Determination of β2-Agonist Residues in Fermented Ham Using UHPLC-MS/MS after Enzymatic Digestion and Sulfonic Resin Solid Phase Purification
Abstract
:1. Introduction
2. Results
2.1. Sample Preparation Optimization
2.2. Chromatographic Conditions Optimization
2.3. Calibration Curves
2.4. Method Validation
2.5. Precision and Accuracy
2.6. Assessment of the Matrix Effect
2.7. Selectivity and Sensitivity
2.8. Real Samples Analysis
3. Discussion
4. Materials and Methods
4.1. Materials and Samples
4.2. Sample Preparation
4.3. Sample Purification
4.4. UHPLC-MS/MS System
4.5. Validation of Method
4.5.1. Linearity Analysis
4.5.2. Accuracy, Precision and Recovery
4.5.3. Matrix Effect
4.5.4. Limit of Detection and Limit of Quantification
4.5.5. Specificity
4.5.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Oppenheimer, J.; Nelson, H.S. Safety of long-acting beta-agonists in asthma: A review. Curr. Opin. Pulm. Med. 2008, 14, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Mersmann, H.J. Overview of the effects of beta-adrenergic receptor agonists on animal growth including mechanisms of action. J. Anim. Sci. 1998, 76, 160–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, L.; Zhu, M.J.; Shi, J.F.; Mi, K.; Ma, W.J.; Xu, X.Y.; Wang, H.Y.; Pan, Y.H.; Yan, F.; Tao, Y.F.; et al. Excretion and residual concentration correlations of salbutamol between edible tissues and living samples in pigs and goats. Front. Pharmacol. 2021, 12, 754876. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, J.; Cruz, C.; Martins, J.; Silva, J.M.; Neves, C.; Alves, C.; Ramos, F.; Da Silveira, M.I.N. Food poisoning by clenbuterol in Portugal. Food Addit. Contam. 2005, 22, 563–566. [Google Scholar] [CrossRef] [PubMed]
- Harris, T.L.; Smith, Z.K.; Ribeiro, F.R.B.; Jennings, M.A.; Vogel, G.J.; Johnson, B.J. Ractopamine Hydrochloride and Estradiol + Trenbolone Acetate Implants Alter Myogenic mRNA, β-Adrenergic Receptors, and Blood Metabolites. Open J. Anim. Sci. 2020, 10, 447–467. [Google Scholar] [CrossRef]
- Ružena, Č.; Jindra, V.; Renáta, H. Chirality of β2-agonists. An overview of pharmacological activity, stereoselective analysis, and synthesis. Open Chem. 2020, 18, 628–647. [Google Scholar] [CrossRef]
- Wu, P.G.; Ying, Y.F.; Chen, H.H. Comprehensive multi-residue analysis of agonists in animal tissue based on isotope dilution and solid phase extraction. Chin. J. Anal. Chem. 2007, 35, 330–334. [Google Scholar]
- Wu, P.G.; Wang, Q.; Chen, H.H.; Ying, Y.F.; Zhao, Y.X.; Shen, X.H. Multi-residue analysis of 26 types of beta(2)-agonists and steroids in animal tissues. Chin. J. Anal. Chem. 2008, 36, 1476–1482. [Google Scholar]
- Zhao, Y.Y.; Jiang, D.N.; Wu, K.; Yang, H.; Du, H.J.; Zhao, K.; Li, J.G.; Deng, A.P. Development of a sensitive monoclonal antibody-based ELISA for the determination of a beta-adrenergic agonist brombuterol in swine meat, liver and feed samples. Anal. Methods 2016, 8, 6941–6948. [Google Scholar] [CrossRef]
- Williams, L.D.; Churchwell, M.I.; Doerge, D.R. Multiresidue confirmation of beta-agonists in bovine retina and liver using LC-ES/MS/MS. J. Chromatogr. B-Anal. Technol. Biomed. Life Sci. 2004, 813, 35–45. [Google Scholar] [CrossRef]
- Thevis, M.; Schebalkin, T.; Thomas, A.; Schänzer, W. Quantification of clenbuterol in human plasma and urine by liquid chromatography-tandem mass spectrometry. Chromatographia 2005, 62, 435–439. [Google Scholar] [CrossRef]
