Interactions between Beer Compounds and Human Salivary Proteins: Insights toward Astringency and Bitterness Perception
Abstract
:1. Introduction
2. Results
2.1. Sensory Analysis of Beers
2.2. Analysis of the Interaction between Beer and Salivary Proteins
2.3. Total Phenolic Content Determination
2.4. Identification and Characterization of Beers
2.5. Statistical Analysis
3. Discussion
4. Materials and Methods
4.1. Sensory Analysis
4.1.1. Sensory Panel
4.2. Experimental Procedures
4.2.1. Chemicals and Reagents
4.2.2. Saliva Treatment
HPLC Analysis
4.2.3. Beer Samples
Beer Sample Preparation
Determination of Total Phenolic Content
Identification and Characterization of Super Bock Beers
High-Performance Liquid Chromatography (HPLC) Analysis
Liquid Chromatography–Mass Spectrometry (LC-MS) Analysis
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Anderson, H.E.; Santos, I.C.; Hildenbrand, Z.L.; Schug, K.A. A review of the analytical methods used for beer ingredient and finished product analysis and quality control. Anal. Chim. Acta 2019, 1085, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Muniz, F.J.; Macho-González, A.; Garcimartín, A.; Santos-López, J.A.; Benedí, J.; Bastida, S.; González-Muñoz, M.J. The nutritional components of beer and its relationship with neurodegeneration and Alzheimer’s disease. Nutrients 2019, 11, 1558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osorio-Paz, I.; Brunauer, R.; Alavez, S. Beer and its non-alcoholic compounds in health and disease. Crit. Rev. Food Sci. Nutr. 2020, 60, 3492–3505. [Google Scholar] [CrossRef] [PubMed]
- Barrea, L.; Annunziata, G.; Muscogiuri, G.; Arnone, A.; Tenore, G.C.; Colao, A.; Savastano, S. Could hop-derived bitter compounds improve glucose homeostasis by stimulating the secretion of GLP-1? In Critical Reviews in Food Science and Nutrition; Taylor and Francis Inc.: Philadelphia, PA, USA, 2019; Volume 59, pp. 528–535. [Google Scholar] [CrossRef]
- Delompré, T.; Guichard, E.; Briand, L.; Salles, C. Taste perception of nutrients found in nutritional supplements: A review. Nutrients 2019, 11, 2050. [Google Scholar] [CrossRef] [Green Version]
- Hellwig, M.; Beer, F.; Witte, S.; Henle, T. Yeast Metabolites of Glycated Amino Acids in Beer. J. Agric. Food Chem. 2018, 66, 7451–7460. [Google Scholar] [CrossRef]
- Stoeger, V.; Holik, A.-K.; Hölz, K.; Dingjan, T.Y.; Hans, J.; Ley, J.P.; Krammer, G.E.; Niv, M.Y.; Somoza, M.M.; Somoza, V. Bitter-Tasting Amino Acids l-Arginine and l-Isoleucine Differentially Regulate Proton Secretion via T2R1 Signaling in Human Parietal Cells in Culture. J. Agric. Food Chem. 2020, 68, 3434–3444. [Google Scholar] [CrossRef]
- Bravi, E.; Marconi, O.; Sileoni, V.; Perretti, G. Determination of free fatty acids in beer. Food Chem. 2017, 215, 341–346. [Google Scholar] [CrossRef]
- Quifer-Rada, P.; Vallverdú-Queralt, A.; Martínez-Huélamo, M.; Chiva-Blanch, G.; Jáuregui, O.; Estruch, R.; Lamuela-Raventós, R. A comprehensive characterisation of beer polyphenols by high resolution mass spectrometry (LC–ESI-LTQ-Orbitrap-MS). Food Chem. 2015, 169, 336–343. [Google Scholar] [CrossRef]
