al-Sarraj, A.A. Effects of Formulated Topical Nifedipine Ointment on Tgf–Β and Acceleration of Facial Skin Wound Healing in Rabbits. Mil. Med. Sci. Lett. 2023, 92, 135–140. [Google Scholar] [CrossRef]
- Samy, W.; Elgindy, N.; El-Gowelli, H.M. Biopolymeric Nifedipine Powder for Acceleration of Wound Healing. Int. J. Pharm. 2012, 422, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Brasileiro, A.C.L.; de Oliveira, D.C.; da Silva, P.B.; Rocha, J.K.S.d.L. Impact of Topical Nifedipine on Wound Healing in Animal Model (Pig). J. Vasc. Bras 2020, 19, e20190092. [Google Scholar] [CrossRef]
- Zolfagharnezhad, H.; Khalili, H.; Mohammadi, M.; Niknam, S.; Vatanara, A. Topical Nifedipine for the Treatment of Pressure Ulcer: A Randomized, Placebo-Controlled Clinical Trial. Am. J. Ther. 2021, 28, e41–e51. [Google Scholar] [CrossRef] [PubMed]
- Hanif, K.; Bid, H.K.; Konwar, R. Reinventing the ACE Inhibitors: Some Old and New Implications of ACE Inhibition. Hypertens. Res. 2010, 33, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.; Yanuar, A.; Mulia, K.; Mun’im, A. Review of Angiotensin-Converting Enzyme Inhibitory Assay: Rapid Method in Drug Discovery of Herbal Plants. Pharmacogn. Rev. 2017, 11, 1–7. [Google Scholar] [CrossRef]
- Epstein, B.J.; Gums, J.G. Angiotensin Receptor Blockers versus ACE Inhibitors: Prevention of Death and Myocardial Infarction in High-Risk Populations. Ann. Pharmacother. 2005, 39, 470–480. [Google Scholar] [CrossRef]
- Baroni, A.; Buommino, E.; Ruocco, E.; Petrazzuolo, M.; De Filippis, A.; Satriano, R.A.; Ruocco, V.; Cozza, V.; Tufano, M.A. Captopril Modulates Acetylcholinesterase in Human Keratinocytes. Arch. Dermatol. Res. 2011, 303, 491–497. [Google Scholar] [CrossRef]
- Karna, E.; Szoka, L.; Palka, J.A. Captopril-Dependent Inhibition of Collagen Biosynthesis in Cultured Fibroblasts. Pharmazie 2010, 65, 614–617. [Google Scholar] [PubMed]
- Akershoek, J.J.J.; Brouwer, K.M.; Vlig, M.; Boekema, B.K.H.L.; Beelen, R.H.J.; Middelkoop, E.; Ulrich, M.M.W. Early Intervention by Captopril Does Not Improve Wound Healing of Partial Thickness Burn Wounds in a Rat Model. Burns 2018, 44, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Buscemi, C.P.; Romeo, C. Wound Healing, Angiotensin-Converting Enzyme Inhibition, and Collagen-Containing Products: A Case Study. J. Wound Ostomy Cont. Nurs. 2014, 41, 611–614. [Google Scholar] [CrossRef] [PubMed]
- Marshall, R.; Gohlke, P.; Chambers, R.; Howell, D.; Bottoms, S.; Unger, T.; Mcanulty, R.; Laurent, G. Angiotensin II and the Fibroproliferative Response to Acute Lung Injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 2004, 286, L156–L164. [Google Scholar] [CrossRef] [PubMed]
- Ardekani, G.S.; Aghaie, S.; Nemati, M.H.; Handjani, F.; Kasraee, B. Treatment of a Postburn Keloid Scar with Topical Captopril: Report of the First Case. Plast. Reconstr. Surg. 2009, 123, 112e–113e. [Google Scholar] [CrossRef] [PubMed]
- Iannello, S.; Milazzo, P.; Bordonaro, F.; Belfiore, F. Low-Dose Enalapril in the Treatment of Surgical Cutaneous Hypertrophic Scar and Keloid—Two Case Reports and Literature Review. MedGenMed 2006, 8, 60. [Google Scholar] [PubMed]
- Ardekani, G.S.; Ebrahimi, S.; Amimi, M.; Aslani, M.; Aslani, F.S.; Handjani, F.; Omrani, G.R.; Ardekani, L.S.; Alhashemi, S.H.H.; Kasraee, B. Topical Captopril as a Novel Agent Against Hypertrophic Scar Formation in New Zealand White Rabbit Skin. Wounds 2008, 20, 101–106. [Google Scholar]
- Zhao, X.; Wu, Z.; Zhang, Y.; Gao, M.; Yan, Y.; Cao, P.; Zang, Y.; Lei, W. Locally Administrated Perindopril Improves Healing in an Ovariectomized Rat Tibial Osteotomy Model. PLoS ONE 2012, 7, e33228. [Google Scholar] [CrossRef]
- Zandifar, E.; Sohrabi Beheshti, S.; Zandifar, A.; Haghjooy Javanmard, S. The Effect of Captopril on Impaired Wound Healing in Experimental Diabetes. Int. J. Endocrinol. 2012, 2012, 785247. [Google Scholar] [CrossRef]
