Correlation between Chemical Profile of Georgian Propolis Extracts and Their Activity against Helicobacter pylori
Abstract
:1. Introduction
2. Results and Discussion
2.1. Antibacterial Activity of Tested Georgian Propolis Extracts against H. pylori
2.2. Urease Inhibitory Activity of Tested Georgian Propolis Extracts
2.3. Impact of Components of Propolis Extracts on Anti-Helicobacter Activity
2.3.1. Composition of Georgian Propolises
2.3.2. Correlation Matrices
2.3.3. Principal Component Analysis and Hierarchical Fuzzy Clustering
3. Materials and Methods
3.1. Propolis and Reagents
3.2. Preparation of Propolis Extracts (70 EEP)
3.3. UHPLC-DAD-MS/MS Profile of Propolis Extracts
3.4. Colorimetric Assays of Propolis Extracts
3.5. Antibacterial Activity Assay
3.6. Urease Inhibitory Assay
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Bonifácio, B.V.; dos Santos Ramos, M.A.; da Silva, P.B.; Bauab, T.M. Antimicrobial activity of natural products against Helicobacter pylori: A review. Ann. Clin. Microbiol. Antimicrob. 2014, 13, 54. [Google Scholar] [CrossRef] [PubMed]
- Tacconelli, E.; Magrini, N. Global Priority List of Antibiotic-Resistant Bacteria; World Health Organisation: Geneva, Switzerland, 2017; p. 7. [Google Scholar]
- Ayala, G.; Escobedo-Hinojosa, W.I.; de La Cruz-Herrera, C.F.; Romero, I. Exploring alternative treatments for Helicobacter pylori infection. World J. Gastroenterol. 2014, 20, 1450–1469. [Google Scholar] [CrossRef] [PubMed]
- Baj, J.; Korona-Głowniak, I.; Forma, A.; Maani, A.; Sitarz, E.; Rahnama-Hezavah, M.; Radzikowska, E.; Portincasa, P. Mechanisms of the Epithelial–Mesenchymal Transition and Tumor Microenvironment in Helicobacter pylori-Induced Gastric Cancer. Cells 2020, 9, 1055. [Google Scholar] [CrossRef] [PubMed]
- Schaalan, M.; Mohamed, W.; Fathy, S. MiRNA-200c, MiRNA-139 and ln RNA H19; new predictors of treatment response in H-pylori- induced gastric ulcer or progression to gastric cancer. Microb. Pathog. 2020, 149, 104442. [Google Scholar] [CrossRef]
- Sharndama, H.C.; Mba, I.E. Helicobacter pylori: An up-to-date overview on the virulence and pathogenesis mechanisms. Braz. J. Microbiol. 2022, 53, 33–50. [Google Scholar] [CrossRef] [PubMed]
- Ivyna de Araújo Rêgo, R.; Guedes Silvestre, G.F.; Ferreira de Melo, D.; Albino, S.L.; Pimentel, M.M.; Silva Costa Cruz, S.B.; Cançado Castellano, L.R. Flavonoids-rich plant extracts against Helicobacter pylori infection as prevention to gastric cancer. Front. Pharmacol. 2022, 13, 2654. [Google Scholar] [CrossRef]
- Santiago, M.B.; Leandro, L.F.; Rosa, R.B.; Silva, M.V.; Teixeira, S.C.; Servato, J.P.S.; Martins, C.H.G. Brazilian red propolis presents promising anti-H. pylori activity in in vitro and in vivo assays with the ability to modulate the immune response. Molecules 2022, 27, 7310. [Google Scholar] [CrossRef]