- Cortese, M.; Gigliobianco, M.R.; Peregrina, D.V.; Sagratini, G.; Censi, R.; Di Martino, P. Quantification of phenolic compounds in different types of crafts beers, worts, starting and spent ingredients by liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2020, 1612, 460622. [Google Scholar] [CrossRef]
- Cheiran, K.P.; Raimundo, V.P.; Manfroi, V.; Anzanello, M.J.; Kahmann, A.; Rodrigues, E.; Frazzon, J. Simultaneous identification of low-molecular weight phenolic and nitrogen compounds in craft beers by HPLC-ESI-MS/MS. Food Chem. 2019, 286, 113–122. [Google Scholar] [CrossRef]
- Tronina, T.; Popłoński, J.; Bartmańska, A. Flavonoids as Phytoestrogenic Components of Hops and Beer. Molecules 2020, 25, 4201. [Google Scholar] [CrossRef]
- Soares, S.; Vitorino, R.; Osório, H.; Fernandes, A.; Venâncio, A.; Mateus, N.; Amado, F.; de Freitas, V. Reactivity of human salivary proteins families toward food polyphenols. J. Agric. Food Chem. 2011, 59, 5535–5547. [Google Scholar] [CrossRef]
- Soares, S.; Ferrer-Galego, R.; Brandão, E.; Silva, M.; Mateus, N.; de Freitas, V. Contribution of Human Oral Cells to Astringency by Binding Salivary Protein/Tannin Complexes. J. Agric. Food Chem. 2016, 64, 7823–7828. [Google Scholar] [CrossRef]
- Soares, S.; Brandão, E.; Mateus, N.; de Freitas, V. Interaction between red wine procyanidins and salivary proteins: Effect of stomach digestion on the resulting complexes. RSC Adv. 2015, 5, 12664–12670. [Google Scholar] [CrossRef]
- Soares, S.; Soares, S.; Brandão, E.; Guerreiro, C.; Mateus, N.; de Freitas, V. Oral interactions between a green tea flavanol extract and red wine anthocyanin extract using a new cell-based model: Insights on the effect of different oral epithelia. Sci. Rep. 2020, 10, 12638. [Google Scholar] [CrossRef]
- de Freitas, V.; Mateus, N. Protein/Polyphenol Interactions: Past and Present Contributions. Mechanisms of Astringency Perception. Curr. Org. Chem. 2012, 16, 724–746. [Google Scholar] [CrossRef] [Green Version]
- Shabbir, U.; Rubab, M.; Daliri, E.B.-M.; Chelliah, R.; Javed, A.; Oh, D.-H. Curcumin, quercetin, catechins and metabolic diseases: The role of gut microbiota. Nutrients 2021, 13, 206. [Google Scholar] [CrossRef]
- Potì, F.; Santi, D.; Spaggiari, G.; Zimetti, F.; Zanotti, I. Polyphenol health effects on cardiovascular and neurodegenerative disorders: A review and meta-analysis. Int. J. Mol. Sci. 2019, 20, 351. [Google Scholar] [CrossRef] [Green Version]
- Maleki, S.J.; Crespo, J.F.; Cabanillas, B. Anti-inflammatory effects of flavonoids. Food Chem. 2019, 299, 125124. [Google Scholar] [CrossRef]
- Di Lorenzo, C.; Colombo, F.; Biella, S.; Stockley, C.; Restani, P. Polyphenols and human health: The role of bioavailability. Nutrients 2021, 13, 273. [Google Scholar] [CrossRef]
- Soares, S.; Brandão, E.; Mateus, N.; Freitas, V. Sensorial properties of red wine polyphenols: Astringency and bitterness. Crit. Rev. Food Sci. Nutr. 2017, 57, 937–948. [Google Scholar] [CrossRef]
