Highly Reactive Thermite Energetic Materials: Preparation, Characterization, and Applications: A Review
Abstract
:1. Introduction
2. Classification of Highly Reactive Thermite EMs (tEMs)
2.1. Binary tEMs
2.1.1. Al/Metal Oxide tEMs
2.1.2. Al/Metal tEMs
2.1.3. Al/Organic or Macromolecule Compound tEMs
2.1.4. Al/Inorganic Compound tEMs
2.2. Ternary tEMs
2.3. tMs with Multiple Components
3. Synthesis Methods for tEMs
3.1. Mechanical Mixing Method
3.2. Vapor Deposition Method
3.3. Assembly Methods
3.3.1. Electrophoretic Assembly Method
3.3.2. Other Assembly Method
3.4. Sol-Gel Method
3.5. Electrospinning Method
3.6. Other Methods
4. Prospects and Suggestions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, C.; Sun, C.G.; Hu, B.C.; Yu, C.M.; Lu, M. Synthesis and characterization of the pentazolate anion cyclo-N5 in (N5)6 (H3O)3(NH4)4Cl. Science 2017, 355, 374–376. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.G.; Wang, Q.; Shen, C.; Lin, Q.H.; Wang, P.C.; Lu, M. A series of energetic metal pentazolate hydrates. Nature 2017, 549, 78–81. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.X.; Li, Y.X.; Hussain, I.; Shen, R.Q.; Yang, G.C.; Zhang, K.L. Core-shell structured nanoenergetic materials: Preparation and fundamental properties. Adv. Mater. 2020, 32, 2001291. [Google Scholar] [CrossRef] [PubMed]
- Li, S.H.; Wang, Y.; Qi, C.; Zhao, X.X.; Zhang, J.C.; Zhang, S.W.; Pang, S.P. 3D energetic metal-organic frameworks: Synthesis and properties of high energy materials. Angew. Chem. Int. Ed. 2013, 52, 14031–14035. [Google Scholar] [CrossRef]
- Becker, C.R.; Apperson, S.; Morris, C.J.; Gangopadhyay, S.; Currano, L.J.; Churaman, W.A.; Stoldt, C.R. Galvanic poroussilicon composites for high-velocity nanoenergetics. Nano Lett. 2011, 11, 803–807. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Song, S.W.; Wang, K.C.; Wang, Y.; Zhang, Q.H. Modifying polynitro benzene and pyrazine skeletons with flexible nitratoethyl substituents towards new energetic melt-castable materials. Chem. Eng. J. 2022, 435, 135053. [Google Scholar] [CrossRef]
- Comet, M.; Vidick, G.; Schnell, F.; Suma, Y.B.; Spitzer, D. Sulfates-based nanothermites: An expanding horizon for metastable interstitial composites. Angew. Chem. Int. Ed. 2015, 54, 4458–4462. [Google Scholar] [CrossRef] [PubMed]
- Marín, L.; Nanayakkara, C.E.; Veyan, J.; Warot-Fonrose, B.; Joulie, S.; Estève, A.; Tenailleau, C.; Chabal, Y.J.; Rossi, C. Enhancing the reactivity of Al/CuO nanolaminates by Cu incorporation at the interfaces. ACS Appl. Mater. Interfaces 2015, 7, 11713–11718. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.P.; Zheng, Z.L.; Zhang, W.C.; Hu, B.; Chen, Y.J.; Chen, J.H.; Ma, K.F.; Ye, J.H.; Zhu, J.W. Sustainable electrosynthesis of porous cun3 films for functional energetic chips. ACS Sustain. Chem. Eng. 2020, 8, 3969–3975. [Google Scholar] [CrossRef]
- Wang, J.; Qu, Y.Y.; Gong, F.Y.; Shen, J.P.; Zhang, L. A promising strategy to obtain high energy output and combustion properties by self-activation of nano-Al. Combust. Flame 2019, 204, 220–226. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, D.G.; Yang, G.C.; Zhang, Q.B.; Shen, J.P.; Lu, J.; Zhang, K.L. Highly exothermic and superhydrophobic Mg/fluorocarbon core/shell nanoenergetic arrays. ACS Appl. Mater. Interfaces 2014, 6, 10497–10505. [Google Scholar] [CrossRef] [PubMed]
- Plummer, A.; Kuznetsov, V.; Joyner, T.; Shapter, J.; Voelcker, N.H. The burning rate of energetic films of nanostructured porous silicon. Small 2011, 7, 3392–3398. [Google Scholar] [CrossRef]
- Zhong, K.; Bu, R.P.; Jiao, F.B.; Liu, G.R.; Zhang, C.Y. Toward the defect engineering of energetic materials: A review of the effect of crystal defects on the sensitivity. Chem. Eng. J. 2022, 429, 132310. [Google Scholar] [CrossRef]
- Zhou, X.; Xu, D.G.; Lu, J.; Zhang, K.L. CuO/Mg/fluorocarbon sandwich-structure superhydrophobic nanoenergetic composite with anti-humidity property. Chem. Eng. J. 2015, 266, 163–170. [Google Scholar] [CrossRef]
- Guo, X.G.; Liang, T.T.; Huang, H.H.; Yuan, B.F.; Wang, J. Additive-free super-reactive metastale intermixed C-doped Al/Co3O4 coating with excellent structural, exothermic and hydrophobic stability for a transient-chip. Appl. Surf. Sci. 2022, 581, 152324. [Google Scholar] [CrossRef]