- Penington, A. Ulceration and Antihypertensive Use Are Risk Factors for Infection after Skin Lesion Excision. ANZ J. Surg. 2010, 80, 642–645. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, C.; Tang, X.; Liu, S.; Jin, Y. The Impact of Long-term Antihypertensive Treatment on Wound Healing after Major Non-cardiac Surgery in Patients with Cardiovascular Diseases: A Meta-analysis. Int. Wound J. 2024, 21, e14858. [Google Scholar] [CrossRef] [PubMed]
- Stuermer, E.K.; Besser, M.; Terberger, N.; Bachmann, H.S.; Severing, A.-L. Side Effects of Frequently Used Antihypertensive Drugs on Wound Healing In Vitro. Skin Pharmacol. Physiol. 2019, 32, 162–172. [Google Scholar] [CrossRef] [PubMed]
- Matsunaka, K.; Imai, M.; Sanda, K.; Yasunami, N.; Furuhashi, A.; Atsuta, I.; Wada, H.; Ayukawa, Y. Therapeutic Effect of Benidipine on Medication-Related Osteonecrosis of the Jaw. Pharmaceuticals 2022, 15, 1020. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-W.; Park, H.Y.; Park, M.; Yang, M.; Mun, G.-H. Effects of Antihypertensive Drugs on Surgical Outcomes of Breast Reconstruction: A Nationwide Population-Based Claim Study. Gland. Surg. 2021, 10, 2130–2139. [Google Scholar] [CrossRef] [PubMed]
- POISE Study Group; Devereaux, P.J.; Yang, H.; Yusuf, S.; Guyatt, G.; Leslie, K.; Villar, J.C.; Xavier, D.; Chrolavicius, S.; Greenspan, L.; et al. Effects of Extended-Release Metoprolol Succinate in Patients Undergoing Non-Cardiac Surgery (POISE Trial): A Randomised Controlled Trial. Lancet 2008, 371, 1839–1847. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zou, X.; Hu, B.; Yang, Y.; Wang, F.; Zhou, Q.; Shen, M. Remimazolam vs Etomidate: Haemodynamic Effects in Hypertensive Elderly Patients Undergoing Non-Cardiac Surgery. Drug Des. Dev. Ther. 2023, 17, 2943–2953. [Google Scholar] [CrossRef] [PubMed]
- Iwano, T.; Toda, H.; Nakamura, K.; Shimizu, K.; Ejiri, K.; Naito, Y.; Mori, H.; Masuda, T.; Miyoshi, T.; Yoshida, M.; et al. Preventative Effects of Bisoprolol Transdermal Patches on Postoperative Atrial Fibrillation in High-Risk Patients Undergoing Non-Cardiac Surgery: A Subanalysis of the MAMACARI Study. J. Cardiol. 2021, 78, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Fayad, A.A.; Yang, H.Y.; Ruddy, T.D.; Watters, J.M.; Wells, G.A. Perioperative Myocardial Ischemia and Isolated Systolic Hypertension in Non-Cardiac Surgery. Can. J. Anaesth. 2011, 58, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Toda, H.; Nakamura, K.; Shimizu, K.; Ejiri, K.; Iwano, T.; Miyoshi, T.; Nakagawa, K.; Yoshida, M.; Watanabe, A.; Nishii, N.; et al. Effects of Bisoprolol Transdermal Patches for Prevention of Perioperative Myocardial Injury in High-Risk Patients Undergoing Non-Cardiac Surgery—Multicenter Randomized Controlled Study. Circ. J. 2020, 84, 642–649. [Google Scholar] [CrossRef]
- García-Guasch, R.; Llubià, C.; Preciado, M.J.; Costa, A.; Sust, M.; Vidal, F. Diltiazem compared with placebo in the prevention of myocardial ischemia during non-cardiac surgery. Rev. Esp. Anestesiol. Reanim. 1998, 45, 409–415. [Google Scholar]
- Hu, Y.-Y.; Fang, Q.-Q.; Wang, X.-F.; Zhao, W.-Y.; Zheng, B.; Zhang, D.-D.; Tan, W.-Q. Angiotensin-Converting Enzyme Inhibitor and Angiotensin II Type 1 Receptor Blocker: Potential Agents to Reduce Post-Surgical Scar Formation in Humans. Basic Clin. Pharmacol. Toxicol. 2020, 127, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Seymour, R.A.; Thomason, J.M.; Ellis, J.S. The Pathogenesis of Drug-Induced Gingival Overgrowth. J. Clin. Periodontol. 1996, 23, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Pauly, G.; Kashyap, R.; Raghavendra, K.; Rao, P.; Bhandarkar, G.; Shetty, D. Appalling Adverse Effects of Amlodipine in a Chronic Kidney Disease Patient: A Case of Drug-Induced Gingival Overgrowth. Pharmacol. Toxicol. Biomed. Rep. 2018, 4, 6–7. [Google Scholar] [CrossRef]