- Roesler, B.M.; Rabelo-Gonçalves, E.M.A.; Zeitune, J.M.R. Virulence factors of Helicobacter pylori: A review. Clin. Med. Insights: Gastroenterol. 2014, 7, 9–27. [Google Scholar] [CrossRef]
- Weeks, D.L.; Sachs, G. Sites of PH regulation of the urea channel of Helicobacter pylori. Mol. Microbiol. 2001, 40, 1249–1259. [Google Scholar] [CrossRef]
- Morishita, S.; Nishimori, I.; Minakuchi, T.; Onishi, S.; Takeushi, H.; Sugiura, T.; Vuollo, D.; Scozaffa, A.; Supuran, T.C. Cloning, polymorphism and inhibition of beta-carbonic anhydrase of Helicobacter Pylori. J. Gastroenterol. 2008, 43, 849–857. [Google Scholar] [CrossRef]
- Baltas, N.; Karaoglu, S.A.; Tarakci, C.; Kolayli, S. Effect of propolis in gastric disorders: Inhibition studies on the growth of Helicobacter pylori and production of its urease. J. Enzyme Inhib. Med. Chem. 2016, 31, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Eaton, K.A.; Krakowka, S. Effect of gastric pH on urease-dependent colonization of gnotobiotic piglets by Helicobacter pylori. Infect. Immun. 1994, 62, 3604–3607. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.R.; Mobley, H.L.T.; Perez-Perez, G.I.; Blaser, M.J.; Smith, P.D. Helicobacter pylori urease is a potent stimulus of mononuclear phagocyte activation and inflammatory cytokine production. Gastroenterology 1996, 111, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Azizian, H.; Nabati, F.; Sharifi, A.; Siavoshi, F.; Mahdavi, M.; Amanlou, M. Large-scale virtual screening for the identification of new Helicobacter pylori urease inhibitor scaffolds. J. Mol. Model 2012, 18, 2917–2927. [Google Scholar] [CrossRef]
- Vale, F.F.; Oleastro, M. Overview of the phytomedicine approaches against Helicobacter pylori. World J. Gastroenterol. 2014, 20, 5594–5609. [Google Scholar] [CrossRef]
- Song, M.; Lee, D.; Han, Y.; Kim, E. Anti-inflammatory effect of korean propolis on Helicobacter pylori-infected gastric mucosal injury mice model. Nutrients 2022, 14, 4644. [Google Scholar] [CrossRef]
- Korona-Glowniak, I.; Glowniak-Lipa, A.; Ludwiczuk, A.; Baj, T.; Malm, A. The in vitro activity of essential oils against Helicobacter pylori growth and urease activity. Molecules 2020, 25, 586. [Google Scholar] [CrossRef]
- Grecka, K.; Kuś, P.M.; Okińczyc, P.; Worobo, R.W.; Walkusz, J.; Szweda, P. The anti-staphylococcal potential of ethanolic Polish propolis extracts. Molecules 2019, 24, 1732. [Google Scholar] [CrossRef]
- Romero, M.; Freire, J.; Pastene, E.; García, A.; Aranda, M.; González, C. Propolis polyphenolic compounds affect the viability and structure of Helicobacter pylori in vitro. Rev. Bras Pharmacogn. 2019, 29, 325–332. [Google Scholar] [CrossRef]