- Guo, X.G.; Li, X.M.; Li, H.R.; Zhang, D.X.; Lai, C.; Li, W.L. A comprehensive investigation on the electrophoretic deposition (EPD) of nano-Al/Ni energetic composite coatings for the combustion application. Surf. Coat. Tech. 2015, 265, 83–91. [Google Scholar] [CrossRef]
- Kostov, A.; Zivkovic, D. Thermodynamic analysis of alloys Ti-Al, Ti-V, Al-V and Ti-Al-V. J. Alloy. Compd. 2008, 460, 164–171. [Google Scholar] [CrossRef]
- Grapes, M.D.; Reeves, R.V.; Fezzaa, K.; Sun, T.; Densmore, J.M.; Sullivan, K.T. In situ observations of reacting Al/Fe2O3 thermite: Relating dynamic particle size to macroscopic burn time. Combust. Flame 2019, 201, 252–263. [Google Scholar] [CrossRef]
- De Souza, K.M.; de Lemos, M.J.S.; Ribeiro, R.R.; Marin, A.M.G. Advanced isoconversional kinetic analysis of Fe2O3-2Al thermite reaction for plug and abandonment of oil wells. Chem. Eng. J. 2023, 455, 140725. [Google Scholar] [CrossRef]
- Zhao, N.N.; He, C.C.; Liu, J.B.; Gong, H.J.; An, T.; Xu, H.X.; Zhao, F.Q.; Hu, R.Z.; Ma, H.X.; Zhang, J.Z. Dependence of catalytic properties of Al/Fe2O3 thermites on morphology of Fe2O3 particles in combustion reactions. J. Solid State Chem. 2014, 219, 67–73. [Google Scholar] [CrossRef]
- Wang, Y.T.; Dai, J.; Xu, J.B.; Shen, Y.; Wang, C.-A.; Ye, Y.H.; Shen, R.Q. Experimental and numerical investigations of the effect of charge density and scale on the heat transfer behavior of Al/CuO nano-thermite. Vacuum 2021, 184, 109878. [Google Scholar] [CrossRef]
- Yang, H.F.; Yang, G.C.; Li, X.D.; Bao, H.B.; Yang, Y.J.; Guo, X.G.; Qiao, Z.Q.; Li, X.M.; Li, X. Facile synthesis of high tightly ordered Al/CuO core-shell nanowire arrays and the effect of surface density on combustion. J. Alloy. Compd. 2021, 877, 160025. [Google Scholar] [CrossRef]
- Yin, Y.J.; Li, X.M.; Shu, Y.J.; Guo, X.G.; Bao, H.B.; Li, W.L.; Zhu, Y.H.; Li, Y.; Huang, X.Y. Fabrication of electrophoretically deposited, self-assembled three-dimensional porous Al/CuO nanothermite films for highly enhanced energy output. Mater. Chem. Phys. 2017, 194, 182–187. [Google Scholar] [CrossRef]
- Nellums, R.R.; Terry, B.C.; Tappan, B.C.; Son, S.F.; Groven, L.J. Effect of solids loading on resonant mixed Al-Bi2O3 nanothermite powders. Propellants Explos. Pyrotech. 2013, 38, 605–610. [Google Scholar] [CrossRef]
- Xiao, F.; Li, J.M.; Zhou, X.Y.; Yang, R.J. Preparation of mechanically activated aluminum-rich Al-Co3O4 powders and their thermal properties and reactivity with water steam at high temperature. Combust. Sci. Technol. 2018, 190, 1935–1949. [Google Scholar] [CrossRef]
- Wang, J.; Qiao, Z.Q.; Shen, J.P.; Li, R.; Yang, Y.T.; Yang, G.C. Large-scale synthesis of a porous Co3O4 nanostructure and its application in metastable intermolecular composites. Propellants Explos. Pyrotech. 2015, 40, 514–517. [Google Scholar] [CrossRef]
- Sui, H.T.; Li, B.Y.; Wen, J.Z. Interaction between single-walled carbon nanotubes and reactive nanoparticle constituents in multilayered Al/NiO nanocomposite. ACS Appl. Energy Mater. 2018, 1, 5245–5256. [Google Scholar] [CrossRef]
- Liu, J.; Shao, S.Y.; Fang, G.; Meng, B.; Xie, Z.Y.; Wang, L.X. High-efficiency inverted polymer solar cells with transparent and work-function tunable MoO3-Al composite film as cathode buffer layer. Adv. Mater. 2012, 24, 2774–2779. [Google Scholar] [CrossRef]
- Comet, M.; Martin, C.; Schnell, F.; Spitzer, D. Nanothermite foams: From nanopowder to object. Chem. Eng. J. 2017, 316, 807–812. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, L.; Mao, Y.F.; Gong, F.Y. An effective way to enhance energy output and combustion characteristics of Al/PTFE. Combust. Flame 2020, 214, 419–425. [Google Scholar] [CrossRef]
- Chen, W.; Jiang, W.; Li, P.Y.; Li, L.; Chen, B.H.; Dai, J.J.; Wang, L.X.; Yuan, Y.; Li, F.S. Ignition and combustion of super-reactive thermites of AlMg/KMnO4. Rare Metal Mat. Eng. 2013, 42, 2458–2461. [Google Scholar]
- Fahd, A.; Dubois, C.; Chaouki, J.; Wen, J.Z.; Youssef, E. Synthesis and characterization of tertiary nanothermite CNMs/Al/KClO4 with enhanced combustion characteristics. Propellants Explos. Pyrotech. 2021, 46, 995–1005. [Google Scholar] [CrossRef]
- Zaky, M.G.; Abdalla, A.M.; Sahu, R.P.; Puri, I.K.; Radwan, M.; Elbasuney, S. Nanothermite colloids: A new prospective for enhanced performance. Def. Technol. 2019, 15, 319–325. [Google Scholar] [CrossRef]
- Mao, X.X.; Li, Y.C.; Li, Y.F.; Jiang, L.F.; Wang, X.M. Thermal properties of decomposition and explosion for CL-20 and CL-20/n-Al. J. Energ. Mater. 2020, 38, 98–110. [Google Scholar] [CrossRef]
