Feasibility Study to Byproduce Medical Radioisotopes in a Fusion Reactor
Abstract
:1. Introduction
2. Results and Discussion
2.1. Results
2.2. Discussion
2.2.1. 14C
2.2.2. 89Sr
2.2.3. 32P
2.2.4. 64Cu, 67Cu
2.2.5. 99Mo
3. Materials and Methods
3.1. Principle of Reaction
- reaction: Target nucleus captures a neutron and becomes a nucleus in an excited state , which is immediately deexcited to return to the ground state, accompanied by the release of gamma rays.
- reaction: The target nucleus captures a neutron and immediately releases a proton, and the target nucleus and the daughter nucleus no longer belong to the same chemical element. In general, the (n, p) reaction requires high neutron energy and has a reaction threshold, but there are special cases, such as 14N(n,p)14C, whose reaction cross-section is high in the thermal neutron energy range [8].
- reaction: Fast neutron interaction via the inelastic reaction. Usually, has a reaction energy threshold.
- reaction: Neutron photo-production. Usually, has a reaction energy threshold.
3.2. Computational Models and Simulation Tools
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cherry, S.R.; Sorenson, J.A.; Phelps, M.E. Physics in Nuclear Medicine E-Book; Elsevier Health Sciences: Philadelphia, PA, USA, 2012. [Google Scholar]
- Medium and Long-Term Development Plan for Medical Isotopes (2021–2035). 2021. Available online: https://www.ccnta.cn/article/6220.html (accessed on 5 July 2022).
- Hu, J.; Li, H.; Sui, Y.; Du, J. Current status and future perspective of radiopharmaceuticals in China. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 2514–2530. [Google Scholar] [CrossRef] [PubMed]
- Ziwei, L.I.; Yuncheng, H.; Xiaoyu, W.; Jiachen, Z.; Yongfeng, W.; Qunying, H. Production Status and Technical Prospects of Medical Radioisotope 99 Mo/99 m Tc. Nucl. Phys. Rev. 2019, 36, 170–183. [Google Scholar]
- Hua-ming, Z.; Shun-zhong, L.; Guo-ping, L.; Zheng-kun, Z. Isotope technologies in INPC: State of the art and perspective. J. Isot. 2011, 24 (Supplement), 116. [Google Scholar]
- Wu, H.S.; Zhao, H. Medical Isotope Supplies Face Transportation and Distribution Challenges Due to Covid 19. Foreign Nucl. News 2020, 12. (In Chinese) [Google Scholar]
- Windridge, M. Smaller and quicker with spherical tokamaks and high-temperature superconductors. Philos. Trans. R. Soc. A 2019, 377, 20170438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, S.; Yang, Y.; Xie, X.; Qian, D. Current status and prospects of reactor produced medical radioisotopes in China. Chin. Sci. Bull. 2020, 65, 3526–3537. [Google Scholar] [CrossRef]
- Jambi, L.K. Systematic Review and Meta-Analysis on the Sensitivity and Specificity of 13C/14C-Urea Breath Tests in the Diagnosis of Helicobacter pylori Infection. Diagnostics 2022, 12, 2428. [Google Scholar] [CrossRef]
- Liu, S.; Sun, Y.; Ma, L.; Yang, B. Estimation of carbon-14 production in HFETR. Nucl. Power Eng. 2014, 35, 178–180. [Google Scholar]
- Giammarile, F.; Mognetti, T.; Resche, I. Bone pain palliation with strontium-89 in cancer patients with bone metastases. Q. J. Nucl. Med. Mol. Imaging 2001, 45, 78. [Google Scholar]
- Ning, L.; Junjie, Z.; Yunming, C.; Zhizhong, S.; Jinsong, Z.; Banghong, L.; Yin, H.; Bin, L.; Jun, Z.; Xiaobing, W. Preparation of High Specific Activity Strontium-89 Solution in High Flux Engineering Test Reactor. J. Isot. 2018, 32, 7. [Google Scholar]