- Miłek, M.; Ciszkowicz, E.; Tomczyk, M.; Sidor, E.; Zaguła, G.; Lecka-Szlachta, K.; Dżugan, M. The study of chemical profile and antioxidant properties of poplar-type polish propolis considering local flora diversity in relation to antibacterial and anticancer activities in human breast cancer cells. Molecules 2022, 27, 725. [Google Scholar] [CrossRef]
- Sforcin, J.M.; Bankova, V. Propolis: Is there a potential for the development of new drugs? J. Ethnopharmacol. 2011, 133, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Pasupuleti, V.R.; Sammugam, L.; Ramesh, N.; Gan, S.H. Honey, propolis, and royal jelly: A comprehensive review of their biological actions and health benefits. Oxidative Med. Cell. Longev. 2017, 2017, 1259510. [Google Scholar] [CrossRef] [PubMed]
- Yen, C.H.; Chiu, H.F.; Wu, C.H.; Lu, Y.Y.; Han, Y.C.; Shen, Y.C.; Venkatakrishanan, K.; Wang, C.K. Beneficial efficacy of various propolis extracts and their digestive products by in vitro simulated gastrointestinal digestion. LWT 2017, 84, 281–289. [Google Scholar] [CrossRef]
- Almuhayawi, M.S. Propolis as a novel antibacterial agent. Saudi J. Biol. Sci. 2020, 27, 3079–3086. [Google Scholar] [CrossRef] [PubMed]
- Freitas, A.S.; Cunha, A.; Oliveira, R.; Almeida-Aguiar, C. Propolis antibacterial and antioxidant synergisms with gentamicin and honey. J. Appl. Microbiol. 2022, 132, 2733–2745. [Google Scholar] [CrossRef] [PubMed]
- Song, M.-Y.; Lee, D.-Y.; Kim, E.-H. Anti-inflammatory and anti-oxidative effect of korean propolis on Helicobacter pylori-induced gastric damage in vitro. J. Microbiol. 2020, 58, 878–885. [Google Scholar] [CrossRef]
- O’Donnell, F.; Smyth, T.J.P.; Ramachandran, V.N.; Smyth, W.F. A study of the antimicrobial activity of selected synthetic and naturally occurring quinolines. Int. J. Antimicrob. Agents 2010, 35, 30–38. [Google Scholar] [CrossRef]
- Bonvehí, J.S.; Coll, F.V.; Jordà, R.E. The composition, active components and bacteriostatic activity of propolis in dietetics. J. Am. Oil Chem. Soc. 1994, 71, 529–532. [Google Scholar] [CrossRef]
- Boyanova, L.; Gergova, G.; Nikolov, R.; Derejian, S.; Lazarova, E.; Katsarov, N.; Krastev, Z. Activity of bulgarian propolis against 94 Helicobacter pylori strains in vitro by agar-well diffusion, agar dilution and disc diffusion methods. J. Med. Microbiol. 2005, 54, 481–483. [Google Scholar] [CrossRef]
- Widelski, J.; Okińczyc, P.; Paluch, E.; Mroczek, T.; Szperlik, J.; Żuk, M.; Sroka, Z.; Sakipova, Z.; Chinou, I.; Skalicka-Woźniak, K.; et al. The antimicrobial properties of poplar and aspen–poplar propolises and their active components against selected microorganisms, including Helicobacter pylori. Pathogens 2022, 11, 191. [Google Scholar] [CrossRef]