- Huang, R.; Xu, C. An overview of the perception and mitigation of astringency associated with phenolic compounds. In Comprehensive Reviews in Food Science and Food Safety; Blackwell Publishing Inc.: Oxford, UK, 2021; Volume 20, pp. 1036–1074. [Google Scholar] [CrossRef]
- Lesschaeve, I.; Noble, A.C. Polyphenols: Factors Influencing Their Sensory Properties and Their Effects on Food and Beverage Preferences 1–3 Isabelle Lesschaeve and Ann C Noble. Am. J. Clin. Nutr. 2005, 81, 330S–335S. [Google Scholar] [CrossRef] [Green Version]
- Canon, F.; Neiers, F.; Guichard, E. Saliva and Flavor Perception: Perspectives. J. Agric. Food Chem. 2018, 66, 7873–7879. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, J.; Brandão, E.; Soares, S.; Oliveira, J.; Lopes, P.; Mateus, N.; De Freitas, V. Polyphenolic characterization of nebbiolo red wines and their interaction with salivary proteins. Foods 2020, 9, 1867. [Google Scholar] [CrossRef] [PubMed]
- Bennick, A. Salivary proline-rich proteins. Mol. Cell. Biochem. 1982, 45, 83–99. [Google Scholar] [CrossRef] [PubMed]
- Martin, L.E.; Kay, K.E.; Torregrossa, A.-M. Bitter-Induced Salivary Proteins Increase Detection Threshold of Quinine, but Not Sucrose. Chem. Senses 2019, 44, 379–388. [Google Scholar] [CrossRef]
- Meyerhof, W.; Batram, C.; Kuhn, C.; Brockhoff, A.; Chudoba, E.; Bufe, B.; Appendino, G.B.; Behrens, M. The molecular receptive ranges of human TAS2R bitter taste receptors. Chem. Senses 2009, 35, 157–170. [Google Scholar] [CrossRef]
- Lemarcq, V.; Van de Walle, D.; Monterde, V.; Sioriki, E.; Dewettinck, K. Assessing the flavor of cocoa liquor and chocolate through instrumental and sensory analysis: A critical review. Crit. Rev. Food Sci. Nutr. 2022, 62, 5523–5539. [Google Scholar] [CrossRef]
- Luna, F.; Crouzillat, D.; Cirou, L.; Bucheli, P. Chemical composition and flavor of Ecuadorian cocoa liquor. J. Agric. Food Chem. 2002, 50, 3527–3532. [Google Scholar] [CrossRef]
- Habschied, K.; Košir, I.J.; Krstanović, V.; Kumrić, G.; Mastanjević, K. Beer polyphenols—Bitterness, astringency, and off-flavors. Beverages 2021, 7, 38. [Google Scholar] [CrossRef]
- Gribkova, I.N.; Kharlamova, L.N.; Lazareva, I.V.; Zakharov, M.A.; Zakharova, V.A.; Kozlov, V.I. The Influence of Hop Phenolic Compounds on Dry Hopping Beer Quality. Molecules 2022, 27, 740. [Google Scholar] [CrossRef]
- Goiris, K.; Jaskula-Goiris, B.; Syryn, E.; Van Opstaele, F.; De Rouck, G.; Aerts, G.; De Cooman, L. The flavoring potential of hop polyphenols in beer. J. Am. Soc. Brew. Chem. 2014, 72, 135–142. [Google Scholar] [CrossRef]
- Habschied, K.; Lončarić, A.; Mastanjević, K. Screening of polyphenols and antioxidative activity in industrial beers. Foods 2020, 9, 238. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.-Q.; Zhang, Y.-N.; Chen, J.-X.; Wang, F.; Du, Q.-Z.; Yin, J.-F. Quantitative analyses of the bitterness and astringency of catechins from green tea. Food Chem. 2018, 258, 16–24. [Google Scholar] [CrossRef]
- Benkherouf, A.Y.; Logrén, N.; Somborac, T.; Kortesniemi, M.; Soini, S.L.; Yang, B.; Salo-Ahen, O.M.; Laaksonen, O.; Uusi-Oukari, M. Hops compounds modulatory effects and 6-prenylnaringenin dual mode of action on GABAA receptors. Eur. J. Pharmacol. 2020, 873, 172962. [Google Scholar] [CrossRef]