- Saha, D.; Vithya, J.; Kumar, G.; Swaminathan, K.; Kumar, R.; Subramani, C.V.; Rao, P.V. Feasibility studies for production of 89Sr in the Fast Breeder Test Reactor (FBTR). Radiochim. Acta 2013, 101, 667–673. [Google Scholar] [CrossRef]
- Kayurin, O.Y.; Nerozin, N.A.; Pavlovich, V.B.; Smetanin, E.Y.; Tkachev, S.V.; Shapovalov, V.V. Preparation of high-specific-activity 89Sr. Radiochemistry 2002, 44, 282–283. [Google Scholar] [CrossRef]
- Chen, X.; Yang, J.; Chen, X. Feasibility research on radioisotope production in China experimental fast reactor. At. Energy Sci. Technol. 2014, 48, 746. [Google Scholar]
- Dash, A.; Das, T.; Knapp, F.F.R. Targeted radionuclide therapy of painful bone metastases: Past developments, current status, recent advances and future directions. Curr. Med. Chem. 2020, 27, 3187–3249. [Google Scholar] [CrossRef]
- Zhizhong, S.; Yunming, C.; Ning, L.; Bing, L.; Jinsong, Z.; Banghong, L.; Xiangbo, G. Preparation of Sodium Phosphate [32P] Solution via 31P (n, γ) 32P. J. Isot. 2019, 32, 1. [Google Scholar]
- Vimalnath, K.V.; Shetty, P.; Rajeswari, A.; Chirayil, V.; Chakraborty, S.; Dash, A. Reactor production of 32P for medical applications: An assessment of 32S (n, p) 32P and 31P (n, γ) 32P methods. J. Radioanal. Nucl. Chem. 2014, 301, 555–565. [Google Scholar] [CrossRef]
- Mou, L.; Martini, P.; Pupillo, G.; Cieszykowska, I.; Cutler, C.S.; Mikołajczak, R. 67Cu production capabilities: A mini review. Molecules 2022, 27, 1501. [Google Scholar] [CrossRef]
- Avila-Rodriguez, M.A.; Nye, J.A.; Nickles, R.J. Simultaneous production of high specific activity 64Cu and 61Co with 11.4 MeV protons on enriched 64Ni nuclei. Appl. Radiat. Isot. 2007, 65, 1115–1120. [Google Scholar] [CrossRef]
- Spahn, I.; Coenen, H.H.; Qaim, S.M. Enhanced production possibility of the therapeutic radionuclides 64Cu, 67Cu and 89Sr via (n, p) reactions induced by fast spectral neutrons. Radiochim. Acta 2004, 92, 183–186. [Google Scholar] [CrossRef] [Green Version]
- Nagai, Y.; Hatsukawa, Y. Production of 99Mo for nuclear medicine by 100Mo (n, 2n) 99Mo. J. Phys. Soc. Jpn. 2009, 78, 33201. [Google Scholar] [CrossRef]
- Tsechanski, A.; Bielajew, A.F.; Archambault, J.P.; Mainegra-Hing, E. Electron accelerator-based production of molybdenum-99: Bremsstrahlung and photoneutron generation from molybdenum vs. tungsten. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2016, 366, 124–139. [Google Scholar] [CrossRef]
- Wang, J.; Gao, R.; Huang, Q.; Yin, X.; Lin, M.; Cao, S.; Chen, D.; Fan, F.; Wu, X.; Qin, Z.; et al. Practicality of hierarchically macro/mesoporous γ-Al2O3 as a promising sorbent in the preparation of low specific activity 99Mo/99mTc generator. Appl. Radiat. Isot. 2021, 178, 109986. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, G.; Li, G.Q.; Li, J.; Wan, Y.X.; Liu, Y.; Wang, X.L.; Song, Y.T.; Chan, V.; Yang, Q.W.; Xiao, B.J. Progress of the CFETR design. Nucl. Fusion 2019, 59, 112010. [Google Scholar] [CrossRef]
- Wan, Y.; Li, J.; Liu, Y.; Wang, X.; Chan, V.; Chen, C.; Duan, X.; Fu, P.; Gao, X.; Feng, K. Overview of the present progress and activities on the CFETR. Nucl. Fusion 2017, 57, 102009. [Google Scholar] [CrossRef]
- Fluka Manual. Available online: https://flukafiles.web.cern.ch/manual/index.html (accessed on 1 February 2023).