- Nanda, T.; Singh, B.; Sharma, P.; Arora, K.S. Cyclosporine A and Amlodipine Induced Gingival Overgrowth in a Kidney Transplant Recipient: Case Presentation with Literature Review. BMJ Case Rep. 2019, 12, e229587. [Google Scholar] [CrossRef] [PubMed]
- Emampanahi, M.; Motallebnejad, M.; Jenabian, N.; Moghadamnia, A.A.; Kazemi, S. Investigating the Effect of Nifedipine Mucosal Adhesive on the Wound Healing Process in the Palate: A Clinical Trial Study. Casp. J. Dent. Res. 2023, 12, 20–27. [Google Scholar] [CrossRef]
- Gallegos, A.C.; Davis, M.J.; Tchanque-Fossuo, C.N.; West, K.; Eisentrout-Melton, A.; Peavy, T.R.; Dixon, R.W.; Patel, R.P.; Dahle, S.E.; Isseroff, R.R. Absorption and Safety of Topically Applied Timolol for Treatment of Chronic Cutaneous Wounds. Adv. Wound Care 2019, 8, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Li, J.; Xie, H.; Wang, Y. Review of Drug Repositioning Approaches and Resources. Int. J. Biol. Sci. 2018, 14, 1232–1244. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.; Darvishi, A. A Review of the Current State of Natural Biomaterials in Wound Healing Applications. Front. Bioeng. Biotechnol. 2024, 12, 1309541. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.; Sousa, D.; Teixeira, J.A.; Ferreira-Santos, P.; Botelho, C.M. Polymeric Biomaterials for Wound Healing. Front. Bioeng. Biotechnol. 2023, 11, 1136077. [Google Scholar] [CrossRef]
- Al Mokadem, S.M.; Ibrahim, A.-S.M.; El Sayed, A.M. Efficacy of Topical Timolol 0.5% in the Treatment of Acne and Rosacea: A Multicentric Study. J. Clin. Aesthet. Dermatol. 2020, 13, 22–27. [Google Scholar]
Drug | Model | Method of Administration/ Dosage/ Duration of | Effect | Author |
---|---|---|---|---|
Losartan | Diabetic ale mice C57BL/6J, 8–10 weeks |
| Accelerated wound repair, reduced inflammation, normalized tissue remodeling, improved wound healing, reduced fibrosis, enhanced extracellular matrix remodeling, increased vascularization | Kamber et al. [34] |
Valsartan | AT1aR knock-out (AT1aR−/−) mice (based on C57BL/6J strain) |
| Enhanced cell migration in vitro, improved wound closure in AT1R knock-out mice, promotion of keratinocyte and fibroblast migration, activation of EGFR signaling pathway, HB-EGF shedding | Yahata et al. [35] |
Valsartan | Diabetic (36 months) Yucatan miniature swine |
| Accelerated wound healing, suppression of inflammatory cytokines, upregulation of TGF-β1, promotion of collagen deposition, increased tensile strength, enhanced mitochondrial content, activation of molecular markers | Abadir et al. [36] |
Losartan | Male Sprague-Dawley rats (8–12 weeks old, average weigh 225 g) |
| Reduced fibroblast proliferation, suppressed collagen and TGF-β1 expression, downregulated phosphorylation of SMAD2/3 and TAK1 pathways, enhanced re-epithelialization and neovascularization | Fang et al. [37] |
Losartan | C57BL/6 mice (average weight 25 g) |
| Inhibition of TGF-β1, collagen, and Smad expression; reduced Smad phosphorylation; exhibited superior anti-scarring effects | Zhao et al. [38] |
Valsartan | New Zealand albino male rabbits |
| Inhibition of pathological scar formation, reduction in fibroblast count and epithelial thickness, | Kurt et al. [39] |
Losartan | Rabbits weighing approximately 2.5–3.0 kg |
| inhibition of hypertrophic scar fibroblasts proliferation and migration, reduction in scar hyperplasia, decreased scar elevation index, inhibition of collagen deposition | Huang et al. [23] |
Valsartan | Male, ten-week-old rats |
| Accelerated wound closure, downregulated TGF-β signaling pathway mediators, increased mitochondrial metabolic pathway intermediates | Nidadavolu et al. [44] |
Valsartan | Adult male Sprague-Dawley rats (180–200 g) |
| Sustained drug release, antibacterial effects, improved wound healing pathways (COX-2, NF-κB, NO, TGF-β, MMPs, VEGF) | El-Salamouni et al. [47] |
Valsartan | Male Wistar rats 12 weeks (140–150 g) |