- Yan, T.G.; Yang, C.; Ma, J.C.; Cheng, G.B.; Yang, H.W. Intramolecular integration of multiple heterocyclic skeletons for energetic materials with enhanced energy & safety. Chem. Eng. J. 2022, 428, 131400. [Google Scholar]
- Li, P.; Moon, S.; Guelta, M.A.; Harvey, S.P.; Hupp, J.T.; Farha, O.K. Encapsulation of a nerve agent detoxifying enzyme by a mesoporous zirconium metal-organic framework engenders thermal and long-term stability. J. Am. Chem. Soc. 2016, 138, 8052–8055. [Google Scholar] [CrossRef] [PubMed]
- Martirosyan, K.S.; Wang, L.Z.; Vicent, A.; Luss, D. Nanoenergetic gas-generators: Design and performance. Propellants Explos. Pyrotech. 2009, 34, 532–538. [Google Scholar] [CrossRef]
- Yi, Z.X.; Cao, Y.Q.; Yuan, J.W.; Mary, C.; Wan, Z.Y.; Li, Y.; Zhu, C.G.; Zhang, L.; Zhu, S.G. Functionalization carbon fibers assemble with Al/Bi2O3: A new strategy for high-reliability ignition. Chem. Eng. J. 2020, 389, 124254. [Google Scholar] [CrossRef]
- Reverberi, A.P.; Meshalkin, V.P.; Butusov, O.B.; Chistyakova, T.B.; Ferretti, M.; Cardinale, A.M.; Fabiano, B. Organic and inorganic biocidal energetic materials for agent defeat weapons: An overview and research perspectives. Energies 2023, 16, 675. [Google Scholar] [CrossRef]
- Polis, M.; Stolarczyk, A.; Glosz, K.; Jarosz, T. Quo Vadis, Nanothermite? A review of recent progress. Materials 2022, 15, 3215. [Google Scholar] [CrossRef]
- Kabra, S.; Gharde, S.; Gore, P.M.; Jain, S.; Khire, V.H.; Kandasubramanian, B. Recent trends in nanothermites: Fabrication, characteristics and applications. Nano Express 2020, 1, 032001. [Google Scholar] [CrossRef]
- Tang, D.Y.; Lyu, J.; He, W.; Chen, J.; Yang, G.; Liu, P.J.; Yan, Q.L. Metastable intermixed core-shell Al@M(IO3)x nanocomposites with improved combustion efficiency by using tannic acid as a functional interfacial layer. Chem. Eng. J. 2020, 384, 123369. [Google Scholar] [CrossRef]
- Fischer, S.H.; Grubelich, M.C. Theoretical energy release of thermites, intermetallics, and combustible metals. In Proceedings of the 24th International Pyrotechnics Seminar, Monterey, CA, USA, 27–31 July 1998. [Google Scholar]
- Cheng, J.L.; Hng, H.H.; Ng, H.Y.; Soon, P.C.; Lee, Y.W. Synthesis and characterization of self-assembled nanoenergetic Al-Fe2O3 thermite system. J. Phys. Chem. Solids. 2010, 71, 90–94. [Google Scholar] [CrossRef]
- Zhou, X.; Zhu, Y.; Ke, X.; Zhang, K.L. Exploring the solid-state interfacial reaction of Al/Fe2O3 nanothermites by thermal analysis. J Mater. Sci. 2019, 54, 4115–4123. [Google Scholar] [CrossRef]
- Zhang, T.F.; Wang, Z.; Li, G.P.; Luo, Y.J. Tuning the reactivity of Al/Fe2O3 nanoenergetic materials via an approach combining soft template self-assembly with sol-gel pro-cess process. J. Solid State Chem. 2015, 230, 1–7. [Google Scholar] [CrossRef]
- Dadbakhsh, S.S.; Hao, L. In situ formation of particle reinforced al matrix composite by selective laser melting of Al/Fe2O3 powder mixture. Adv. Eng. Mater. 2012, 14, 45–48. [Google Scholar] [CrossRef]
- Cheng, J.L.; Hng, H.H.; Lee, Y.W.; Du, S.W.; Thadhani, N.N. Kinetic study of thermal- and impact-initiated reactions in Al-Fe2O3 nanothermite. Combust. Flame 2010, 157, 2241–2249. [Google Scholar] [CrossRef]
- Kim, J.H.; Cho, M.H.; Shim, H.M.; Kim, S.H. Fabrication and thermal behavior of Al/Fe2O3 energetic composites for effective interfacial bonding between dissimilar metallic substrates. J. Ind. Eng. Chem. 2019, 78, 84–89. [Google Scholar] [CrossRef]
- Monk, I.; Schoenitz, M.; Jacob, R.J.; Dreizin, E.L.; Zachariah, M.R. Combustion characteristics of stoichiometric Al-CuO nanocomposite thermites prepared by different methods. Combust. Sci. Technol. 2017, 189, 555–574. [Google Scholar] [CrossRef]
- Yu, C.P.; Zhang, W.C.; Hu, B.; Ni, D.B.; Zheng, Z.L.; Liu, J.P.; Ma, K.F.; Ren, W. Core/shell CuO/Al nanorod thermite film based on electrochemical anodization. Nanotechnology 2018, 29, 36LT02. [Google Scholar] [CrossRef]
- Rossi, C. Engineering of Al/CuO reactive multilayer thin films for tunable initiation and actuation. Propellants Explos. Pyrotech. 2019, 44, 94–108. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Wang, Y.J.; Cheng, Z.P.; Ke, X.; Jiang, W. Facile preparation and energetic characteristics of core-shell Al/CuO metastable intermolecular composite thin film on a silicon substrate. Chem. Eng. J. 2017, 328, 585–590. [Google Scholar] [CrossRef]
