Integrative Analysis of the Transcriptome and Metabolome Reveals the Developmental Mechanisms and Metabolite Biosynthesis of the Tuberous Roots of Tetrastigma hemsleyanum
Abstract
:1. Introduction
2. Results
2.1. Morphological Changes at Different Developmental Stages of SYQ TRs
2.2. The Content of Metabolites in Roots at Different Developmental Stages
2.3. Transcriptome Data Analysis
2.3.1. Annotation and Expression of the Unigenes
2.3.2. Functional Analysis of DEGs
2.3.3. Identification of TFs
2.3.4. Weighted Gene Co-Expression Network Analysis (WGCNA)
2.4. Metabolomic Analysis
2.4.1. Identification of Metabolites
2.4.2. Functional Annotation and Enrichment Analysis of Differentially Expressed Metabolites (DEMs)
2.5. Combined Analysis of Transcriptome and Metabolome
2.5.1. Expression Patterns of DEGs and DEMs Associated with Flavonoid and Phenylpropanoid Biosynthesis Pathways
2.5.2. Expression Patterns of DEGs and DEMs Associated with Starch and Sucrose Metabolism
2.5.3. Expression Patterns of DEGs and DEMs Associated with Plant Hormone Signal Transduction Pathways
2.5.4. Connection Network between Gene Expression and Related Metabolite Accumulation
2.6. Verification of RNA-Seq Sequencing Data by qRT-PCR Analysis
3. Discussion
3.1. Effect of Lignin and Flavonoid Biosynthesis on Root Swelling in SYQ
3.2. Starch and Sucrose Metabolism Provides Materials for Root Swelling in SYQ
3.3. Plant Hormone Signal Transduction Regulates Root Swelling in SYQ
3.4. Regulatory Process and Metabolite Biosynthesis of Root Swelling in SYQ
4. Materials and Methods
4.1. Plant Materials
4.2. Anatomical Observations
4.3. Determination of Starch and Flavonoid Contents
4.4. Transcriptome Sequencing
4.5. Transcriptome Data Analysis
4.6. Metabolic Analysis
4.7. Integrated Analysis of Transcriptomic and Metabolomic Data
4.8. Validation of Quantitative Real-Time PCR
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Flora of China Editorial Committee. Flora of China; Science Press: Beijing, China, 1998; p. 120. [Google Scholar]
- Zhejiang Food and Medical Products Administration. Zhejiang Provincial Standards of Processing Chinese Crud Drugs, 7th ed.; China Medical Science Press: Beijing, China, 2015; pp. 5–6.
- Ji, T.; Ji, W.W.; Wang, J.; Chen, H.J.; Peng, X.; Cheng, K.J.; Qiu, D.; Yang, W.J. A comprehensive review on traditional uses, chemical compositions, pharmacology properties and toxicology of Tetrastigma hemsleyanum. J. Ethnopharmacol. 2021, 264, 113247. [Google Scholar] [CrossRef] [PubMed]
- Zhan, L.; Pu, J.; Zheng, J.; Hang, S.; Pang, L.; Dai, M.; Ji, C. Tetrastigma hemsleyanum Diels et Gilg ameliorates lipopolysaccharide induced sepsis via repairing the intestinal mucosal barrier. Biomed. Pharmacother. 2022, 148, 112741. [Google Scholar] [CrossRef]
- Hu, W.; Zheng, Y.; Xia, P.; Liang, Z. The research progresses and future prospects of Tetrastigma hemsleyanum Diels et Gilg: A valuable Chinese herbal medicine. J. Ethnopharmacol. 2021, 271, 113836. [Google Scholar] [CrossRef]
- Ravi, V.; Naskar, S.; Makeshkumar, T.; Babu, B.; Krishnan, B. Molecular physiology of storage root formation and development in sweet potato (Ipomoea batatas (L.) Lam.). J. Root Crops 2009, 35, 1–27. [Google Scholar]