| Enhanced re-epithelization rate, reduced inflammatory cell infiltrates, better than conventional treatment and scaffolds with ascorbic acid | Ilomuanya et al. [46] |
Drug | Model | Method of Administration/ Dosage/ Duration of Treatment | Findings | Author |
---|---|---|---|---|
Dexpanthenol and nebivolol | Albino Wistar rats (250–300 g) |
| Both dexpanthenol and nebivolol groups showed higher wound healing rates than the control group, with no significant difference between them. | Ulger et al. [59] |
Nebivolol | Albino Sprague-Dawley rats (150–200 g) |
| Significantly higher fibroblast proliferation compared to drug suspensions and the blank formula. In vivo evaluation showed superior efficacy in wound healing. | Elsherif et al. [60] |
Propranolol | Diabetic mice wound model |
| Increased epidermal growth factor (EGF) protein expression, regulated angiogenesis, lower vascular endothelial growth factor (VEGF) expression, and increased NG2 proteoglycan. | Zheng et al. [61] |
Timolol, propranolol | Wistar rat burns model |
| Propranolol did not show advantages in necrosis prevention and wound contraction and healing, and it did not reduce oxidative stress; it impaired keratinocyte migration, and promoted ulceration, chronic inflammation, and fibrosis, yet reducing the necrotic zone. Timolol effectively prevented necrosis, facilitated healing, and boosted antioxidant capacity. | Freiha et al. [62] |
Propranolol | Mice wound model |
| Significantly reduced wound size, improved histopathologic characteristics, and lowered oxidative stress after 14 days. | Zaeri et al. [71] |
Nebivolol | Diabetic Sprague-Dawley rats wound model |
| Significant wound closure by day 10, supported by histological results. Extended-release drug microsponge gel provides an optimal moist wound-healing environment, demonstrating effective wound healing in diabetic rats. | Pandit et al. [90] |
Drug | Type of Study | Study Group | Treatment | Findings | Author |
---|---|---|---|---|---|
Simvastatin | A double-blind, randomized, placebo-controlled clinical trial | 76 patients |
| Topical simvastatin was associated with a greater decrease in acne severity compared with oral and placebo groups. | Ahmadvand et al. [121] |
Timolol | A multicentric Study | 116 patients (58 patients with rosacea and 58 patients with acne) |
| Efficacy in the treatment of acne, especially in non-inflammatory lesions, more effective in erythematous-pustular rosacea than papulopustular rosacea, with negligible side effects. | Mokadem [182] |
Timolol | A multicentric Study | 39 patients |
| 34 wounds out of 55 healed completely, 15 wounds showed improvement in terms of wound reduction, 4 wounds remained unchanged, and 2 wounds worsened. | Cahn et al. [71] |
Losartan | A pilot placebo-controlled single-blind study | 30 adults |
| Alleviation of keloid and hypertrophic scars; and reduction in vascularity and pliability. | Hedayatyanfard et al. [40] |
Timolol | A prospective study | 100 patients |
| The topical application of timolol demonstrated a reduction in ulcer size on days 15 and 30. | Valluru et al. [77] |
Losartan | A randomized clinical trial | 46 patients |
| Investigating the efficacy of treating keloids, comparison with triamcinolone acetonide injections. | Anggraini et al. [41] |
Timolol | A randomized controlled trial | 20 patients |
| A mean reduction in ulcer size of 86.80% with timolol and 43.82% with saline after 4 weeks. | Rai et al. [81] |
Atorvastatin | A randomized double-blind placebo-controlled clinical trial | 60 patients |
| Accelerated laparotomy surgical wound healing and relieved post-operative pain. | Saghafi et al. [128] |
Simvastatin | A randomized double-blind placebo-controlled clinical trial | 40 patients |
| Reduced discomfort and improved wound healing in palatal donor site following free gingival graft procedures in individuals with periodontal conditions. | Madi et al. [114] |
Timolol | Case report | 2 patients who developed hypergranulation |