- Guo, X.G.; Yuan, B.F.; Lin, Y.H.; Cui, X.; Gao, F.; Mi, W.H.; Lu, C.H.; Rager, M.; Li, X.M. Acile preparation of superhydrophobic nano-aluminum/copper(II) oxide composite films with their exposure and heat-release stability. Mater. Lett. 2018, 213, 294–297. [Google Scholar] [CrossRef]
- Yao, E.G.; Zhao, N.N.; Qin, Z.; Ma, H.X.; Li, H.J.; Xu, S.Y.; An, T.; Yi, J.H.; Zhao, F.Q. Thermal decomposition behavior and thermal safety of nitrocellulose with different shape CuO and Al/CuO nanothermites. Nanomaterials 2020, 10, 725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.J.; Ren, W.; Zheng, Z.L.; Wu, G.G.; Hu, B.; Chen, J.H.; Wang, J.X.; Yu, C.P.; Ma, K.F.; Zhou, X.L.; et al. Reactivity adjustment from the contact extent between CuO and Al phases in nanothermites. Chem. Eng. J. 2020, 402, 126288. [Google Scholar] [CrossRef]
- Zhou, X.; Shen, R.Q.; Ye, Y.H.; Zhu, P.; Hu, Y.; Wu, L.Z. Influence of Al/CuO reactive multilayer films additives on exploding foil initiator. J. Appl. Phys. 2011, 110, 094505. [Google Scholar] [CrossRef]
- Tichtchenko, E.; Estève, A.; Rossi, C. Modeling the self-propagation reaction in heterogeneous and dense media: Application to Al/CuO thermite. Combust. Flame 2021, 228, 173–183. [Google Scholar] [CrossRef]
- Kwon, J.; Ducéré, J.M.; Alphonse, P.; Bahrami, M.; Petrantoni, M.; Veyan, J.F.; Tenailleau, C.; Estève, A.; Rossi, C.; Chabal, Y.J. Interfacial chemistry in Al/CuO reactive nanomaterial and its role in exothermic reaction. ACS Appl. Mater. Interfaces 2013, 5, 605–613. [Google Scholar] [CrossRef] [Green Version]
- He, W.; Liu, P.J.; He, G.Q.; Gozin, M.; Yan, Q.L. Highly reactive metastable intermixed composites (MICs): Preparation and characterization. Adv. Mater. 2018, 30, 1706293. [Google Scholar] [CrossRef]
- Guo, X.G.; Liang, T.T.; Liu, G.X.; He, Y.Z.; Kong, S.Y.; Islam, M.L.; Yuan, B.F. Conveniently controllable design of nano-Al-doped@Co3O4 energetic composite with enhanced exothermic property via exploring electrophoretic assembly dynamics. J. Mater. Sci. Mater. Electron. 2022, 33, 6262–6272. [Google Scholar] [CrossRef]
- Zhang, D.X.; Li, X.M. Fabrication and kinetics study of nano-Al/NiO thermite film by electrophoretic deposition. J. Phys. Chem. 2015, 119, 4688–4694. [Google Scholar] [CrossRef]
- Zhu, Y.H.; Li, X.M.; Zhang, D.X.; Bao, H.B.; Shu, Y.J.; Guo, X.G.; Yin, Y.J. Tuning the surface charges of MoO3 by adsorption of polyethylenimineto realize the electrophoretic deposition of high-exothermic Al/MoO3 nanoenergetic films. Mater. Design 2016, 109, 652–658. [Google Scholar] [CrossRef]
- Glavier, L.; Taton, G.; Ducéré, J.M.; Baijot, V.; Pinon, S.; Calais, T.; Estève, A.; Rouhani, M.D.; Rossi, C. Nanoenergetics as pressure generator for nontoxic impact primers: Comparison of Al/Bi2O3, Al/CuO, Al/MoO3 nanothermites and Al/PTFE. Combust. Flame 2015, 162, 1813–1820. [Google Scholar] [CrossRef]
- Ma, E.; Thompson, C.V.; Clevenger, L.A.; Tu, K.N. Self-propagating explosive reactions in Al/Ni multilayer thin films. Appl. Phys. Lett. 1990, 57, 1262–1264. [Google Scholar] [CrossRef]
- Milosavljevi, M.; Stojanovi, N.; Perusko, D.; Timotijevi, B.; Toprek, D.; Kova, J.; Drazi, G.; Jeynes, C. Ion irradiation induced Al-Ti interaction in nano-scaled Al/Ti multilayers. Appl. Surf. Sci. 2012, 258, 2043–2046. [Google Scholar] [CrossRef]
- Wang, L.; He, B.; Jiang, X.H.; Fu, Q.B.; Wang, L.L. Modeling the propagationvelocity of reaction waves in Al/Ni multilayer films. Chin. J. Energ. Mater. 2009, 2, 233–235. [Google Scholar]
- Guo, X.G.; Lu, C.H.; Huang, H.S.; Cui, X.; Liang, T.T.; Yuan, B.F.; Wang, J.; Li, X.M. Facilely controllable synthesis of multi-functional aluminum/nickel/perfluorosilane composites for enhancing the thermal energy release stability and enhancing anti-wetting properties. Compos. Sci. Technol. 2020, 199, 108351. [Google Scholar] [CrossRef]
- Guo, X.G.; Li, X.M.; Wei, Z.B.; Li, X.L.; Niu, L.D. Rapid fabrication and characterization of superhydrophobic tri-dimensional Ni/Al coatings. Appl. Surf. Sci. 2016, 387, 8–15. [Google Scholar] [CrossRef]
- Pantoya, M.L.; Dean, S.W. The influence of alumina passivation on nano-Al/Teflon reactions. Thermochim. Acta 2009, 493, 109–110. [Google Scholar] [CrossRef]
- He, W.; Liu, P.J.; Gong, F.Y.; Tao, B.; Gu, J.; Yang, Z.J.; Yan, Q.L. Tuning the reactivity of metastable intermixed composite n-Al/PTFE by polydopamine interfacial control. ACS Appl. Mater. Interfaces 2018, 10, 32849–32858. [Google Scholar] [CrossRef]