Target | Yields (GBq/g) | |||||||
---|---|---|---|---|---|---|---|---|
14C | 99Mo | 88Sr(n, γ)89Sr | 89Y(n, p)89Sr | 31P(n, γ)32P | 32S(n, p)32P | 64Cu | 67Cu | |
TAR 1 | 3.21 × 10−2 | 2.92 × 102 | 1.16 × 101 | 1.28 × 101 | 3.12 × 101 | 7.72 × 102 | 8.95 × 101 | 1.92 |
TAR 2 | 4.58 × 10−3 | 5.46 × 101 | 1.85 | 7.51 × 10−1 | 5.53 | 8.49 × 101 | 8.81 | 1.11 × 10−1 |
TAR 3 | 2.79 × 10−4 | 2.19 | 7.37 × 10−2 | 4.47 × 10−2 | 3.62 × 10−1 | 7.39 | 6.79 × 10−1 | 5.61 × 10−3 |
Target | 14C Yields (Bq/g AlN) | |||
---|---|---|---|---|
1 d | 28 d | 1 Year | 10 Years | |
TAR 1 | 8.80 × 104 | 2.46 × 106 | 3.21 × 107 | 3.20 × 108 |
TAR 2 | 1.25 × 104 | 3.51 × 105 | 4.58 × 106 | 4.62 × 107 |
TAR 3 | 7.62 × 102 | 2.14 × 104 | 2.79 × 105 | 2.62 × 106 |
Target | 89Sr Yields (GBq/g Y2O3) | |||||
---|---|---|---|---|---|---|
30 d | 50 d | 100 d | 150 d | 200 d | 365 d | |
TAR 1 | 4.44 | 6.40 | 1.06 × 101 | 1.07 × 101 | 1.08 × 101 | 1.28 × 101 |
TAR 2 | 2.28 × 10−1 | 3.66 × 10−1 | 5.74 × 10−1 | 5.88 × 10−1 | 5.88 × 10−1 | 7.51 × 10−1 |
TAR 3 | 9.73 × 10−3 | 2.27 × 10−2 | 3.81 × 10−2 | 3.92 × 10−2 | 3.92 × 10−2 | 4.48 × 10−2 |
Target | 32P Yields (GBq/g natS) | |||
---|---|---|---|---|
30 d | 60 d | 90 d | 365 d | |
TAR 1 | 5.88 × 102 | 7.25 × 102 | 7.55 × 102 | 7.73 × 102 |
TAR 2 | 6.44 × 101 | 7.96 × 101 | 8.29 × 101 | 8.29 × 101 |
TAR 3 | 5.29 | 6.51 | 6.81 | 6.99 |
Target | 99Mo Yields(GBq/g natMo) | |||
---|---|---|---|---|
1 d | 8 d | 21 d | 365 d | |
TAR 1 | 6.56 × 101 | 2.55 × 102 | 2.92 × 102 | 2.94 × 102 |
TAR 2 | 1.22 × 101 | 4.77 × 101 | 5.46 × 101 | 5.49 × 101 |
TAR 3 | 4.90 × 10−1 | 1.91 | 2.19 | 2.19 |
Target | 99Mo Yields (GBq/g) | ||
---|---|---|---|
natMo | 100Mo (100%) | 98Mo (100%) | |
TAR 1 | 2.92 × 102 | 9.10 × 102 | 7.74 × 102 |
TAR 2 | 5.46 × 101 | 4.96 × 101 | 1.88 × 102 |
TAR 3 | 2.19 | 3.59 | 6.81 |
Nuclide | Decay Mode | Reaction Channel | Threshold (Yes/No) | Target Material | Application |
---|---|---|---|---|---|
14C | β− | 14N(n, p) 14C | No | AlN | Testing for H.Pylori (Hp) |
89Sr | β− | 88Sr(n, γ) 89Sr | No | SrCO3 | Therapeutic radionuclides |
89Y(n, p)89Sr | Yes (720 keV) | Y2O3 | |||
32P | β− | 31P (n, γ) 32P 32S (n, p) 32P | No | natP | Therapeutic radionuclides |
Yes (957 keV) | natS | ||||
67Cu | β− | 67Zn(n, p) 67Cu | Yes (3.0 MeV) | natZnO | Novel Targeted Therapeutic radionuclides |
64Cu | β+, (β−, EC) | 64Zn(n, p)64Cu | Yes (0.9 MeV) | natZnO | PET imaging, Immunotherapy |
99Mo | β− | 98Mo(n, γ) 99Mo | No | natMo Enriched-Mo | Mo-Tc generator |
100Mo(n, 2n) 99Mo | Yes (8.4 MeV) | ||||
100Mo(γ, n) 99Mo | Yes (9.1 MeV) |
ID | Inner Radius (cm) | Outer Radius (cm) | Zone Name | Mat. Vol. Ratio (%) |