- Song, Y.; Wu, P.; Li, Y.; Tong, X.; Zheng, Y.; Chen, Z.; Wang, L.; Xiang, T. Effect of endophytic fungi on the host plant growth, expression of expansion gene and flavonoid content in Tetrastigma hemsleyanum Diels & Gilg ex Diels. Plant Soil 2017, 417, 393–402. [Google Scholar]
- Feng, Z.; Hao, W.; Lin, X.; Fan, D.; Zhou, J. Antitumor activity of total flavonoids from Tetrastigma hemsleyanum Diels et Gilg is associated with the inhibition of regulatory T cells in mice. Oncotargets Ther. 2014, 7, 947–956. [Google Scholar]
- Peng, X.; Wu, H.; Chen, H.; Zhang, Y.; Qiu, D.; Zhang, Z. Transcriptome profiling reveals candidate flavonol-related genes of Tetrastigma hemsleyanum under cold stress. BMC Genom. 2019, 20, 687. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Tian, C.; Ji, S.; Ni, F.; Fan, X.; Yang, Y.; Sun, C.; Gong, H.; Zhang, A. Integrative analyses of metabolome and transcriptome reveals metabolomic variations and candidate genes involved in sweet cherry (Prunus avium L.) fruit quality during development and ripening. PLoS ONE 2021, 16, e0260004. [Google Scholar] [CrossRef]
- Ding, Z.; Fu, L.; Tie, W.; Yan, Y.; Wu, C.; Dai, J.; Zhang, J.; Hu, W. Highly dynamic, coordinated, and stage-specific profiles are revealed by a multi-omics integrative analysis during tuberous root development in cassava. J. Exp. Bot. 2020, 71, 7003–7017. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, J.; Hao, B.; Lu, Y.; Qian, Z.; Li, Y.; Ye, S.; Tang, J.; Chen, M.; Long, G. Comparative transcriptome and metabolome analyses provide new insights into the molecular mechanisms underlying taproot thickening in Panax notoginseng. BMC Plant Biol. 2019, 19, 451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, Y.; Zhang, J.; Xu, Z.; Li, J.; Wang, P.; Song, Z.; Tian, G.; Li, L.; Song, J.; Wang, J. Integrative analysis of metabolome and transcriptome reveals the mechanism of color formation in white root (Salvia miltiorrhiza). Ind. Crops Prod. 2021, 170, 113784. [Google Scholar] [CrossRef]
- Preston, J.; Wheeler, J.; Heazlewood, J.; Li, S.F.; Parish, R. AtMYB32 is required for normal pollen development in Arabidopsis thaliana. Plant J. 2004, 40, 979–995. [Google Scholar] [CrossRef] [PubMed]
- Kanti, M.; Sujit, R. Genome-wide sequential, evolutionary, organizational and expression analyses of phenylpropanoid biosynthesis associated MYB domain transcription factors in Arabidopsis. J. Biomol. Struct. Dyn. 2018, 36, 1577–1601. [Google Scholar]
- Kengo, M.; Mingzhe, Z.; Manli, Y.; Betsy, R.; Alan, L.; Rebecca, L.; Erich, G. Participation of the Arabidopsis bHLH factor GL3 in trichome initiation regulatory events. Plant Physiol. 2018, 145, 736–746. [Google Scholar]
- Xiang, Q.; Hu, S.; Ligaba-Osena, A.; Yang, J.; Tong, F.; Guo, W. Seasonal variation in transcriptomic profiling of Tetrastigma hemsleyanum fully developed tuberous roots enriches candidate genes in essential metabolic pathways and phytohormone signaling. Front. Plant Sci. 2021, 12, 659645. [Google Scholar] [CrossRef]
- Xiang, T.; Li, J.; Bao, S.; Xu, Z.; Wang, L.; Long, F.; He, C. Digital RNA-seq transcriptome plus tissue anatomy analyses reveal the developmental mechanism of the calabash-shaped root in Tetrastigma hemsleyanum. Tree Physiol. 2021, 41, 1729–1748. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, J.; Wu, S.; Fan, X.; Luo, X.; Chen, B. Characters related to higher starch accumulation in cassava storage roots. Sci. Rep. 2016, 6, 19823. [Google Scholar] [CrossRef] [Green Version]