- Turner, A.; Veysey, M.; Keely, S.; Scarlett, C.; Lucock, M.; Beckett, E.L. Genetic variation in the bitter receptors responsible for epicatechin detection are associated with bmi in an elderly cohort. Nutrients 2021, 13, 571. [Google Scholar] [CrossRef]
- Narukawa, M.; Noga, C.; Ueno, Y.; Sato, T.; Misaka, T.; Watanabe, T. Evaluation of the bitterness of green tea catechins by a cell-based assay with the human bitter taste receptor hTAS2R39. Biochem. Biophys. Res. Commun. 2011, 405, 620–625. [Google Scholar] [CrossRef]
- Levit, A.; Nowak, S.; Peters, M.; Wiener, A.; Meyerhof, W.; Behrens, M.; Niv, M.Y. The bitter pill: Clinical drugs that activate the human bitter taste receptor TAS2R14. FASEB J. 2014, 28, 1181–1197. [Google Scholar] [CrossRef]
- Nozawa, H. Xanthohumol, the chalcone from beer hops (Humulus lupulus L.), is the ligand for farnesoid X receptor and ameliorates lipid and glucose metabolism in KK-Ay mice. Biochem. Biophys. Res. Commun. 2005, 336, 754–761. [Google Scholar] [CrossRef]
- Danton, O.; Alexander, L.; Hunlun, C.; de Beer, D.; Hamburger, M.; Joubert, E. Bitter Taste Impact and Thermal Conversion of a Naringenin Glycoside from Cyclopia genistoides. J. Nat. Prod. 2018, 81, 2743–2749. [Google Scholar] [CrossRef]
- Huang, C.; Zayas, J. Phenolic Acid Contributions to Taste Characteristics of Corn Germ Protein Flour Products. J. Food Sci. 1991, 56, 1308–1310. [Google Scholar] [CrossRef]
- Sterneder, S.; Stoeger, V.; Dugulin, C.A.; Liszt, K.I.; Di Pizio, A.; Korntheuer, K.; Dunkel, A.; Eder, R.; Ley, J.P.; Somoza, V. Astringent Gallic Acid in Red Wine Regulates Mechanisms of Gastric Acid Secretion via Activation of Bitter Taste Sensing Receptor TAS2R4. J. Agric. Food Chem. 2021, 69, 10550–10561. [Google Scholar] [CrossRef] [PubMed]
- Delventhal, R.; Carlson, J.R. Bitter taste receptors confer diverse functions to neurons. Elife 2016, 5, e11181. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.; Sulli, C.; Davidson, E.; Berdougo, E.; Phillips, M.; Puffer, B.A.; Paes, C.; Doranz, B.J.; Rucker, J.B. The Bitter Taste Receptor TAS2R16 Achieves High Specificity and Accommodates Diverse Glycoside Ligands by using a Two-faced Binding Pocket. Sci. Rep. 2017, 7, 7753. [Google Scholar] [CrossRef] [Green Version]
- Lamy, V.; Roussi, S.; Chaabi, M.; Gossé, F.; Lobstein, A.; Raul, F. Lupulone, a hop bitter acid, activates different death pathways involving apoptotic TRAIL-receptors, in human colon tumor cells and in their derived metastatic cells. Apoptosis 2008, 13, 1232–1242. [Google Scholar] [CrossRef]
- Hinrichs, A.L.; Wang, J.C.; Bufe, B.; Kwon, J.M.; Budde, J.; Allen, R.; Bertelsen, S.; Evans, W.; Dick, D.; Rice, J.; et al. Functional Variant in a Bitter-Taste Receptor (hTAS2R16) Influences Risk of Alcohol Dependence. Am. J. Hum. Genet. 2006, 78, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Kohl, S.; Behrens, M.; Dunkel, A.; Hofmann, T.; Meyerhof, W. Amino acids and peptides activate at least five members of the human bitter taste receptor family. J. Agric. Food Chem. 2013, 61, 53–60. [Google Scholar] [CrossRef]