- Clayton, N.A.; Kappagantula, K.S.; Pantoya, M.L.; Kettwich, S.C.; Iacono, S.T. Fabrication, characterization, and energetic properties of metallized fibers. ACS Appl. Mater. Interfaces 2014, 6, 6049–6053. [Google Scholar] [CrossRef] [PubMed]
- Brousseau, P.; Anderson, C.J. Nanometric aluminum in explosives. Propellants Explos. Pyrotech. 2002, 27, 300–306. [Google Scholar] [CrossRef]
- Ma, X.X.; Zhu, Y.; Cheng, S.X.; Zheng, H.X.; Liu, Y.S.; Qiao, Z.Q.; Yang, G.C.; Zhang, K.L. Energetic composites based on nano-Al and energetic coordination polymers (ECPs): The “father-son” effect of ECPs. Chem. Eng. J. 2020, 392, 123719. [Google Scholar] [CrossRef]
- He, W.; Ao, W.; Yang, G.C.; Yang, Z.J.; Guo, Z.Q.; Liu, P.J.; Yan, Q.L. Metastable energetic nanocomposites of mof-activated aluminum featured with multi-level energy releases. Chem. Eng. J. 2020, 381, 122623. [Google Scholar] [CrossRef]
- Prakash, A.; McCormick, A.V.; Zachariah, M.R. Synthesis and reactivity of a super-reactive metastable intermolecular composite formulation of Al/KMnO4. Adv. Mater. 2005, 17, 900–903. [Google Scholar] [CrossRef]
- Jian, G.Q.; Feng, J.Y.; Jacob, R.J.; Egan, G.C.; Zachariah, M.R. Super-reactive nanoenergetic gas generators based on periodate salts. Angew. Chem. Int. Ed. 2013, 52, 9743–9746. [Google Scholar] [CrossRef]
- Sullivan, K.T.; Piekiel, N.W.; Chowdhury, S.; Wu, C.; Zachariah, M.R.; Johnson, C.E. Ignition and combustion characteristics of nanoscale Al/AgIO3: A potential energetic biocidal system. Combust. Sci. Technol. 2011, 183, 285–302. [Google Scholar] [CrossRef]
- Gao, K.; Li, G.P.; Luo, Y.J.; Wang, L.; Shen, L.H.; Wang, G. Preparation and characterization of the AP/Al/Fe2O3 ternary nano-thermites. J. Therm. Anal. Calorim. 2014, 118, 43–49. [Google Scholar] [CrossRef]
- Yuan, Y.; Geng, B.Q.; Sun, T.; Yu, Q.B.; Wang, H.F. Impact-induced reaction characteristic and the enhanced sensitivity of PTFE/Al/Bi2O3 composites. Polymers 2019, 11, 2049. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.J.; Xia, S.Y.; Ren, W.; Zheng, Z.L.; Chen, J.H.; Ma, K.F.; Yu, C.P.; Zhou, X.L.; Zhang, W.C. A favorable improvement in reactivity between n-Al and sheet-like porous CuO as a nanoenergetic composite by graphene oxide additives. Ind. Eng. Chem. Res. 2020, 59, 12934–12942. [Google Scholar] [CrossRef]
- Luo, Q.P.; Liu, G.X.; Zhu, M.S.; Jiang, X.H. Constant volume combustion properties of Al/Fe2O3/RDX nanocomposite: The effects of its particle size and chemical constituents. Combust. Flame 2022, 238, 111938. [Google Scholar] [CrossRef]
- Prentice, D.; Pantoya, M.L.; Clapsaddle, B.J. Synthesis and performance characterization of a nanocomposite ternary thermite: Al/Fe2O3/SiO2. J. Phys. Chem. B. 2005, 43, UCRL-JRNL-209471. [Google Scholar]
- Sullivan, K.; Young, G.; Zachariah, M.R. Enhanced reactivity of nano-B/Al/CuO MIC’s. Combust. Flame 2009, 156, 302–309. [Google Scholar] [CrossRef]
- Guo, X.G.; Li, X.M.; Lai, C.; Jiang, X.; Li, X.L.; Shu, Y.J. Facile approach to the green synthesis of novel ternary composites with excellent superhydrophobic and thermal stability property: An expanding horizon. Chem. Eng. J. 2017, 309, 240–248. [Google Scholar] [CrossRef]
- Xiao, L.; Zhao, L.J.; Ke, X.; Zhang, T.Y.; Hao, G.Z.; Hu, Y.B.; Zhang, G.P.; Guo, H.; Jiang, W. Energetic metastable Al/CuO/PVDF/RDX microspheres with enhanced combustion performance. Chem. Eng. Sci. 2021, 231, 116302. [Google Scholar] [CrossRef]
- Fahd, A.; Baranovsky, A.; Dubois, C.; Chaouki, J.; Wen, J.Z. Superior performance of quaternary NC/GO/Al/KClO4 nanothermite for high speed impulse small-scale propulsion applications. Combust. Flame 2021, 232, 111527. [Google Scholar] [CrossRef]
- Lee, K.; Kim, D.; Shim, J.; Bae, S.; Shin, D.J.; Treml, B.E.; Yoo, J.; Hanrath, T.; Kim, W.D.; Lee, D.C. Formation of Cu layer on Al nanoparticles during thermite reaction in Al/CuO nanoparticle composites: Investigation of off-stoichiometry ratio of Al and CuO nanoparticles for maximum pressure change. Combust. Flame 2015, 162, 3823–3828. [Google Scholar] [CrossRef]
- Sanders, V.E.; Asay, B.W.; Foley, T.J.; Tappan, B.C.; Pacheco, A.N.; Son, S.F. Reaction Propagation of four nanoscale energetic composites (Al/MoO3, Al/WO3, Al/CuO, and Bi2O3). J. Propul. Power 2007, 23, 707–714. [Google Scholar] [CrossRef]