- Wang, G.M.; Zhao, J.; Peng, T.; Chen, D.D.; Xi, C.X.; Wang, X.; Zhang, J.Z. Matrix effects in the determination of beta-receptor agonists in animal-derived foodstuffs by ultra-performance liquid chromatography tandem mass spectrometry with immunoaffinity solid-phase extraction. J. Sep. Sci. 2013, 36, 796–802. [Google Scholar] [CrossRef]
- He, Y.; Li, X.; Tong, P.; Lu, M.; Zhang, L.; Chen, G. An online field-amplification sample stacking method for the determination of beta2-agonists in human urine by CE-ESI/MS. Talanta 2013, 104, 97–102. [Google Scholar] [CrossRef]
- Zheng, H.; Deng, L.G.; Lu, X.; Zhao, S.C.; Guo, C.Y.; Mao, J.S.; Wang, Y.T.; Yang, G.S.; Aboul-Enein, H.Y. UPLC-ESI-MS-MS determination of three β2-agonists in pork. Chromatographia 2010, 72, 79–84. [Google Scholar] [CrossRef]
- León, N.; Roca, M.; Igualada, C.; Martins, C.P.B.; Pastor, A.; Yusá, V. Wide-range screening of banned veterinary drugs in urine by ultra high liquid chromatography coupled to high-resolution mass spectrometry. J. Chromatogr. A 2012, 1258, 55–65. [Google Scholar] [CrossRef]
- Vulic, A.; Pleadin, J.; Persi, N.; Milic, D.; Radeck, W. UPLC-MS/MS determination of ractopamine residues in retinal tissue of treated food-producing pigs. J. Chromatogr. B-Anal. Technol. Biomed. Life Sci. 2012, 895–896, 102–107. [Google Scholar] [CrossRef]
- Guo, C.; Shi, F.; Gong, L.; Tan, H.; Hu, D.; Zhang, J. Ultra-trace analysis of 12 beta(2)-agonists in pork, beef, mutton and chicken by ultrahigh-performance liquid-chromatography-quadrupole-orbitrap tandem mass spectrometry. J. Pharm. Biomed. Anal. 2015, 107, 526–534. [Google Scholar] [CrossRef]
- Li, T.T.; Cao, J.J.; Li, Z.; Wang, X.; He, P.L. Broad screening and identification of beta-agonists in feed and animal body fluid and tissues using ultra-high performance liquid chromatography-quadrupole-orbitrap high resolution mass spectrometry combined with spectra library search. Food Chem. 2016, 192, 188–196. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Yan, H.; Cui, F.Y.; Yun, H.; Chang, X.X.; Li, J.H.; Liu, X.; Yang, L.J.; Hu, Q.R. Analysis of multiple beta-agonist and beta-blocker residues in porcine muscle using improved QuEChERS method and UHPLC-LTQ orbitrap mass spectrometry. Food Anal. Methods 2016, 9, 915–924. [Google Scholar] [CrossRef]
- Xiong, L.; Gao, Y.Q.; Li, W.H.; Yang, X.L.; Shimo, S.P. Simple and sensitive monitoring of beta(2)-agonist residues in meat by liquid chromatography-tandem mass spectrometry using a QuEChERS with preconcentration as the sample treatment. Meat Sci. 2015, 105, 96–107. [Google Scholar] [CrossRef]
- Yan, H.Y.; Wang, R.L.; Han, Y.H.; Liu, S.T. Screening, recognition and quantitation of salbutamol residues in ham sausages by molecularly imprinted solid phase extraction coupled with high-performance liquid chromatography-ultraviolet detection. J. Chromatogr. B-Anal. Technol. Biomed. Life Sci. 2012, 900, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.L.; Wang, Y.; Hao, J.Y.; Luo, L.L. Determination of four β2-agonists residues in sausage by matrix solid-phase dispersion and high performance liquid chromatography-tandem mass spectrometry. J. Instrum. Anal. 2012, 31, 535–540. [Google Scholar]
