N-Containing Porous Carbon-Based MnO Composites as Anode with High Capacity and Stability for Lithium-Ion Batteries
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Sample Synthesis
3.2. Physical Characterization
3.3. Electrochemical Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Salgado, R.M.; Danzi, F.; Oliveira, J.E.; El-Azab, A.; Camanho, P.P.; Braga, M.H. The latest trends in electric vehicles batteries. Molecules 2021, 26, 3188. [Google Scholar] [CrossRef]
- Danchovski, Y.; Rasheev, H.; Stoyanova, R.; Tadjer, A. Molecular engineering of quinone-based nickel complexes and polymers for all-Organic Li-ion batteries. Molecules 2022, 27, 6805. [Google Scholar] [CrossRef]
- Ren, W.H.; Ding, C.F.; Fu, X.W.; Huang, Y. Advanced gel polymer electrolytes for safe and durable lithium metal batteries: Challenges, strategies, and perspectives. Energy Storage Mater. 2021, 34, 515–535. [Google Scholar] [CrossRef]
- Liu, M.Y.; Zhang, Z.P.; Dou, M.L.; Li, Z.L.; Wang, F. Nitrogen and oxygen co-doped porous carbon nanosheets as high-rate and long-lifetime anode materials for high-performance Li-ion capacitors. Carbon 2019, 151, 28–35. [Google Scholar] [CrossRef]
- Xu, J.T.; Dou, Y.H.; Wei, Z.X.; Ma, J.M.; Deng, Y.H.; Li, Y.T.; Liu, H.K.; Dou, S.X. Recent progress in graphite intercalation compounds for rechargeable metal (Li, Na, K, Al)-ion batteries. Adv. Sci. 2017, 4, 1700146. [Google Scholar] [CrossRef]
- Pothu, R.; Bolagam, R.; Wang, Q.H.; Ni, W.; Ni, J.F.; Cai, X.X.; Peng, J.M. Nickel sulfide-based energy storage materials for high-performance electrochemical capacitors. Rare Met. 2021, 40, 353–373. [Google Scholar] [CrossRef]
- Jin, H.L.; Li, J.; Yuan, Y.F.; Wang, J.C.; Lu, J.; Wang, S. Recent Progress in biomass-derived electrode materials for high volumetric performance supercapacitors. Adv. Energy Mater. 2018, 8, 1801007. [Google Scholar] [CrossRef]
- Lin, Y.H.; Wei, T.Y.; Chien, H.C.; Lu, S.Y. Manganese oxide/carbon aerogel composite: An outstanding supercapacitor electrode material. Adv. Energy Mater. 2011, 1, 901–907. [Google Scholar] [CrossRef]
- Wu, Z.S.; Ren, W.C.; Wang, D.W.; Li, F.; Liu, B.L.; Cheng, H.M. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 2010, 4, 5835–5842. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, L.L.; Murali, S.; Stoller, M.D.; Zhang, Q.H.; Zhu, Y.W.; Ruoff, R.S. Incorporation of manganese dioxide within ultraporous activated graphene for high-performance Electrochemical Capacitors. ACS Nano 2012, 6, 5404–5412. [Google Scholar] [CrossRef]
- Mao, L.; Zhang, K.; Chan, H.S.O.; Wu, J.S. Nanostructured MnO2/graphene composites for supercapacitor electrodes: The effect of morphology, crystallinity and composition. J. Mater. Chem. 2012, 22, 1845–1851. [Google Scholar] [CrossRef]
- Kusuma, H.D.; Rochmadi, I.; Prasetyo, I.; Ariyanto, T. Mesoporous manganese oxide/lignin-derived carbon for high performance of supercapacitor electrodes. Molecules 2021, 26, 7104. [Google Scholar] [CrossRef]