- Yang, C.; Hu, Y.; Shen, R.Q.; Ye, Y.H.; Wang, S.X.; Hua, T.L. Fabrication and performance characterization of Al/Ni multilayer energetic films. Appl. Phys. A 2014, 114, 459–464. [Google Scholar] [CrossRef]
- Zhu, P.; Jiao, J.S.; Shen, R.Q.; Ye, Y.H.; Fu, S.; Li, D. Energetic semiconductor bridge device incorporating Al/MoOx multilayer nanofilms and negative temperature coefficient thermistor chip. J. Appl. Phys. 2014, 115, 194502. [Google Scholar] [CrossRef]
- Zapata, J.; Nicollet, A.; Julien, B.; Lahiner, G.; Esteve, A.; Rossi, C. Self-propagating combustion of sputter-deposited Al/CuO nanolaminates. Combust. Flame 2019, 205, 389–396. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.L.; Rossi, C.; Alphonse, P.; Tenailleau, C.; Cayez, S.; Chane-Ching, J.Y. Integrating Al with NiO nano honeycomb to realize an energetic material on silicon substrate. Appl. Phys. A 2009, 94, 957–962. [Google Scholar] [CrossRef] [Green Version]
- Menon, L.; Patibandla, S.; Ram, K.B.; Shkuratov, S.I.; Aurongzeb, D.; Yun, M.H.B.; Temkin, H. Ignition studies of Al/Fe2O3 energetic nanocomposites. Appl. Phys. Lett. 2004, 84, 4735. [Google Scholar] [CrossRef] [Green Version]
- Qin, L.J.; Gong, T.; Hao, H.X.; Wang, K.Y.; Feng, H. Core-shell-structured nanothermites synthesized by atomic layer deposition. J. Nanopart. Res. 2013, 15, 2150. [Google Scholar] [CrossRef]
- Xu, D.G.; Yang, Y.; Cheng, H.; Li, Y.Y.; Zhang, K.L. Integration of nano-Al with Co3O4 nanorods to realize high-exothermic core-shell nanoenergetic materials on a silicon substrate. Combust. Flame 2012, 159, 2202–2209. [Google Scholar] [CrossRef]
- Zheng, Z.L.; Zhang, W.C.; Yu, C.P.; Zheng, G.Q.; Ma, K.F.; Qin, Z.C.; Ye, J.H.; Chao, Y.M. Integration of the 3DOM Al/Co3O4 nanothermite film with a semiconductor bridge to realize a high-output micro-energetic igniter. RSC Adv. 2018, 8, 2552. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.P.; Zhang, W.C.; Shen, R.Q.; Xu, X.; Cheng, J.; Ye, J.H.; Qin, Z.C.; Chao, Y.M. 3D ordered macroporous NiO/Al nanothermite film with significantly improved higher heat output, lower ignition temperature and less gas production. Mater. Design 2016, 110, 304–310. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.C.; Yin, B.Q.; Shen, R.Q.; Ye, J.H.; Thomas, J.A.; Chao, Y.M. Significantly enhanced energy output from 3d ordered macroporous structured Fe2O3/Al nanothermite film. ACS Appl. Mater. Interfaces 2013, 5, 239–242. [Google Scholar] [CrossRef]
- Ammam, M. Electrophoretic deposition under modulated electric fields: A review. RSC Adv. 2012, 2, 7633–7646. [Google Scholar] [CrossRef]
- Rousta, A.; Dorranian, D.; Elahi, M. Electrophoretic deposition of cobalt oxide nanoparticles on aluminium substrate. Surf. Eng. 2020, 36, 919–928. [Google Scholar] [CrossRef]
- Fayette, M.; Nelson, A.; Robinson, R.D. Electrophoretic deposition improves catalytic performance of Co3O4 nanoparticles for oxygen reduction/oxygen evolution reactions. J. Mater. Chem. A 2015, 3, 4274. [Google Scholar] [CrossRef]
- Sullivan, K.T.; Worsley, M.A.; Kuntz, J.D.; Gash, A.E. Electrophoretic deposition of binary energetic composites. Combust. Flame 2012, 159, 2210–2218. [Google Scholar] [CrossRef]
- Sullivan, K.T.; Zhu, C.; Duoss, E.B.; Gash, A.E.; Kolesky, D.B.; Kuntz, J.D.; Lewis, J.A.; Spadaccini, C.M. Controlling material reactivity using architecture. Adv. Mater. 2016, 28, 1934–1939. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.X.; Li, X.M.; Qin, B.; Lai, C.; Guo, X.G. Electrophoretic deposition and characterization of nano-Al/Fe2O3 thermites. Mater. Lett. 2014, 120, 224–227. [Google Scholar] [CrossRef]
- Zhang, D.X.; Xiang, Q. Electrophoretic fabrication of an Al-Co3O4 reactive nanocomposite coating and its application in a microignitor. Ind. Eng. Chem. Res. 2016, 55, 8243–8247. [Google Scholar] [CrossRef]
- Guo, X.G.; Sun, Q.; Liang, T.T.; Giwa, A.S. Controllable electrically guided nano-Al/MoO3 energetic-film formation on a semiconductor bridge with high reactivity and combustion performance. Nanomaterials 2020, 10, 955. [Google Scholar] [CrossRef]
- Guo, X.G.; Liang, T.T.; Bao, H.B.; Yuan, C.S.; Lai, C.; Tang, C.Y.; Giwa, A.S. Novel electrophoretic assembly design of nano-aluminum@tungsten trioxide (nano-Al@WO3) energeticcoating with controllable exothermic performance. J. Mater. Sci. Mater. Electron. 2021, 32, 15242–15250. [Google Scholar] [CrossRef]
