Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = hydroethanolic extracts Helicobacter pylori

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1663 KB  
Article
From Primary Data to Ethnopharmacological Investigations on Achillea erba-rotta subsp. moschata (Wulfen) I.Richardson as a Remedy against Gastric Ailments in Valmalenco (Italy)
by Martina Bottoni, Giulia Martinelli, Nicole Maranta, Emanuela Sabato, Fabrizia Milani, Lorenzo Colombo, Paola Sira Colombo, Stefano Piazza, Enrico Sangiovanni, Claudia Giuliani, Piero Bruschi, Giulio Vistoli, Mario Dell’Agli and Gelsomina Fico
Plants 2024, 13(4), 539; https://doi.org/10.3390/plants13040539 - 16 Feb 2024
Cited by 3 | Viewed by 2036
Abstract
(1) Background: Within the framework of the European Interreg Italy–Switzerland B-ICE & Heritage project (2018–2022), this study originated from a three-year ethnobotanical survey in Valmalenco (Sondrio, Italy). Following a preliminary work published by our group, this research further explored the folk therapeutic use [...] Read more.
(1) Background: Within the framework of the European Interreg Italy–Switzerland B-ICE & Heritage project (2018–2022), this study originated from a three-year ethnobotanical survey in Valmalenco (Sondrio, Italy). Following a preliminary work published by our group, this research further explored the folk therapeutic use of Achillea erba-rotta subsp. moschata (Wulfen) I.Richardson (Asteraceae) for dyspepsia disorders, specifically its anti-inflammatory potential at a gastrointestinal level. (2) Methods: Semi-structured interviews were performed. The bitter taste was investigated through molecular docking software (PLANTS, GOLD), while the anti-inflammatory activity of the hydroethanolic extract, infusion, and decoction was evaluated based on the release of IL-8 and IL-6 after treatment with TNFα or Helicobacter pylori. The minimum inhibitory concentration and bacterial adhesion on the gastric epithelium were evaluated. (3) Results: In total, 401 respondents were interviewed. Molecular docking highlighted di-caffeoylquinic acids as the main compounds responsible for the interaction with bitter taste receptors. The moderate inhibition of IL-6 and IL-8 release was recorded, while, in the co-culture with H. pylori, stronger anti-inflammatory potential was expressed (29–45 μg/mL). The concentration-dependent inhibition of H. pylori growth was recorded (MIC = 100 μg/mL), with a significant anti-adhesive effect. (4) Conclusions: Confirming the folk tradition, the study emphasizes the species’ potentiality for dyspepsia disorders. Future studies are needed to identify the components mostly responsible for the biological effects. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

42 pages, 1296 KB  
Article
Phytochemical Profile and Antimicrobial Potential of Propolis Samples from Kazakhstan
by Jarosław Widelski, Piotr Okińczyc, Katarzyna Suśniak, Anna Malm, Emil Paluch, Asanali Sakipov, Gulsim Zhumashova, Galiya Ibadullayeva, Zuriyadda Sakipova and Izabela Korona-Glowniak
Molecules 2023, 28(7), 2984; https://doi.org/10.3390/molecules28072984 - 27 Mar 2023
Cited by 12 | Viewed by 3682
Abstract
In the current paper, we present the results of Kazakh propolis investigations. Due to limited data about propolis from this country, research was focused mainly on phytochemical analysis and evaluation of propolis antimicrobial activity. uHPLC-DAD (ultra-high-pressure-liquid chromatography coupled with diode array detection, UV/VIS) [...] Read more.
In the current paper, we present the results of Kazakh propolis investigations. Due to limited data about propolis from this country, research was focused mainly on phytochemical analysis and evaluation of propolis antimicrobial activity. uHPLC-DAD (ultra-high-pressure-liquid chromatography coupled with diode array detection, UV/VIS) and uHPLC-MS/MS (ultra-high-pressure-liquid chromatography coupled with tandem mass spectrometry) were used to phytochemical characteristics while antimicrobial activity was evaluated in the serial dilution method (MIC, minimal inhibitory concentration, and MBC/MFC, minimal bactericidal/fungicidal concentration measurements). In the study, Kazakh propolis exhibited a strong presence of markers characteristic of poplar-type propolis—flavonoid aglycones (pinocembrin, galangin, pinobanksin and pinobanskin-3-O-acetate) and hydroxycinnamic acid monoesters (mainly caffeic acid phenethyl ester and different isomers of caffeic acid prenyl ester). The second plant precursor of Kazakh propolis was aspen–poplar with 2-acetyl-1,3-di-p-coumaroyl glycerol as the main marker. Regarding antimicrobial activity, Kazakh propolis revealed stronger activity against reference Gram-positive strains (MIC from 31.3 to above 4000 mg/L) and yeasts (MIC from 62.5 to 1000 mg/L) than against reference Gram-negative strains (MIC ≥ 4000 mg/L). Moreover, Kazakh propolis showed good anti-Helicobacter pylori activity (MIC and MBC were from 31.3 to 62.5 mg/L). All propolis samples were also tested for H. pylori urease inhibitory activity (IC50, half-maximal inhibitory concentration, ranged from 440.73 to 11,177.24 µg/mL). In summary Kazakh propolis are potent antimicrobial agents and may be considered as a medicament in the future. Full article
(This article belongs to the Special Issue Natural Products from Medicinal Plants)
Show Figures