- Bonvehí, J.S.; Gutiérrez, A.L. The antimicrobial effects of propolis were collected in different regions in the basque country (northern Spain). World J. Microbiol. Biotechnol. 2012, 28, 1351–1358. [Google Scholar] [CrossRef]
- Ratnasari, N.; Rezkitha, Y.A.A.; Adnyana, I.K.; Alfaray, R.I.; Fauzia, K.A.; Doohan, D.; Miftahussurur, M. Anti-Helicobacter pylori effects of propolis ethanol extract on clarithromycin and metronidazole resistant strains. Syst. Rev. Pharm. 2020, 11, 429–434. [Google Scholar] [CrossRef]
- Cui, K.; Lu, W.; Zhu, L.; Shen, X.; Huang, J. Caffeic acid phenetyl ester (CAPE), an active component of propolis, inhibits Helicobacter pylori peptide deformylase activity. Biochem. Biophys. Res. Commun. 2013, 435, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Kolayli, S.; Palabiyik, I.; Atik, D.S.; Keskin, M.; Bozdeveci, A.; Karaoglu, S.A. Comparison of antibacterial and antifungal effects of different varieties of honey and propolis samples. Acta Aliment. 2020, 49, 515–523. [Google Scholar] [CrossRef]
- Eumkeb, G.; Siriwong, S.; Phitaktim, S.; Rojtinnakorn, N.; Sakdarat, S. Synergistic activity and mode of action of flavonoids isolated from smaller galangal and amoxicillin combinations against amoxicillin-resistant Escherichia coli. J. Appl. Microbiol. 2012, 112, 55–64. [Google Scholar] [CrossRef]
- Krzyżek, P.; Migdał, P.; Paluch, E.; Karwańska, M.; Wieliczko, A.; Gościniak, G. Myricetin as an antivirulence compound interfering with a morphological transformation into coccoid forms and potentiating activity of antibiotics against Helicobacter pylori. Int. J. Mol. Sci. 2021, 22, 2695. [Google Scholar] [CrossRef]
- Can, Z.; Kara, Y.; Kolayli, S.; Çakmak, I. Determination of Anti-urease Activity of Propolis from Marmara Region of Turkey. Uludag Aricilik Derg. 2022, 22, 25–30. [Google Scholar] [CrossRef]
- Can, Z. Determination of in-vitro antioxidant, anti-urease, anti-hyaluronidase activities by phenolic rich bee products from different region of turkey. Fresenius Environ. Bull. 2018, 27, 6858–6866. [Google Scholar]
- Okińczyc, P.; Widelski, J.; Ciochoń, M.; Paluch, E.; Bozhadze, A.; Jokhadze, M.; Mtvarelishvili, G.; Korona-Głowniak, I.; Krzyżanowska, B.; Kuś, P.M. Phytochemical Profile, Plant Precursors and Some Properties of Georgian Propolis. Molecules 2022, 27, 7714. [Google Scholar] [CrossRef]
- Korona-Glowniak, I.; Cichoz-Lach, H.; Siwiec, R.; Andrzejczuk, S.; Glowniak, A.; Matras, P.; Malm, A. Antibiotic Resistance and Genotypes of Helicobacter pylori Strains in Patients with Gastroduodenal Disease in Southeast Poland. J. Clin. Med. 2019, 8, 1071. [Google Scholar] [CrossRef]