- Yu, C.P.; Zhang, W.C.; Gao, Y.; Ni, D.B.; Ye, J.H.; Zhu, C.G.; Ma, K.F. The super-hydrophobic thermite film of the Co3O4/Al core/shell nanowires for an underwater ignition with a favorable aging-resistance. Chem. Eng. J. 2018, 338, 99–106. [Google Scholar] [CrossRef]
- Guo, X.G.; Liang, T.T.; Wang, J.; Li, X.M. Facilely electrophoretic derived aluminum/zinc (II) oxide nanocomposite with superhydrophobicity and thermostability. Ceram. Int. 2020, 46, 1052–1058. [Google Scholar] [CrossRef]
- Guo, X.G.; Lai, C.; Jiang, X.; Mi, W.H.; Yin, Y.J.; Li, X.M.; Shu, Y.J. Remarkably facile fabrication of extremely superhydrophobic high-energy binary composite with ultralong lifespan. Chem. Eng. J. 2018, 335, 843–854. [Google Scholar] [CrossRef]
- Guo, X.G.; Liang, T.T.; Yuan, B.F.; Wang, J. Nano-Al doped-MoO3 high-energy composite films with excellent hydrophobicity and thermal stability. Ceram. Int. 2021, 47, 24039–24046. [Google Scholar] [CrossRef]
- Guo, X.G.; Liang, T.T.; Giwa, A.S. Remarkably convenient construction of self-protected nano-aluminum/nickel oxide/perfluorosilane energetic composite to largely enhance structural, anti-wetting and exothermic stability. J. Alloy. Compd. 2022, 903, 164017. [Google Scholar] [CrossRef]
- Kim, S.H.; Zachariah, M.R. Enhancing the rate of energy release from nanoennergy materials by electrostatically enhanced assembly. Adv. Mater. 2004, 16, 1821–1825. [Google Scholar] [CrossRef]
- Dong, H.X.; Xia, M.; Wang, C.X.; Li, G.P.; Luo, Y.J. Al/NiO nanocomposites for enhanced energetic properties: Preparation by polymer assembly method. Mater. Design 2019, 183, 108111. [Google Scholar] [CrossRef]
- Séverac, A.; Alphonse, P.; Estève, A.; Bancaud, A.; Rossi, C. High-energy Al/CuO nanocomposites obtained by DNA-directed assembly. Adv. Funct. Mater. 2012, 22, 323–329. [Google Scholar] [CrossRef] [Green Version]
- Tillotson, T.M.; Gash, A.E.; Simpson, R.L.; Hrubesh, L.W.; Satcher, J.H.; Poco, J.F. Nanostructured energetic materials using sol-gel methodologies. J. Non-Cryst. Solids. 2001, 285, 338–345. [Google Scholar] [CrossRef] [Green Version]
- Prentice, D.; Pantoya, M.L.; Clapsaddle, B.J. Effect of nanocomposite synthesis on the combustion performance of a ternary thermite. J. Phys. Chem. B 2005, 109, 20180–20185. [Google Scholar] [CrossRef]
- Li, R.; Xu, H.M.; Hu, H.L.; Yang, G.C.; Wang, J.; Shen, J.P. Microstructured Al/Fe2O3/nitrocellulose energetic fibers realized by electrospinning. J. Energ. Mater. 2014, 32, 50–59. [Google Scholar] [CrossRef]
- Yan, S.; Jian, G.Q.; Zachariah, M.R. Electrospun nanofiber-based thermite textiles and their reactive properties. ACS Appl. Mater. Interfaces 2012, 4, 6432–6435. [Google Scholar] [CrossRef]
- He, W.; Li, Z.H.; Chen, S.W.; Yang, G.C.; Yang, Z.J.; Liu, P.J.; Yan, Q.L. Energetic metastable n-Al@pvdf/emof composite nanofibers with improved combustion performances. Chem. Eng. J. 2020, 383, 123146. [Google Scholar] [CrossRef]
- Schoenitz, M.; Ward, T.S.; Dreizin, E.L. Fully dense nano-composite energetic powders prepared by arrested reactive milling. P. Combust. Inst. 2005, 30, 2071–2078. [Google Scholar] [CrossRef]
- Williams, R.A.; Patel, J.V.; Ermoline, A.; Schoenitz, M.; Dreizin, E.L. Correlation of optical emission and pressure generated upon ignition of fully-dense nanocomposite thermite powders. Combust. Flame 2013, 160, 734–741. [Google Scholar] [CrossRef]
- Yang, Y.; Yan, D.R.; Dong, Y.C.; Wang, L.; Chen, X.G.; Zhang, J.X.; He, J.N.; Li, X.Z. In situ nanostructured ceramic matrix composite coating prepared by reactive plasma spraying micro-sized Al-Fe2O3 composite powders. J. Alloy. Compd. 2011, 509, L90–L94. [Google Scholar] [CrossRef]
- Huang, C.; Yang, Z.J.; Li, Y.C.; Zheng, B.H.; Yan, Q.L.; Guan, L.F.; Luo, G.; Li, S.B.; Nie, F. Incorporation of high explosives into nano-aluminum based microspheres to improve reactivity. Chem. Eng. J. 2020, 383, 123110. [Google Scholar] [CrossRef]
- Kiahosseini, S.R.; Ahmadian, H. Effect of residual structural strain caused by the addition of Co3O4 nanoparticles on the structural, hardness and magnetic properties of an Al/Co3O4 nanocomposite produced by powder metallurgy. Int. J. Min. Met. Mater. 2020, 27, 384–390. [Google Scholar] [CrossRef]
- Slocik, J.M.; McKenzie, R.; Dennis, P.B.; Naik, R.R. Creation of energetic biothermite inks using ferritin liquid protein. Nat. Commun. 2017, 8, 15156. [Google Scholar] [CrossRef] [Green Version]