| Hypergranulation, unresponsive to standard care, resolved after treatment with topical timolol, and re-epithelialization of the surgical sites was observed. | Waldman et al. [74] |
Timolol | Case report | 43-year-old woman presented with a large refractory wound |
| Mean percentage change in ulcer area at 4, 8, and 12 weeks substantially higher compared to the control group. | Tang et al. [75] |
Timolol | Case report | Two one-year-old children with chronic wounds in the nail bed and nuchal crease |
| Significant healing (100% and 80%) was achieved after 3 and 8 weeks in two cases of blistering epidermal separation. | Chiaverini et al. [76] |
Propranolol | Case study | A 68-year-old patient with a deep ulcerating lesion |
| Significant improvement and complete healing within four weeks. | Vestita et al. [63] |
Timolol | Case study | 68-year-old woman undergoing confluent CO2 laser ablation with fractional laser |
| Rapid epithelialization and healing over the course of 8 weeks. | Joo et al. [72] |
Timolol | Case study | 40-year-old male |
| Reduced inflammation and pain and significant wound closure within six weeks. | Alsaad et al. [79] |
Timolol | Case–control study | 60 patients with chronic leg ulcers |
| The mean percentage change in ulcer area at 4, 8, and 12 weeks was substantially higher in the group treated with topical timolol (25.29%, 43.77%, and 61.79%) compared to the control group (11.92%, 22.40%, and 29.62%). | Thomas et al. [78] |
Timolol | Observational prospective Study | 82 patients |
| Significant improvement in area reduction (up to 98.75%) was noted in all groups except diabetic and pressure ulcers. Patient satisfaction was high, and adverse effects were mild to moderate. | Vestita et al. [82] |
Timolol | A phase-II randomized controlled study | 43 patients |
| ≥40% reduction in ulcer area by week 12. The results indicated that 67% of timolol-treated patients met this endpoint, compared to 32% in the control group. No serious adverse events were reported. | Baltazard [83]. |
Nifedipine | A randomized, double-blind, placebo-controlled clinical trial | 200 critically ill patients with stage I or II pressure ulcers |
| Accelerated healing and a greater reduction in ulcer stage and surface area. | Zolfagharnezhad et al. [148] |
Lisinopril | Case study | 71-year-old male patient with a venous leg ulcer |
| Delayed wound healing. | Buscemi et al. [155] |
Captopril | Case report | 18-year-old female patient |
| Marked improvement in keloid: reduced lesion height, eliminated redness and scaling, reduced itchiness. No cutaneous or systemic side effects observed. | Ardekani et al. [157] |
Enalapril | Case study | 40 patients with multiple keloids w |
| Significant improvement in keloid appearance. | Iannello et al. [158] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gościniak, A.; Stasiłowicz-Krzemień, A.; Michniak-Kohn, B.; Fiedor, P.; Cielecka-Piontek, J. One Molecule, Many Faces: Repositioning Cardiovascular Agents for Advanced Wound Healing. Molecules 2024, 29, 2938. https://doi.org/10.3390/molecules29122938
Gościniak A, Stasiłowicz-Krzemień A, Michniak-Kohn B, Fiedor P, Cielecka-Piontek J. One Molecule, Many Faces: Repositioning Cardiovascular Agents for Advanced Wound Healing. Molecules. 2024; 29(12):2938. https://doi.org/10.3390/molecules29122938
Chicago/Turabian StyleGościniak, Anna, Anna Stasiłowicz-Krzemień, Bożena Michniak-Kohn, Piotr Fiedor, and Judyta Cielecka-Piontek. 2024. "One Molecule, Many Faces: Repositioning Cardiovascular Agents for Advanced Wound Healing" Molecules 29, no. 12: 2938. https://doi.org/10.3390/molecules29122938
APA StyleGościniak, A., Stasiłowicz-Krzemień, A., Michniak-Kohn, B., Fiedor, P., & Cielecka-Piontek, J. (2024). One Molecule, Many Faces: Repositioning Cardiovascular Agents for Advanced Wound Healing. Molecules, 29(12), 2938. https://doi.org/10.3390/molecules29122938