- Mahernia, S.; Bagherzadeh, K.; Mojab, F.; Amanlou, M. Urease Inhibitory Activities of some Commonly Consumed Herbal Medicines. Iran J. Pharm Res. 2015, 14, 943–947. [Google Scholar] [PubMed]
H. pylori ATCC 43504 | H. pylori Clinical Strains | ||
---|---|---|---|
Propolis Sample | MIC | MBC | MIC50/90 |
Norio | 125.0 | 125.0 | 250/250 |
Pasanauri | 62.5 | 62.5 | 62.5/125 |
Qvakhreli | 62.5 | 62.5 | 62.5/62.5 |
Ota | 31.3 | 31.3 | 31.3/31.3 |
Ogora | 31.3 | 31.3 | 15.6/31.3 |
Aspindza | 62.5 | 62.5 | 31.3/62.5 |
Vardzia | 31.3 | 31.3 | 31.3/31.3 |
Mestia | 125.0 | 125.0 | 125/250 |
Unknown 1 (Kakhetia) | 31.3 | 31.3 | 31.3/31.3 |
Unknown 2 (Kakhetia) | 31.3 | 31.3 | 31.3/31.3 |
Propolis Sample | IC50 (µg/mL) | % Inhibition of Control in 1 mg/mL Concentration |
---|---|---|
Ota | 549.9 | 64.2% |
Vardzia | 1484.8 | 66.6% |
Orogora | 864.7 | 64.7% |
Norio | 212.82 | 66.0% |
Pasanauri | 962.18 | 42.5% |
Qvakhreli | 141.57 | 74.7% |
Aspindza | 317.15 | 78.3% |
Mestia | 1594.67 | 51.9% |
Unknown 1 (Kakhetia) | 3859.23 | 70.1% |
Unknown 2 (Kakhetia) | 4.01 | 71.0% |
Thiourea | 92.7 | 100% |
RT MS | UV max [nm] | [M − H+]− | ASP | NOR | PAS | MES | ORG | VAR | OTA | QVA | UNK1 | UNK2 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Vanillin isomer b,c | 9.34 | 310,280 | 151.0393 | 0.03 | 0.58 | 1.60 | 2.87 | 0.05 | 0.06 | 0.14 | — | 0.02 | 0.02 |
Caffeic acid a,b,c | 11.56 | 323 | 179.0346 | 2.03 | 4.31 | 2.53 | 1.19 | 3.11 | 3.28 | 2.85 | 4.30 | 3.47 | 3.78 |
p-Coumaric acid a,b,c | 14.45 | 310 | 163.0401 | 1.37 | 5.41 | 8.36 | 10.44 | 2.32 | 2.25 | 2.23 | 2.72 | 2.23 | 1.99 |
Ferulic acid a,b,c | 15.24 | 325 | 193.0504 | 0.61 | 1.08 | 4.59 | 9.77 | 0.45 | 0.38 | 0.38 | 0.46 | 0.68 | 0.64 |
Isoferulic acid a,b,c | 15.75 | 324 | 193.0503 | 1.33 | 5.86 | 2.20 | 0.07 | 3.13 | 3.14 | 3.15 | 3.97 | 2.86 | 2.49 |
Caffeic acid ethyl ester b,c | 19.52 | 321 | 207.0662 | 0.30 | 3.61 | 2.55 | — | 1.73 | 1.51 | 1.58 | 2.25 | 1.40 | 1.16 |
iw Cinnamic acid a,b,c | 21.36 | 280 | — | 0.24 | 1.35 | 0.82 | 0.77 | 0.28 | 0.44 | 0.46 | 0.21 | 0.37 | 0.30 |
Unidentified | 23.24 | 308 | — | 0.30 | 2.09 | 1.41 | — | 1.18 | 0.89 | 0.96 | 1.61 | 0.73 | 0.63 |
Pinobanksin 5-methylether b,c | 23.54 | 287 | 285.0777 | 2.86 | 0.89 | 0.99 | — | 1.93 | 2.71 | 2.64 | 0.96 | 2.70 | 2.88 |
Unidentified | 26.00 | 265 | — | — | — | 0.84 | 1.40 | — | 0.07 | 0.06 | 0.04 | — | — |
Pinobanksin a,b,c | 27.45 | 292 | 271.0615 | 5.24 | 2.70 | 1.70 | — | 3.60 | 4.41 | 4.17 | 2.47 | 3.80 | 4.52 |
Apigenin a,b,c | 30.66 | 338, 263 | 269.0457 | 1.75 | 0.76 | 1.11 | 1.02 | 1.22 | 1.14 | 1.15 | 1.22 | 1.18 | 1.39 |