- Shi, K.W.; Guo, X.D.; Chen, L.; Huang, S.S.; Zhao, L.L.; Ji, J.; Zhou, X. Alcohol-thermal synthesis of approximately core-shell structured Al@CuO nanothermite with improved heat-release and combustion characteristics. Combust. Flame 2021, 228, 331–339. [Google Scholar] [CrossRef]
- Guo, S.S.; Focke, W.W.; Tichapondwa, S.M. Al-Ni-NiO pyrotechnic time-delays. Propellants Explos. Pyrotech. 2020, 45, 665–670. [Google Scholar] [CrossRef]
- Fan, R.H.; Lü, H.L.; Sun, K.N.; Wang, W.X.; Yi, X.B. Kinetics of thermite reaction in Al-Fe2O3 system. Thermochimi. Acta 2006, 440, 129–131. [Google Scholar] [CrossRef]
- Wang, N.; Hu, Y.B.; Ke, X.; Xiao, L.; Zhou, X.; Peng, S.S.; Hao, G.Z.; Jiang, W. Enhanced-absorption template method for preparation of double-shell NiO hollow nanospheres with controllable particle size for nanothermite application. Chem. Eng. J. 2020, 379, 122330. [Google Scholar] [CrossRef]
- Yin, Y.J.; Li, X.M.; Shu, Y.J.; Guo, X.G.; Zhu, Y.H.; Huang, X.Y.; Bao, H.B.; Xu, K. Highly-reactive Al/CuO nanoenergetic materials with a tubular structure. Mater. Design 2017, 117, 104–110. [Google Scholar] [CrossRef]
- Xu, J.Y.; Chen, Y.J.; Zhang, W.C.; Zheng, Z.L.; Yu, C.P.; Wang, J.X.; Song, C.K.; Chen, J.H.; Lei, X.T.; Ma, K.F. Direct ink writing of nAl/pCuO/HPMC with outstanding combustion performance and ignition performance. Combust. Flame 2022, 236, 111747. [Google Scholar] [CrossRef]
- Fort, A.; Panzardi, E.; Vignoli, V.; Hjiri, M.; Aida, M.S.; Mugnaini, M.; Addabbo, T. Co3O4/Al-ZnO nano-composites: Gas sensing properties. Sensors 2019, 19, 760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolgoborodov, A.; Yankovsky, B.; Ananev, S.; Valyano, G.; Vakorina, G. Explosive burning of a mechanically activated Al and CuO thermite mixture. Energies 2022, 15, 489. [Google Scholar] [CrossRef]
- Martirosyan, K.S.; Wang, L.; Vicent, A.; Luss, D. Synthesis and performance of bismuth trioxide nanoparticles for high energy gas generator use. Nanotechnology 2009, 20, 405609. [Google Scholar] [CrossRef]
- Gagaoudakis, E.; Michail, G.; Katerinopoulou, D.; Moschovis, K.; Iliopoulos, E.; Kiriakidis, G.; Binas, V.; Aperathitis, E. Transparent p-type NiO:Al thin films as room temperature hydrogen and methane gas sensors. Mat. Sci. Semicon. Proc. 2020, 109, 104922. [Google Scholar] [CrossRef]
- Burrola, H.; Horii, M.; Gonzalez-Guerrero, M.J.; Bachman, J.C.; Gomez, F.A. Production of a NiO/Al primary battery employing powder-based electrodes. Electrophoresis 2020, 41, 131–136. [Google Scholar] [CrossRef]
- Sui, H.T.; Huda, N.; Shen, Z.K.; Wen, J.Z. Al-NiO energetic composites as heat source for joining silicon wafer. J. Mater. Process. Tech. 2020, 279, 116572. [Google Scholar] [CrossRef]
- Zhong, Y.; Xie, Y.J.; Hwang, S.; Wang, Q.; Cha, J.J.; Su, D.; Wang, H.L. A highly efficient all-solid-state lithium/electrolyte interface induced by an energetic reaction. Angew. Chem. 2020, 132, 14007–14112. [Google Scholar] [CrossRef]
- Clark, B.R.; Pantoya, M.L. The aluminium and iodine pentoxide reaction for the destruction of spore forming bacteria. Phys. Chem. Chem. Phys. 2010, 12, 12653–12657. [Google Scholar] [CrossRef]
- Wang, H.Y.; Jian, G.Q.; Egan, G.C.; Zachariah, M.R. Assembly and reactive properties of Al/CuO based nanothermite microparticles. Combust. Flame 2014, 161, 2203. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, X.; Liang, T.; Islam, M.L.; Chen, X.; Wang, Z. Highly Reactive Thermite Energetic Materials: Preparation, Characterization, and Applications: A Review. Molecules 2023, 28, 2520. https://doi.org/10.3390/molecules28062520
Guo X, Liang T, Islam ML, Chen X, Wang Z. Highly Reactive Thermite Energetic Materials: Preparation, Characterization, and Applications: A Review. Molecules. 2023; 28(6):2520. https://doi.org/10.3390/molecules28062520
Chicago/Turabian StyleGuo, Xiaogang, Taotao Liang, Md. Labu Islam, Xinxin Chen, and Zheng Wang. 2023. "Highly Reactive Thermite Energetic Materials: Preparation, Characterization, and Applications: A Review" Molecules 28, no. 6: 2520. https://doi.org/10.3390/molecules28062520
APA StyleGuo, X., Liang, T., Islam, M. L., Chen, X., & Wang, Z. (2023). Highly Reactive Thermite Energetic Materials: Preparation, Characterization, and Applications: A Review. Molecules, 28(6), 2520. https://doi.org/10.3390/molecules28062520