- Mi, J.B.; Li, S.J.; Xu, H.; Liang, W.; Sun, T. Rapid analysis of three beta-agonist residues in food of animal origin by automated on-line solid-phase extraction coupled to liquid chromatography and tandem mass spectrometry. J. Sep. Sci. 2014, 37, 2431–2438. [Google Scholar] [CrossRef] [PubMed]
- Dos Ramos, F.J. Beta(2)-agonist extraction procedures for chromatographic analysis. J. Chromatogr. A 2000, 880, 69–83. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.F.; Zhu, F.W.; Chen, D.M.; Xie, S.Y.; Pan, Y.; Wang, X.; Liu, Z.L.; Peng, D.P.; Yuan, Z.H. Evaluation of matrix solid-phase dispersion extraction for 11 beta-agonists in swine feed by liquid chromatography with electrospray ionization tandem mass spectrometry. J. Sep. Sci. 2014, 37, 2574–2582. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Chang, B.Y.; Dong, T.; He, P.L.; Yang, W.J.; Wang, Z.Y. Simultaneous determination of salbutamol, ractopamine, and clenbuterol in animal feeds by SPE and LC-MS. J. Chromatogr. Sci. 2009, 47, 324–328. [Google Scholar] [CrossRef] [Green Version]
- Suzzi, G.; Gardini, F. Biogenic amines in dry fermented sausages: A review. Int. J. Food Microbiol. 2003, 88, 41–54. [Google Scholar] [CrossRef]
- Pan, X.D.; Jiang, W.; Wu, P.G. Comparison of different calibration approaches for chloramphenicol quantification in chicken muscle by ultra-high pressure liquid chromatography tandem mass spectrometry. Analyst 2015, 140, 366–370. [Google Scholar] [CrossRef]
- Giannetti, L.; Ferretti, G.; Gallo, V.; Necci, F.; Giorgi, A.; Marini, F.; Gennuso, E.; Neri, B. Analysis of beta-agonist residues in bovine hair: Development of a UPLC-MS/MS method and stability study. J. Chromatogr. B-Anal. Technol. Biomed. Life Sci. 2016, 1036, 76–83. [Google Scholar] [CrossRef]
- Zhang, L.J.; Hu, X.; Mo, N.; Bai, Y.M.; Zhang, Y.; Liu, L.J.; Li, C.Z. Quantitative determination of 21 β-Agonists in milk by ultra performance liquid chromatography-tandem mass spectrometry. J. Dairy Sci. Technol. 2020, 43, 17–22. [Google Scholar]
- Matuszewski, B.K.; Constanzer, M.L.; Chavez-Eng, C.M. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal. Chem. 2003, 75, 3019–3030. [Google Scholar] [CrossRef]
Cartridge | Clenbuterol Recovery RSD | Ractopamine Recovery RSD | Salbutamol Recovery RSD | Terbutaline Recovery RSD | ||||
---|---|---|---|---|---|---|---|---|
(%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | |
SCX | 95.2 | 8.5 | 78.6 | 8.9 | 63.4 | 10.5 | 42.7 | 12.8 |
MCX | 97.4 | 7.5 | 94.3 | 9.8 | 82.6 | 7.2 | 62.6 | 11.6 |
SCR | 98.0 | 4.3 | 94.5 | 7.8 | 91.3 | 5.4 | 83.0 | 10.2 |
Compound | Internal Standard | Parent (m/z) | Daughter (m/z) | Cone Voltage (v) | Collision Energy (v) | Retention Time (min) |
---|---|---|---|---|---|---|
Clenbuterol | D9-clenbuterol | 277.29 | 203.11 */259.0 | 14 | 16/16 | 2.50 |
Ractopamine | D3-ractopamine | 302.35 | 164.23 */284.0 | 44 | 16/16 | 2.29 |
Salbutamol | D6-salbutamol | 240.35 | 148.16 */222.0 | 6 | 18/12 | 1.87 |
Terbutaline | D6-salbutamol | 226.22 | 152.19 */125.0 | 4 | 18/18 | 1.87 |
D9-clenbuterol | 286.35 | 204.13 * | 4 | 16 | 2.50 | |
D3-ractopamine | 308.42 | 168.21 * | 10 | 16 | 2.29 | |
D6-salbutamol | 243.35 | 151.16 * | 4 | 18 | 1.87 |
Compound | Regression Equation | Correlation Coefficient (r2) | LODs (μg/kg) | OQs (μg/kg) | Matrix Effect (%) | Internal Standard |