Unidentified | 31.92 | 310 | — | 1.00 | — | 0.34 | — | 0.57 | — | 0.57 | 0.43 | 0.78 | 0.81 |
1,3-di-p-Coumaroylglycerol b,c | 33.98 | 312 | 383.1143 | — | — | 0.52 | 1.89 | — | — | — | — | — | — |
(R/S) 1-p-Coumaroyl-3-feruloylglycerol b,c | 34.48 | 316 | 413.1241 | — | — | 0.40 | 1.11 | — | — | — | — | — | — |
Caffeic acid 2-methyl-2-butenyl ester b,c | 39.50 | 325 | 247.0979 | 2.41 | 3.97 | 0.70 | — | 5.62 | 3.21 | 3.27 | 9.69 | 4.39 | 3.79 |
Caffeic acid 3-methyl-2-butenyl ester (Basic prenyl ester) b,c | 40.91 | 325 | 247.0979 | 3.63 | 4.97 | 1.18 | — | 8.05 | 4.21 | 4.33 | 13.60 | 5.67 | 5.15 |
Caffeic acid 3-methyl-3-butenyl ester b,c | 41.42 | 325 | 247.0977 | 0.28 | 0.52 | — | — | 0.77 | 0.43 | 0.39 | 1.19 | 0.48 | 0.42 |
(R/S) 2-Acetyl-1-caffeoyl-3-p-coumaroylglycerol b,c | 41.91 | 315 | 441.1197 | — | 0.26 | 0.47 | 1.28 | — | — | — | — | — | — |
Chrysin a,b,c | 42.38 | 312sh, 268 | 253.0505 | 14.69 | 8.02 | 6.81 | — | 12.38 | 11.98 | 12.07 | 11.34 | 12.39 | 12.64 |
Caffeic acid benzyl ester b,c | 42.69 | 326 | 269.0818 | 2.31 | 4.44 | 3.10 | — | 2.66 | 3.06 | 3.08 | 2.56 | 2.73 | 2.67 |
(R/S) 2-Acetyl-1-caffeoyl-3-feruloylglycerol b,c | 42.71 | 325 | 471.1297 | — | — | — | 1.71 | — | — | — | — | — | — |
* Sakuranetin isomer c | 43.29 | 287 | 285.0769 | — | — | — | 2.07 | — | — | — | — | — | — |
Pinocembrin b,c | 43.41 | 290 | 255.0666 | 9.72 | 6.59 | 3.84 | — | 9.84 | 11.84 | 11.19 | 9.09 | 9.32 | 9.65 |
Sakuranetin b,c | 44.69 | 290 | 285.0773 | 2.15 | 0.30 | 0.55 | 1.62 | 1.66 | 1.92 | 2.02 | 1.22 | 1.84 | 2.00 |
Galangin a,b,c | 45.17 | 360, 266 | 269.0454 | 7.13 | 2.50 | 1.63 | — | 5.32 | 7.30 | 7.01 | 3.38 | 6.37 | 6.62 |
Acacetin a,b,c | 45.78 | 335, 269 | 283.0614 | 0.70 | 0.28 | 0.97 | 2.27 | 0.56 | 0.49 | 0.53 | 0.57 | 0.62 | 0.59 |
Ermanin isomer b,c | 46.13 | 333, 275 | 313.0721 | — | — | 3.52 | 8.09 | — | — | — | — | 0.17 | 0.22 |
Caffeic acid phenethyl ester (CAPE) b,c | 47.21 | 326 | 283.0981 | 2.22 | 2.53 | 1.57 | — | 2.35 | 1.85 | 1.94 | 2.99 | 2.16 | 2.17 |
Pinobanksin 3-O-acetate b,c | 47.69 | 295 | 313.0725 | 13.35 | 7.09 | 5.73 | — | 10.52 | 11.20 | 11.50 | 7.94 | 12.00 | 12.31 |
Methoxychrysin b,c | 48.06 | 310sh, 266 | 283.0614 | 2.03 | 0.15 | — | — | 0.77 | 0.59 | 0.32 | 0.72 | 0.35 | 0.70 |
Quercetin-dimethyl ether b,c | 48.19 | #370 | 329.0667 | — | — | 0.75 | 1.59 | — | — | — | — | — | — |
2-Acetyl-1,3-di-p-coumaroylglycerol b,c | 50.93 | 312 | 425.1242 | 0.50 | 1.92 | 3.33 | 9.39 | — | — | — | — | — | 0.70 |
(R/S) 2-Acetyl-3-p-coumaroyl-1-feruloylglycerol b,c | 51.87 | 316 | 455.1336 | — | 0.99 | 3.23 | 7.83 | — | — | — | — | — | — |
p-Coumaric acid 3-methyl-2-butenyl or 2-methyl-2-butenyl ester b,c | 52.18 | 313 | 231.1027 | 1.23 | 1.12 | 1.28 | — | 0.10 | 0.41 | 0.40 | 0.61 | 0.57 | 1.32 |