Figure 1

14 pages, 1083 KB  
Article
Correlation between Chemical Profile of Georgian Propolis Extracts and Their Activity against Helicobacter pylori
by Jarosław Widelski, Piotr Okińczyc, Katarzyna Suśniak, Anna Malm, Anna Bozhadze, Malkhaz Jokhadze and Izabela Korona-Głowniak
Molecules 2023, 28(3), 1374; https://doi.org/10.3390/molecules28031374 - 1 Feb 2023
Cited by 17 | Viewed by 6177
Abstract
Helicobacter pylori (H. pylori) is considered the most common bacterial pathogen colonizing stomach mucosa of almost half the world’s population and is associated with various gastrointestinal diseases (from digestive problems and ulcers to gastric cancer). A lack of new drugs and [...] Read more.
Helicobacter pylori (H. pylori) is considered the most common bacterial pathogen colonizing stomach mucosa of almost half the world’s population and is associated with various gastrointestinal diseases (from digestive problems and ulcers to gastric cancer). A lack of new drugs and a growing number of H. pylori antibiotic-resistant strains is a serious therapeutic problem.As a mixture of natural compounds, propolis has antimicrobial activity based on high concentrations of bioactive polyphenols (mainly flavonoids and phenolic acid derivates). The chemical composition of tested Georgian propolis is characterized by the presence of flavonoids aglycones, and phenolic acid monoesters, e.g., pinobanksin-5-methyl ether, pinobanksin, chrysin, pinocembrin, galangin, pinobanksin-3-O-acetate, pinostrobin and pinobanksin-3-O-butanoate, or isobutanoate and methoxycinnamic acid cinnamyl ester. The anti-H. pylori activity of 70% ethanol water extracts of 10 Georgian propolis samples was evaluated in vitro by MIC (minimal inhibitory concentration) against the reference strain (H. pylori ATCC 43504) and 10 clinical strains with different antibiotic-resistance patterns. The strongest anti-Helicobacter activity (MIC and MBC = 31.3 µg/mL) was observed for propolis from Orgora, Ota, and Vardzia and two from Khaheti. Lower levels of activity (MIC = 62.5 µg/mL) were found in propolis obtained from Qvakhreli and Pasanauri, while the lowest effect was observed for Norio and Mestia (MIC = 125.0 µg/mL). However, despite differences in MIC, all evaluated samples exhibited bactericidal activity. We selected the most active propolis samples for assessment of urease inhibition property. Enzyme activity was inhibited by propolis extracts, with IC50 ranging from 4.01 to 1484.8 µg/mL. Principal component analysis (PCA) and hierarchical fuzzy clustering (dendrograms) coupled with matrix correlation analysis exhibited that the strongest anti-Helicobacter activity was connected with black poplar origin and high flavonoid content of propolis. Samples with lower activity contained higher presence of aspen markers and/or dominance of non-flavonoid polyphenols over flavonoids. In summary, Georgian propolis can be regarded as a source bioactive compounds that can be used as adjuvant in therapy of H. pylori infection. Full article
(This article belongs to the Special Issue Antimicrobial Properties of Natural Products (Volume Ⅱ))
Show Figures

Figure 1

13 pages, 430 KB  
Article
Phytochemical Fingerprinting and In Vitro Antimicrobial and Antioxidant Activity of the Aerial Parts of Thymus marschallianus Willd. and Thymus seravschanicus Klokov Growing Widely in Southern Kazakhstan
by Bagda Sagynaikyzy Zhumakanova, Izabela Korona-Głowniak, Krystyna Skalicka-Woźniak, Agnieszka Ludwiczuk, Tomasz Baj, Krzysztof Kamil Wojtanowski, Aleksandra Józefczyk, Karlygash Altynbekovna Zhaparkulova, Zuriyadda Bektemirova Sakipova and Anna Malm
Molecules 2021, 26(11), 3193; https://doi.org/10.3390/molecules26113193 - 26 May 2021
Cited by 30 | Viewed by 6025
Abstract
The chemical composition of the hydroethanolic extracts (60% v/v) from the aerial parts of Thymus marschallianus Willd (TM) and Thymus seravschanicus Klokov (TS) from Southern Kazakhstan flora was analyzed together with their hexane fractions. Determination of antibacterial, antifungal and antioxidant activities of [...] Read more.
The chemical composition of the hydroethanolic extracts (60% v/v) from the aerial parts of Thymus marschallianus Willd (TM) and Thymus seravschanicus Klokov (TS) from Southern Kazakhstan flora was analyzed together with their hexane fractions. Determination of antibacterial, antifungal and antioxidant activities of both extracts was also performed. RP-HPLC/PDA and HPLC/ESI-QTOF-MS showed that there were some differences between the composition of both extracts. The most characteristic components of TM were rosmarinic acid, protocatechuic acid, luteolin 7-O-glucoside, and apigenin 7-O-glucuronide, while protocatechuic acid, luteolin 7-O-glucoside, luteolin 7-O-glucuronide, and eriodictyol predominated in TS. The content of polyplenols was higher in TS than in TM. The GC-MS analysis of the volatile fraction of both examined extracts revealed the presence of thymol and carvacrol. Additionally, sesquiterpenoids, fatty acids, and their ethyl esters were found in TM, and fatty acid methyl esters in TS. The antioxidant activity of both extracts was similar. The antibacterial activity of TS extract was somewhat higher than TM, while antifungal activity was the same. TS extract was the most active against Helicobacter pylori ATCC 43504 with MIC (minimal inhibitory concentration) = 0.625 mg/mL, exerting a bactericidal effect. The obtained data provide novel information about the phytochemistry of both thyme species and suggest new potential application of TS as a source of bioactive compounds, especially with anti-H. pylori activity. Full article
Show Figures

Figure 1

Back to TopTop