- Nelson, B.C.; Putzbach, K.; Sharpless, K.E.; Sander, L.C. Mass Spectrometric Determination of the Predominant Adrenergic Protoalkaloids in Bitter Orange (Citrus aurantium). J. Agric. Food Chem. 2007, 55, 9769–9775. [Google Scholar] [CrossRef]
- Morini, G.; Winnig, M.; Vennegeerts, T.; Borgonovo, G.; Bassoli, A. Vanillin Activates Human Bitter Taste Receptors TAS2R14, TAS2R20, and TAS2R39. Front. Nutr. 2021, 8, 683627. [Google Scholar] [CrossRef]
- Valentová, H.; Škrovánková, S.; Panovská, Z.; Pokorný, J. Determination of astringent taste in model solutions and in beverages. Czech J. Food Sci. 2018, 19, 196–200. [Google Scholar] [CrossRef] [Green Version]
- Chalé-Rush, A.; Burgess, J.R.; Mattes, R.D. Evidence for human orosensory (taste?) Sensitivity to free fatty acids. Chem. Senses 2007, 32, 423–431. [Google Scholar] [CrossRef] [Green Version]
- Jardim, C.D.C.; de Souza, D.; Machado, I.C.K.; Pinto, L.M.N.; Ramos, R.C.D.S.; Garavaglia, J. Sensory profile, consumer preference and chemical composition of craft beers from brazil. Beverages 2018, 4, 106. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, A.; Sørensen, C.; Proctor, G.; Carpenter, G. Salivary functions in mastication, taste and textural perception, swallowing and initial digestion. Oral Dis. 2018, 24, 1399–1416. [Google Scholar] [CrossRef] [Green Version]
- Condelli, N.; Dinnella, C.; Cerone, A.; Monteleone, E.; Bertuccioli, M. Prediction of perceived astringency induced by phenolic compounds II: Criteria for panel selection and preliminary application on wine samples. Food Qual. Prefer. 2006, 17, 96–107. [Google Scholar] [CrossRef]
- Linne, B.; Simons, C.T. Quantification of oral roughness perception and comparison with mechanism of astringency perception. Chem. Senses 2017, 42, 525–535. [Google Scholar] [CrossRef]
- Nardini, M.; Foddai, M.S. Phenolics profile and antioxidant activity of special beers. Molecules 2020, 25, 2466. [Google Scholar] [CrossRef]
- Intelmann, D.; Batram, C.; Kuhn, C.; Haseleu, G.; Meyerhof, W.; Hofmann, T. Three TAS2R bitter taste receptors mediate the psychophysical responses to bitter compounds of hops (Humulus lupulus L.) and beer. Chemosens. Percept. 2009, 2, 118–132. [Google Scholar] [CrossRef]
- Guerreiro, C.; Jesus, M.; Brandão, E.; Mateus, N.; De Freitas, V.; Soares, S. Interaction of a Procyanidin Mixture with Human Saliva and the Variations of Salivary Protein Profiles over a 1-Year Period. J. Agric. Food Chem. 2020, 68, 13824–13832. [Google Scholar] [CrossRef]
- Ferrer-Gallego, R.; Hernández-Hierro, J.M.; Rivas-Gonzalo, J.C.; Escribano-Bailón, M.T. Sensory evaluation of bitterness and astringency sub-qualities of wine phenolic compounds: Synergistic effect and modulation by aromas. Food Res. Int. 2014, 62, 1100–1107. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. Available online: http://www.ajevonline.org/content/16/3/144.abstract (accessed on 23 September 2022).