- Wu, Y.M.; Liu, M.J.; Feng, H.B.; Li, J.H. Carbon coated MnO@Mn3N2 core-shell composites for high performance lithium ion battery anodes. Nanoscale 2014, 6, 14697–14701. [Google Scholar] [CrossRef]
- Pei, X.Y.; Mo, D.C.; Lyu, S.S.; Zhang, J.H.; Fu, Y.X. Facile preparation of N-doped MnO/rGO composite as an anode material for high-performance lithium-ion batteries. Appl. Surf. Sci. 2019, 465, 470–477. [Google Scholar] [CrossRef]
- Hu, Y.; Wu, K.; Zhang, F.; Zhou, H.; Qi, L. Hierarchical MnO@C Hollow nanospheres for advanced lithium-ion battery anodes. ACS Appl. Nano Mater. 2019, 2, 429–439. [Google Scholar] [CrossRef]
- Li, Z.; Xu, Z.W.; Tan, X.H.; Wang, H.L.; Holt, C.M.B.; Stephenson, T.; Olsen, B.C.; Mitlin, D. Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors. Energy Environ. Sci. 2013, 6, 871–878. [Google Scholar] [CrossRef]
- Fan, L.L.; Shi, Z.Q.; Ren, Q.J.; Yan, L.; Zhang, F.M.; Fan, L.P. Nitrogen-doped lignin based carbon microspheres as anode material for high performance sodium ion batteries. Green Energy Environ. 2021, 6, 220–228. [Google Scholar] [CrossRef]
- Li, B.; Dai, F.; Xiao, Q.F.; Yang, L.; Shen, J.M.; Zhang, C.M.; Cai, M. Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy Environ. Sci. 2016, 9, 102–106. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Z.; Qi, X.T.; Yu, J.; Cai, J.X.; Yang, Z.Y. Manganese Monoxide/biomass-inherited porous carbon nanostructure composite based on the high water-absorbent agaric for asymmetric supercapacitor. ACS Sustain. Chem. Eng. 2019, 7, 4284–4294. [Google Scholar] [CrossRef]
- Jeon, J.W.; Zhang, L.B.; Lutkenhaus, J.L.; Laskar, D.D.; Lemmon, J.P.; Choi, D.; Nandasiri, M.I.; Hashmi, A.; Xu, J.; Motkuri, R.K.; et al. Controlling porosity in lignin-derived nanoporous carbon for supercapacitor applications. Chemsuschem 2015, 8, 428–432. [Google Scholar] [CrossRef]
- Niu, J.L.; Hao, G.X.; Lin, J.; He, X.B.; Sathishkumar, P.; Lin, X.M.; Cai, Y.P. Mesoporous MnO/C-N nanostructures derived from a metal-organic framework as high-performance anode for lithium-ion battery. Inorg. Chem. 2017, 56, 9966–9972. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Wang, X.; Wang, W.; Zhao, D.; Cao, M.H. Engineering hybrid between MnO and N-doped carbon to achieve exceptionally high capacity for lithium-ion battery anode. ACS Appl. Mater. Interfaces 2014, 6, 2051–2058. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.N.; Niu, F.E.; Wang, C.S.; Li, Y.J.; Zhao, C.L.; Yang, J.; Qian, Y.T. Li3VO4 nanoparticles in N-doped carbon with porous structure as an advanced anode material for lithium-ion batteries. Chem. Eng. J. 2019, 370, 606–613. [Google Scholar] [CrossRef]
- Zhou, L.; Cao, H.; Zhu, S.Q.; Hou, L.R.; Yuan, C.Z. Hierarchical micro-/mesoporous N- and O-enriched carbon derived from disposable cashmere: A competitive cost-effective material for high-performance electrochemical capacitors. Green Chem. 2015, 17, 2373–2382. [Google Scholar] [CrossRef]