- Ravi, V.; Chakrabarti, S.; Makeshkumar, T.; Saravanan, R. Molecular regulation of storage root formation and development in sweet potato. Hortic. Rev. 2014, 42, 157–208. [Google Scholar]
- Lee, J.; Kim, Y.; KwaK, Y.; An, J.; Kim, P.; Lee, H.; Kumar, V.; Park, K.; Chang, E.; Jeong, J.; et al. A comparative study of proteomic differences between pencil and storage roots of sweetpotato (Ipomoea batatas (L.) Lam.). Plant Physiol. Biochem. 2015, 87, 92–101. [Google Scholar] [CrossRef]
- Firon, N.; LaBonte, D.; Villordon, A.; Kfifir, Y.; Solis, J.; Lapis, E. Transcriptional profiling of sweet potato (Ipomoea batatas) roots indicates down-regulation of lignin biosynthesis and up-regulation of starch biosynthesis at an early stage of storage root formation. BMC Genom. 2013, 14, 460. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Jiang, L.; Li, Z.; Liu, S.; Hu, X.; Gao, F. Flavonoid metabolism in Tetrastigma hemsleyanum Diels et Gilg based on metabolome analysis and transcriptome sequencing. Molecules 2022, 28, 83. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.; Rashotte, A.; Murphy, A.; Normanly, J.; Tague, B.; Peer, W.; Taiz, L.; Muday, G. Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol. 2011, 126, 524–535. [Google Scholar] [CrossRef] [Green Version]
- Taylor, L.; Grotewold, E. Flavonoids as developmental regulators. Curr. Opin. Plant Biol. 2005, 8, 317–323. [Google Scholar] [CrossRef]
- Koch, K. Sucrose metabolism: Regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr. Opin. Plant Biol. 2004, 7, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Gong, M.; Zhou, Y.; He, L. Analysis of starch accumulation and differentially expressed proteins during the development of Chinese yam tuber. J. South China Agric. Univ. 2018, 39, 61–69. [Google Scholar]
- Viola, R.; Roberts, A.; Haupt, S.; Gazzani, S.; Hancock, R.; Marmiroli, N.; Machray, G.; Oparka, K. Tuberization in potato involves a switch from apoplastic to symplastic phloem unloading. Plant Cell 2001, 13, 385–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eguchi, T.; Yoshida, S. Effects of application of sucrose and cytokinin to roots on the formation of tuberous roots in sweet potato [Ipomoea batatas (L.) Lam.]. Plant Root 2008, 2, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Chen, M.; Yeh, K.; Tsai, C. Changes in carbohydrate content and gene expression during tuberous root development of sweetpotato. J. Plant Biochem. Biotechnol. 2006, 15, 21–25. [Google Scholar] [CrossRef]
- Tsubone, M.; Kubota, F.; Saitou, K.; Kadowaki, M. Enhancement of tuberous root production and adenosine 5′-diphosphate pyrophosphorylase (AGPase) activity in sweet potato (Ipomoea batatas Lam.) by exogenous injection of sucrose solution. J. Agron. Crop Sci. 2000, 184, 181–186. [Google Scholar] [CrossRef]