---|---|---|---|---|
1 | 370 | 410 | I.B. | Be12Ti (65.6), Li2TiO3(14.4) |
2 | 410 | 730 | Plasma | vacuum |
3 | 730 | 733 | First wall | EUROFER (60), vapour (40) |
4 | 733 | 734 | TAR 1 | - |
5 | 734 | 762 | O.B. 1 | Be12Ti (65.6), Li2TiO3(14.4) |
6 | 762 | 763 | TAR 2 | - |
7 | 763 | 790 | O.B. 2 | Be12Ti (65.6), Li2TiO3(14.4) |
8 | 790 | 791 | TAR. 3 | - |
Zone | Φn (n/cm2.s) | (MeV) | Φp (p/cm2.s) | (MeV) |
---|---|---|---|---|
TAR 1 | 5.17 × 1014 | 2.73 | 1.86 × 1014 | 1.18 |
TAR 2 | 8.24 × 1013 | 4.37 × 10−1 | 4.45 × 1013 | 1.44 |
TAR 3 | 5.39 × 1012 | 6.44 × 10−1 | 7.02 × 1012 | 1.58 |
Nuclide | T1/2 | CFETR | Other Reactors or Accelerators | |||
---|---|---|---|---|---|---|
Irradiation Time | Typical Yields (GBq/g) | Typical Yields (GBq/g) | Irradiation Parameter | Reactor (N_flux n/cm2·s) or Accelerator (Beam Parameters) | ||
14C | 5730a | 28 d | 2.46 × 10−3 | 3.85 × 10−2 | 28 d | HFETR (1.1 × 1014) |
365 d | 3.21 × 10−2 | 5.00 × 10−1 | 365 d | |||
89Sr | 50.5 d | 30 d | 4.44 | 4.07 × 10−1 | 30 d | FBTR (2.45 × 1015) |
200 d | 1.08 × 101 | 7.03 × 10−1 | 180 d | CEFR (2.5 × 1015) | ||
32P | 14.3 d | 90 d | 7.55 × 102 | 4.85 × 102 | 80 d | CEFR (2.5 × 1015) |
28 d | 1.00 × 101 | 2.92 × 101 | 28 d | HFETR (1.1 × 1014) | ||
64Cu | 12.7 h | 3 d | 8.95 × 101(natZnO) 2.14 × 102 (Enriched- 64Zn) | 5.90 × 102 (Enriched- 64Ni) | 8 h | Low-energy proton cyclotron (11.4 MeV, 30 μA) |
67Cu | 2.58 d | 10 d | 1.92 (natZnO) 4.05 × 101 (Enriched- 67Zn) | 3.80 (Enriched-67Zn) | 24 h | Medium-energy proton cyclotron (70.0 MeV, 30 μA) |
1.13 (Enriched- 68Zn) | 53.5 h | 40 MeV e-LINAC | ||||
99Mo | 66 h | 8 d | 2.34 × 102 (natMo) | 5.44 × 101 (natMo) | 8 d | HFETR (1.1 × 1014) |
6.19 × 102 (Enriched-98Mo) | 2.04 × 102 (Enriched-98Mo) | |||||
8.36 × 102 (Enriched-100Mo) | 1.48 × 102 (Enriched-98Mo) | 24 h | Electron accelerator (60 MeV, 2 mA) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Zheng, S. Feasibility Study to Byproduce Medical Radioisotopes in a Fusion Reactor. Molecules 2023, 28, 2040. https://doi.org/10.3390/molecules28052040
Li J, Zheng S. Feasibility Study to Byproduce Medical Radioisotopes in a Fusion Reactor. Molecules. 2023; 28(5):2040. https://doi.org/10.3390/molecules28052040
Chicago/Turabian StyleLi, Jia, and Shanliang Zheng. 2023. "Feasibility Study to Byproduce Medical Radioisotopes in a Fusion Reactor" Molecules 28, no. 5: 2040. https://doi.org/10.3390/molecules28052040
APA StyleLi, J., & Zheng, S. (2023). Feasibility Study to Byproduce Medical Radioisotopes in a Fusion Reactor. Molecules, 28(5), 2040. https://doi.org/10.3390/molecules28052040