- Xiao, Z.H.; Ning, G.Q.; Ma, X.L.; Li, W.; Xu, C.M. MnO-encapsulated graphene cubes derived from homogeneous MnCO3-C cubes as high performance anode material for Li ion batteries. Carbon 2018, 139, 750–758. [Google Scholar] [CrossRef]
- Cui, X.; Wang, Y.Q.; Chen, Z.; Zhou, H.H.; Xu, Q.Y.; Sun, P.P.; Zhou, J.; Xia, L.; Sun, Y.M.; Lu, Y.F. Preparation of pompon-like MnO/carbon nanotube composite microspheres as anodes for lithium ion batteries. Electrochim. Acta 2015, 180, 858–865. [Google Scholar] [CrossRef]
- Xi, Z.J.; Sun, Q.; Li, J.; Qiao, Y.; Min, G.H.; Ci, L.J. Modification strategies of high-energy Li-rich Mn-based cathodes for Li-ion batteries: A Review. Molecules 2024, 29, 1064. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.P.; Xu, C.X.; Ren, W.Q.; Hu, L.Y.; Fu, W.B.; Wang, W.; Yin, H.; He, B.H.; Hou, Z.H.; Chen, L. Self-template synthesis of peapod-like MnO@N-doped hollow carbon nanotubes as an advanced anode for lithium-ion batteries. Rare Met. 2023, 42, 929–939. [Google Scholar] [CrossRef]
- Wang, R.Y.; Cao, L.Y.; Li, J.Y.; Xu, Z.W.; Huang, J.F.; Cui, Y.L.; Wang, C.W. Design of dual-carbon modified MnO electrode improves adsorption and conversion reaction in Li-ion batteries. Ceram. Int. 2018, 44, 3248–3254. [Google Scholar] [CrossRef]
- Huang, S.Z.; Zhang, Q.; Yu, W.B.; Yang, X.Y.; Wang, C.; Li, Y.; Su, B.L. Grain boundaries enriched hierarchically mesoporous MnO/carbon microspheres for superior lithium ion battery anode. Electrochim. Acta 2016, 222, 561–569. [Google Scholar] [CrossRef]
- Zhu, W.J.; Huang, H.; Zhang, W.K.; Tao, X.Y.; Gan, Y.P.; Xia, Y.; Yang, H.; Guo, X.Z. Synthesis of MnO/C composites derived from pollen template for advanced lithium-ion batteries. Electrochim. Acta 2015, 152, 286–293. [Google Scholar] [CrossRef]
- Wang, S.B.; Xiao, C.L.; Xing, Y.L.; Xu, H.Z.; Zhang, S.C. Formation of a stable carbon framework in a MnO yolk-shell sphere to achieve exceptional performance for a Li-ion battery anode. J. Mater. Chem. A 2015, 3, 15591–15597. [Google Scholar] [CrossRef]
- Su, K.; Wang, C.; Nie, H.G.; Guan, Y.; Liu, F.; Chen, J.T. Facile template-free synthesis of 3D porous MnO/C microspheres with controllable pore size for high-performance lithium-ion battery anodes. J. Mater. Chem. A 2014, 2, 10000–10006. [Google Scholar] [CrossRef]
- Guo, S.M.; Lu, G.X.; Qiu, S.; Liu, J.R.; Wang, X.Z.; He, C.Z.; Wei, H.G.; Yan, X.R.; Guo, Z.H. Carbon-coated MnO microparticulate porous nanocomposites serving as anode materials with enhanced electrochemical performances. Nano Energy 2014, 9, 41–49. [Google Scholar] [CrossRef]
- Zhong, K.F.; Zhang, B.; Luo, S.H.; Wen, W.; Li, H.; Huang, X.J.; Chen, L.Q. Investigation on porous MnO microsphere anode for lithium ion batteries. J. Power Sources 2011, 196, 6802–6808. [Google Scholar] [CrossRef]
- Huang, Q.Y.; Hu, J.B.; Zhang, M.; Li, M.X.; Li, T.; Yuan, G.M.; Liu, Y.; Zhang, X.; Cheng, X.W. Li-ion charge storage performance of wood-derived carbon fibers@MnO as a battery anode. Chin. Chem. Lett. 2022, 33, 1091–1094. [Google Scholar] [CrossRef]