Panelist | HL | SBO | AAL | IPA | ||||
---|---|---|---|---|---|---|---|---|
A | B | A | B | A | B | A | B | |
P1 | 1 ± 0.01 | 3 ± 0.07 | 2 ± 0.00 | 2 ± 0.01 | 3 ± 0.03 | 4 ± 0.20 | 5 ± 0.07 | 3 ± 0.01 |
P2 | 1 ± 0.01 | 1 ± 0.17 | 1 ± 0.09 | 1 ± 0.07 | 2 ± 0.27 | 1 ± 0.31 | 3 ± 0.17 | 2 ± 0.17 |
P3 | 1 ± 0.01 | 4 ± 0.35 | 3 ± 0.14 | 1 ± 0.07 | 5 ± 0.23 | 2 ± 0.05 | 4 ± 0.01 | 3 ± 0.01 |
P4 | 2 ± 0.07 | 2 ± 0.01 | 3 ± 0.14 | 3 ± 0.17 | 4 ± 0.02 | 4 ± 0.20 | 4 ± 0.01 | 2 ± 0.17 |
P5 | 1 ± 0.01 | 1 ± 0.17 | 2 ± 0.00 | 2 ± 0.01 | 4 ± 0.02 | 3 ± 0.01 | 5 ± 0.07 | 4 ± 0.07 |
P6 | 2 ± 0.07 | 3 ± 0.07 | 2 ± 0.00 | 2 ± 0.01 | 4 ± 0.02 | 3 ± 0.01 | 5 ± 0.07 | 4 ± 0.07 |
P7 | 1 ± 0.01 | 2 ± 0.01 | 1 ± 0.09 | 1 ± 0.07 | 4 ± 0.02 | 2 ± 0.05 | 4 ± 0.01 | 3 ± 0.01 |
P8 | 1 ± 0.01 | 2 ± 0.01 | 2 ± 0.01 | 1 ± 0.07 | 3 ± 0.03 | 3 ± 0.01 | 4 ± 0.01 | 4 ± 0.07 |
P9 | 1 ± 0.01 | 2 ± 0.01 | 1 ± 0.09 | 3 ± 0.17 | 3 ± 0.03 | 2 ± 0.05 | 4 ± 0.01 | 4 ± 0.07 |
mean ± SEM | 1.2 a ± 0.1 | 2.2 a,b ± 0.3 | 1.9 a,b ± 0.3 | 1.8 a ± 0.3 | 3.6 b ± 0.3 | 2.7 a,b ± 0.3 | 4.2 b ± 0.2 | 3.2 b ± 0.3 |
Beers | Folin–Ciocalteu (mg·mL−1 of CAE) |
---|---|
After SPE | |
HL | 0.461 a ± 0.002 |
SBO | 0.554 b ± 0.003 |
AAL | 0.897 c ± 0.003 |
IPA | 0.966 d ± 0.004 |
Beer | Description | |||||
---|---|---|---|---|---|---|
Classification | Name | HL | SBO | AAL | IPA | A/B |
Flavanols | (-)-Epicatechin | x | x | x | x | B [33,34] |
Gallo-catechin | - | x | x | - | A, B [36] | |
Flavonoids | 6-Prenylnaringenin | x | x | x | x | B [37] |
8-Prenylnaringenin | x | x | x | x | B [38,39] | |
Apiin | - | x | x | x | n.d. | |
Naringenin | - | - | x | x | B [36,37] | |
Quercetin | - | x | x | x | A, B [40] | |
Chalcone | Xanthohumol | x | x | x | - | B [41] |
Phenolic acids | 2-Hydroxycinnamic acid | x | x | x | x | A, B [42,43] |
4-Hydroxycinnamic acid | - | x | x | x | n.d. | |
3-O-Caffeoylquinic acid (chlorogenic acid) | - | - | x | x | n.d. | |
4-Feruloylquinic acid | - | - | x | x | n.d. | |
4-O-Caffeoylquinic acid | x | - | x | x | n.d | |
5-O-Caffeoylquinic acid (neochlorogenic acid) | - | - | x | x | n.d. | |
Feruloylputrescine | - | - | x | - | n.d. | |
Stilbene | Resveratrol | x | x | x | x | B [42,43,44] |
Other phenolic compounds | 4-Methylumbelliferyl glucuronide | x | x | x | n.d. | |
7-Hydroxycoumarin | x | x | x | x | B [45] | |
Coumarin 106 | - | x | x | x | B [45] | |
Coumaroylagmatine | - | x | x | x | n.d. | |
Di-caffeoyl spermidine | - | - | x | - | n.d. | |
Diferuloylputrescine | x | x | x | x | n.d. | |
Esculin | x | x | x | x | B [46] | |
Feruloylagmatine | x | x | x | x | n.d. | |
Lupulone | x | - | x | x | B [47] | |