- Usuda, H.; Demura, T.; Shimogawara, K.; Fukuda, H. Development of sink capacity of the “storage root” in a radish cultivar with a high ratio of “storage root” to shoot. Plant Cell Physiol. 1999, 40, 369–377. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Zhang, L.; Guan, Y.; Wang, Z. Endogenous hormone concentration in developing tuberous roots of different sweet potato genotypes. Agric. Sci. China 2006, 5, 919–927. [Google Scholar] [CrossRef]
- Sojikul, P.; Saithong, T.; Kalapanulak, S.; Pisuttinusart, N.; Limsirichaikul, S.; Tanaka, M.; Utsumi, Y.; Sakurai, T.; Seki, M.; Narangajavana, J. Genome-wide analysis reveals phytohormone action during cassava storage root initiation. Plant Mol. Biol. 2015, 88, 531–543. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Xiao, X.; Duan, L.; Guo, Y.; Qi, J.; Liao, D.; Zhao, C.; Liu, Y.; Zhou, L.; Li, X. Dynamic transcriptional profiling provides insights into tuberous root development in Rehmannia glutinosa. Front. Plant Sci. 2015, 6, 396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Y.; Huang, L.; Han, Y.; Du, S.; Sun, Y. Transgenic hairy roots of Tetrastigma hemsleyanum: Induction, propagation, genetic characteristics and medicinal components. Plant Cell Tissue Organ Cult. 2015, 122, 373–382. [Google Scholar]
- Li, C.; Hu, X.; Jin, P.; Li, Q.; Sun, S.; Bi, K.; Fu, H. Simultaneous determination of 6 flavonoids in the roots of Tetrastigma hemsleyanum by HPLC. China Pharm. 2019, 30, 1755–1758. [Google Scholar]
- Livak, K.; Schmittgen, T. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) Method. Methods 2001, 22, 402–408. [Google Scholar] [CrossRef] [PubMed]
Vessel (/mm2) | Starch Granule (/mm2) | Parenchyma Cell (/mm2) | |
---|---|---|---|
T1 | 208.33 ± 28.87 (a) | 104.86 ± 50.94 (c) | 3291.67 ± 187.64 (a) |
T2 | 166.66 ± 14.43 (ab) | 583.33 ± 118.15 (b) | 358.33 ± 14.43 (b) |
T3 | 116.66 ± 38.19 (b) | 1016.67 ± 137.69 (a) | 208.33 ± 28.87 (b) |
Module | I | II | III |
---|---|---|---|
Steel blue | 0 | 0 | 0 |
Turquoise | 9 | 0 | 1 |
Light cyan | 0 | 1 | 2 |
Midnight blue | 0 | 1 | 0 |
Violet | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hang, S.; Xu, P.; Zhu, S.; Ye, M.; Chen, C.; Wu, X.; Liang, W.; Pu, J. Integrative Analysis of the Transcriptome and Metabolome Reveals the Developmental Mechanisms and Metabolite Biosynthesis of the Tuberous Roots of Tetrastigma hemsleyanum. Molecules 2023, 28, 2603. https://doi.org/10.3390/molecules28062603
Hang S, Xu P, Zhu S, Ye M, Chen C, Wu X, Liang W, Pu J. Integrative Analysis of the Transcriptome and Metabolome Reveals the Developmental Mechanisms and Metabolite Biosynthesis of the Tuberous Roots of Tetrastigma hemsleyanum. Molecules. 2023; 28(6):2603. https://doi.org/10.3390/molecules28062603
Chicago/Turabian StyleHang, Suni, Pan Xu, Sheng Zhu, Min Ye, Cuiting Chen, Xiaojun Wu, Weiqing Liang, and Jinbao Pu. 2023. "Integrative Analysis of the Transcriptome and Metabolome Reveals the Developmental Mechanisms and Metabolite Biosynthesis of the Tuberous Roots of Tetrastigma hemsleyanum" Molecules 28, no. 6: 2603. https://doi.org/10.3390/molecules28062603
APA StyleHang, S., Xu, P., Zhu, S., Ye, M., Chen, C., Wu, X., Liang, W., & Pu, J. (2023). Integrative Analysis of the Transcriptome and Metabolome Reveals the Developmental Mechanisms and Metabolite Biosynthesis of the Tuberous Roots of Tetrastigma hemsleyanum. Molecules, 28(6), 2603. https://doi.org/10.3390/molecules28062603