---|---|---|---|---|---|---|
Clenbuterol | y = 0.95x − 0.02 | 1.000 | 0.1 | 0.3 | 92.4 | D9-clenbuterol |
Ractopamine | y = 1.92x − 0.04 | 0.998 | 0.1 | 0.3 | 86.7 | D3-ractopamine |
Salbutamol | y = 12.15x − 0.30 | 0.999 | 0.1 | 0.3 | 74.3 | D6-salbutamol |
Terbutaline | y = 0.42x + 0.02 | 0.997 | 0.1 | 0.3 | 65.4 | D6-salbutamol |
Target Standard | Spiked Levels (μg/kg) | Precision (RSD, %) | Accuracy (Recovery, %) | ||
---|---|---|---|---|---|
Intra-Day | Inter-Day | Intra-Day | Inter-Day | ||
Clenbuterol | 0.5 | 8.5 | 10.2 | 92.6 | 90.2 |
2.0 | 4.3 | 6.9 | 98.0 | 96.5 | |
10.0 | 1.8 | 4.6 | 102.0 | 102.0 | |
Ractopamine | 0.5 | 9.4 | 9.6 | 89.0 | 89.6 |
2.0 | 7.8 | 8.7 | 94.5 | 93.0 | |
10.0 | 3.4 | 4.2 | 107.0 | 95.6 | |
Salbutamol | 0.5 | 10.4 | 10.4 | 83.2 | 86.2 |
2.0 | 5.4 | 8.0 | 91.0 | 89.5 | |
10.0 | 3.2 | 2.6 | 96.2 | 93.8 | |
Terbutaline | 0.5 | 13.3 | 12.8 | 73.9 | 76.0 |
2.0 | 10.2 | 6.3 | 83.0 | 78.0 | |
10.0 | 8.6 | 4.6 | 90.8 | 86.2 |
Analysis Times | Sample Weight (g) | PEAR Area | Clenbuterol Content | Mean Value + Standard Error |
---|---|---|---|---|
1 | 2.0 | 7.83 × 106 | 15.2 | |
2 | 2.0 | 7.67 × 106 | 14.9 | 15.2 ± 0.2 |
3 | 2.0 | 7.98 × 106 | 15.5 |
NO | Matrix | Pre-Treatment Procedure | The Number of β2-Agonist | Instrument | LOD (μg/kg) | LOQ (μg/kg) | Reference |
---|---|---|---|---|---|---|---|
1 | Sausage | Enzymatic digestion, MSPD | 4 | HPLC-MS/MS | 0.1–0.15 | 0.25–0.40 | [22] |
2 | Ham sausage | LLE, MISPE | 1 | HPLC | 0.2 | 0.68 | [21] |
3 | Pork, sausage, and milk powder | Acid digestion, on line SPE | 3 | LC-MS/MS | 0.0073–0.088 | 0.024–0.29 | [23] |
4 | Pork, beef, mutton, and chicken | Enzymatic digestion, LLE, SPE | 12 | UHPLC-Q-Orbitrap HRMS | 0.0033–0.01 | 0.024–0.29 | [17] |
5 | Beef muscle, beef liver, goat muscle, and goat liver | Enzymatic digestion, QuEChERS | 10 | LC-MS/MS | 0.2–0.9 | 0.8–3.2 | [20] |
6 | Porcine muscle | Improved QuEChERS | 14 | UHPLC-Q-Orbitrap MS | 0.17–1.67 | 0.56–5.00 | [19] |
7 | Ham | Enzymatic hydrolysis, SPE | 4 | UHPLC-MS/MS | 0.1 | 0.3 | this work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, C.; Xiang, Y.; Tian, S.; Hu, Z.; Hu, Z.; Ma, B.; Wu, P. Determination of β2-Agonist Residues in Fermented Ham Using UHPLC-MS/MS after Enzymatic Digestion and Sulfonic Resin Solid Phase Purification. Molecules 2023, 28, 2039. https://doi.org/10.3390/molecules28052039
Cai C, Xiang Y, Tian S, Hu Z, Hu Z, Ma B, Wu P. Determination of β2-Agonist Residues in Fermented Ham Using UHPLC-MS/MS after Enzymatic Digestion and Sulfonic Resin Solid Phase Purification. Molecules. 2023; 28(5):2039. https://doi.org/10.3390/molecules28052039
Chicago/Turabian StyleCai, Chenggang, Yannan Xiang, Siyi Tian, Zhongce Hu, Zhengyan Hu, Bingjie Ma, and Pinggu Wu. 2023. "Determination of β2-Agonist Residues in Fermented Ham Using UHPLC-MS/MS after Enzymatic Digestion and Sulfonic Resin Solid Phase Purification" Molecules 28, no. 5: 2039. https://doi.org/10.3390/molecules28052039
APA StyleCai, C., Xiang, Y., Tian, S., Hu, Z., Hu, Z., Ma, B., & Wu, P. (2023). Determination of β2-Agonist Residues in Fermented Ham Using UHPLC-MS/MS after Enzymatic Digestion and Sulfonic Resin Solid Phase Purification. Molecules, 28(5), 2039. https://doi.org/10.3390/molecules28052039