Met-coumaroylagmatine hexoside | x | x | x | x | n.d. | |
Sinapoylagmatine | x | - | x | x | n.d. |
Beer | Taste Quality | |||||
---|---|---|---|---|---|---|
Classification | Name | HL | SBO | AAL | IPA | A/B |
Amino acid | Leucine | x | - | x | x | B [5] |
L-Phenylalanine | x | x | x | x | B [45,46] | |
L-Tryptophan | x | x | x | x | A, B [5] | |
Tyrosine | x | - | x | x | B [5] | |
Peptide | Leucylvaline | x | - | x | x | n.d. |
Pyroglutamyl-Isoleucine | x | x | x | x | n.d. | |
Cyclo(proline-leucine) | x | x | x | x | n.d. | |
Glutamyltyrosine | x | x | x | x | n.d. | |
Alkaloid | 4-Hydroxyquinoline | - | x | x | - | n.d. |
8-Hydroxyquinoline | x | x | x | x | B [48] | |
Caffeine | x | x | x | x | B [5,49] | |
Hordenine | x | x | x | x | B [50] | |
Benzaldehyde | Vanillin | - | x | x | x | * activates TAS2R14, TAS2R20 and TAS2R39 [51] |
Carboxylic acid | Citric acid | x | x | x | x | A [52] |
Fatty acid | Linoleic acid | - | x | x | x | A, B [53] |
Chromatographic Peak Areas (×109) | |||||
---|---|---|---|---|---|
Compound | HL | SBO | AAL | IPA | |
14 | Tyrosine (B) | 0.76 | n.d. | 1.57 | 0.87 |
23 | L-phenylalanine (B) | 1.03 | 1.29 | 3.34 | 1.95 |
38 | L-tryptophan (A and B) | 2.00 | 3.93 | 4.50 | 3.52 |
50 | (-)-epicatechin (B) | 3.78 | 3.65 | 6.27 | 5.10 |
56 | 8-prenylnaringenin (B) | 3.93 | 1.40 | 1.21 | 1.90 |
58 | Quercetin (A and B) | n.d. | 0.68 | 0.76 | 0.84 |
62 | Lupulone (B) | 3.02 | n.d. | 3.54 | 5.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalves, L.; Jesus, M.; Brandão, E.; Magalhães, P.; Mateus, N.; Freitas, V.d.; Soares, S. Interactions between Beer Compounds and Human Salivary Proteins: Insights toward Astringency and Bitterness Perception. Molecules 2023, 28, 2522. https://doi.org/10.3390/molecules28062522
Gonçalves L, Jesus M, Brandão E, Magalhães P, Mateus N, Freitas Vd, Soares S. Interactions between Beer Compounds and Human Salivary Proteins: Insights toward Astringency and Bitterness Perception. Molecules. 2023; 28(6):2522. https://doi.org/10.3390/molecules28062522
Chicago/Turabian StyleGonçalves, Leonor, Mónica Jesus, Elsa Brandão, Paulo Magalhães, Nuno Mateus, Victor de Freitas, and Susana Soares. 2023. "Interactions between Beer Compounds and Human Salivary Proteins: Insights toward Astringency and Bitterness Perception" Molecules 28, no. 6: 2522. https://doi.org/10.3390/molecules28062522
APA StyleGonçalves, L., Jesus, M., Brandão, E., Magalhães, P., Mateus, N., Freitas, V. d., & Soares, S. (2023). Interactions between Beer Compounds and Human Salivary Proteins: Insights toward Astringency and Bitterness Perception. Molecules, 28(6), 2522. https://doi.org/10.3390/molecules28062522