2-Acetyl-1,3-di-feruloylglycerol b,c | 52.49 | 324 | 485.1456 | — | 0.64 | 2.14 | 3.56 | — | — | — | — | — | — |
p-Coumaric acid benzyl ester b,c | 53.88 | 316 | 253.0869 | — | 1.80 | 5.15 | 5.40 | 1.54 | 1.37 | 1.35 | 1.27 | 1.40 | — |
(R/S) 1-Acetyl-2,3-di-feruloylglycerol b,c | 53.9 | 324 | 485.1455 | 1.30 | 0.80 | 2.41 | 2.6 | 1.80 | 2.11 | 2.08 | 1.04 | 2.05 | — |
Caffeic acid cinnamyl ester b,c | 56.10 | 323 | 295.0982 | 0.63 | 3.39 | 1.96 | — | 0.96 | 1.52 | 1.60 | 0.54 | 1.36 | 1.31 |
Pinobanksin-3-O-propanoate b,c | 58.20 | 294 | 327.0878 | 1.35 | 0.24 | 0.82 | — | 0.61 | 0.50 | 0.52 | 0.23 | 0.83 | 0.90 |
iw Tectochrysin | 63.00 | 313, 268 | — | 2.12 | 0.97 | 0.70 | — | 1.48 | 1.11 | 1.25 | 1.21 | 1.34 | 1.48 |
iw Pinostrobin | 63.48 | 288 | — | 1.06 | 1.01 | 1.45 | — | 1.11 | 1.61 | 1.60 | 0.68 | 1.03 | 1.01 |
p-Coumaric acid cinnamyl ester b,c | 64.11 | 313 | 279.1029 | 0.18 | 2.30 | 2.30 | — | 0.43 | 0.57 | 0.77 | 0.13 | 0.44 | 0.56 |
Unidentified | 64.6 | 323 | — | 0.80 | 3.43 | 2.38 | — | 1.10 | 1.53 | 1.76 | 0.63 | 1.44 | 1.51 |
Pinobanksin 3-O-butanoate or isobutanoate b,c | 64.92 | 293 | 341.1037 | 1.22 | 0.26 | 0.46 | — | 0.73 | 0.77 | 0.84 | 0.30 | 0.82 | 0.95 |
Unidentified | 67.34 | 279 | — | 0.15 | 1.47 | 2.02 | 7.70 | 0.06 | — | — | — | — | — |
p-Metoxycinnamic acid cinnamyl ester b,c | 69.35 | 282 | 293.2125 | 2.53 | 0.63 | 1.82 | — | 1.90 | 1.84 | 1.92 | 0.74 | 1.73 | 1.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Widelski, J.; Okińczyc, P.; Suśniak, K.; Malm, A.; Bozhadze, A.; Jokhadze, M.; Korona-Głowniak, I. Correlation between Chemical Profile of Georgian Propolis Extracts and Their Activity against Helicobacter pylori. Molecules 2023, 28, 1374. https://doi.org/10.3390/molecules28031374
Widelski J, Okińczyc P, Suśniak K, Malm A, Bozhadze A, Jokhadze M, Korona-Głowniak I. Correlation between Chemical Profile of Georgian Propolis Extracts and Their Activity against Helicobacter pylori. Molecules. 2023; 28(3):1374. https://doi.org/10.3390/molecules28031374
Chicago/Turabian StyleWidelski, Jarosław, Piotr Okińczyc, Katarzyna Suśniak, Anna Malm, Anna Bozhadze, Malkhaz Jokhadze, and Izabela Korona-Głowniak. 2023. "Correlation between Chemical Profile of Georgian Propolis Extracts and Their Activity against Helicobacter pylori" Molecules 28, no. 3: 1374. https://doi.org/10.3390/molecules28031374
APA StyleWidelski, J., Okińczyc, P., Suśniak, K., Malm, A., Bozhadze, A., Jokhadze, M., & Korona-Głowniak, I. (2023). Correlation between Chemical Profile of Georgian Propolis Extracts and Their Activity against Helicobacter pylori. Molecules, 28(3), 1374. https://doi.org/10.3390/molecules28031374