- Jia, Y.; Yang, Z.W.; Li, H.J.; Wang, Y.Z.; Wang, X.M. Reduced graphene oxide encapsulated MnO microspheres as an anode for high-rate lithium ion capacitors. New Carbon Mater. 2021, 36, 573–581. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, K.; Hong, M.; Yang, Y.; Hu, N.T.; Su, Y.J.; Zhang, L.Y.; Zhang, Y.F. Laser-induced MnO/Mn<sub3O4N-doped-graphene hybrid as binder-free anodes for lithium ion batteries. Chem. Eng. J. 2020, 385, 123720. [Google Scholar]
- He, C.; Li, J.; Zhao, X.Y.; Peng, X.; Lin, X.C.; Ke, Y.F.; Xiao, X.; Zuo, X.X.; Nan, J.M. In situ anchoring of MnO nanoparticles into three-dimensional nitrogen-doped porous carbon framework as a stable anode for high-performance lithium storage. Appl. Surf. Sci. 2023, 614, 156217. [Google Scholar] [CrossRef]
- Lei, D.; Hou, Z.D.; Li, N.; Cao, Y.J.; Ren, L.B.; Liu, H.Y.; Zhang, Y.; Wang, J.G. A homologous N/P-codoped carbon strategy to streamline nanostructured MnO/C and carbon toward boosted lithium-ion capacitors. Carbon 2023, 201, 260–268. [Google Scholar] [CrossRef]
B.E. (eV) | N1 (402.3) | N2 (400.5) | N3 (399.2) |
---|---|---|---|
Assignment | graphitic N | pyrrolic N | pyridinic N |
MBC | 17.2 | 48.3 | 34.5 |
Samples | Current Density (mA g−1) | Specific Capacity (mAh g−1) | Cycling Performance | References |
---|---|---|---|---|
Porous MnO/C microspheres | 100 | 812 | 98% 100 cycles | [29] |
Hollow porous MnO/C | 100 | 740 | 99% 50 cycles | [30] |
3D porous MnO/C | 100 | 846 | 99% 100 cycles | [31] |
MnO/C porous microspheres | 100 | 525 | 93% 100 cycles | [32] |
MWNTs/MnO rods/C | 210 | 658 | 99% 200 cycles | [33] |
Porous MnO microsphere | 50 | 700 | 88% 50 cycles | [34] |
Microsized porous MnO/C | 100 | 818 | 99% 100 cycles | [35] |
CF@MnO | 100 | 734 | 99% 200 cycles | [36] |
MnO/rGO | 100 | 846 | 99% 110cycles | [37] |
NLIG | 200 | 699 | 70% 400 cycles | [38] |
MBC | 100 | 1200 | 99% 200 cycles | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.; Li, S.; Luo, W.; Li, K.; Yang, X. N-Containing Porous Carbon-Based MnO Composites as Anode with High Capacity and Stability for Lithium-Ion Batteries. Molecules 2024, 29, 2939. https://doi.org/10.3390/molecules29122939
Cheng Y, Li S, Luo W, Li K, Yang X. N-Containing Porous Carbon-Based MnO Composites as Anode with High Capacity and Stability for Lithium-Ion Batteries. Molecules. 2024; 29(12):2939. https://doi.org/10.3390/molecules29122939
Chicago/Turabian StyleCheng, Yi, Shiyue Li, Wenbin Luo, Kuo Li, and Xiaofei Yang. 2024. "N-Containing Porous Carbon-Based MnO Composites as Anode with High Capacity and Stability for Lithium-Ion Batteries" Molecules 29, no. 12: 2939. https://doi.org/10.3390/molecules29122939
APA StyleCheng, Y., Li, S., Luo, W., Li, K., & Yang, X. (2024). N-Containing Porous Carbon-Based MnO Composites as Anode with High Capacity and Stability for Lithium-Ion Batteries. Molecules, 29(12), 2939. https://doi.org/10.3390/molecules29122939