Comparison of Composition, Free-Radical-Scavenging Capacity, and Antibiosis of Fresh and Dry Leave Aqueous Extract from Michelia shiluensis
Abstract
:1. Introduction
2. Results and Discussion
2.1. GC-MS Component Analysis of MSFLAE and MSDLAE
2.2. Antioxidant Activity
2.3. Determination of Antibacterial Activity
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Plant Materials and Extraction
3.3. Chemical Analysis
3.4. Assay of DPPH Radical-Scavenging Activity
3.5. Assay of FRAP Radical-Scavenging Activity
3.6. Assay of ABTS Radical-Scavenging Activity
3.7. Preparation of Bacterial Suspension and Drug Solution
3.8. Disk Diffusion Method
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviation
References
- Lin, C.L.; Kao, C.L.; Li, W.J.; Li, H.T.; Chen, C.Y. A New Aristolactam Alkaloid from Michelia compressa var. compressa. Chem. Nat. Compd. 2018, 54, 732–734. [Google Scholar] [CrossRef]
- Ogura, M.; Cordell, G.A.; Farnsworth, N.R. Anticancer sesquiterpene lactones of Michelia compressa (Magnoliaceae). Phytochemistry 1978, 17, 957–961. [Google Scholar] [CrossRef]
- Ruwali, P.; Adhikari, M.; Sharma, S. Phytochemical and antioxidant properties of various extracts of Michelia champaca leaves. Int. J. Pharm. Pharm. Sci. 2019, 11, 56–61. [Google Scholar] [CrossRef]
- Parimi, U.; Kolli, D. Antibacterial and free radical scavenging activity of Michelia champaca Linn. flower extracts. Free Radic. Antioxid. 2012, 2, 58–61. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.S.; Wee, W.; Siong, J.Y.F.; Syamsumir, D.F. Characterization of antimicrobial, antioxidant, anticancer property and chemical composition of Michelia champaca seed and flower extracts. Pharm. Sci. 2011, 4, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Yesmin, R.; Das, P.K.; Belal, H.; Aktar, S.; Siddika, M.A.; Asha, S.Y.; Habib, F.; Rakib, M.A.; Islam, F. Anticancer potential of Linn. bark against Ehrlich ascites carcinoma (EAC) cells in Swiss albino mice. Nat. Prod. J. 2021, 11, 85–96. [Google Scholar] [CrossRef]
- Shang, C.Q.; Hu, Y.M.; Deng, C.H.; Hu, K.J. Rapid determination of volatile constituents of Michelia alba flowers by gas chromatography-mass spectrometry with solid-phase microextraction. J. Chromatogr. A 2002, 942, 283–288. [Google Scholar] [CrossRef]
- Chaves, N.; Santiago, A.; Alias, J.C. Quantification of the Antioxidant Activity of Plant Extracts: Analysis of Sensitivity and Hierarchization Based on the Method Used. Antioxidants 2020, 9, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, J.; Wang, L.J.; Qian, J.; Wang, P.P.; Wang, X.J.; Ma, G.L.; Zeng, H.Q.; Li, J.; Hu, J.F. Structurally Diverse Sesquiterpenoids from the Endangered Ornamental Plant Michelia shiluensis. J. Nat. Prod. 2018, 81, 2195–2204. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.W.; Liu, C.M.; Chung, M.I.; Chen, C.Y. Biofunctional Constituents from Michelia compressa var. lanyuensis with Anti-Melanogenic Propertie. Molecules 2015, 20, 12166–12174. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.F.; Zhang, Q.; Liu, X.M.; Ma, L.; Lai, F. Extraction of polysaccharides and its antitumor activity on Magnolia kwangsiensis Figlar & Noot. Carbohydr. Polym. 2016, 142, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines 2018, 5, 93. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Michel, L.; Chaumont, J.P.; Millet-Clerc, J. Use of caryophyllene oxide as an antifungal agent in an in vitro experimental model of onychomycosis. Mycopathologia 1999, 148, 79–82. [Google Scholar] [CrossRef] [PubMed]
- Matthaei, S.; Catrinoiu, D.; Celinski, A.; Ekholm, E.; Coo, K.; Hirshberg, B.; Chen, H.; Iqbal, N.; Hansen, L. Randomized, Double-Blind Trial of Triple Therapy With Saxagliptin Add-on to Dapagliflozin Plus Metformin in Patients With Type 2 Diabetes. Diabetes Care 2015, 38, 2018–2024. [Google Scholar] [CrossRef] [Green Version]
- McMurray, J.J.V.; Ponikowski, P.; Bolli, G.B.; Lukashevich, V.; Kozlovski, P.; Kothny, W.; Lewsey, J.D.; Krum, H. Effects of Vildagliptin on Ventricular Function in Patients With Type 2 Diabetes Mellitus and Heart Failure: A Randomized Placebo-Controlled Trial. JACC Heart Fail. 2018, 6, 8–17. [Google Scholar] [CrossRef]
- Bayala, B.; Bassole, I.H.; Scifo, R.; Gnoula, C.; Simpore, J. Anticancer activity of essential oils and their chemical components—A review. Am. J. Cancer Res. 2014, 4, 591–607. [Google Scholar]
- Aggarwal, K.K.; Khanuja, S.P.S.; Ahmad, A.; Santha Kumar, T.R.; Kumr, S. Antimicrobial activity profiles of the two enantiomers of limonene and carvone isolated from the oils of Mentha spicata and Anethum sowa. Flavour Fragr. J. 2002, 17, 59–63. [Google Scholar] [CrossRef]
- Saviuc, C.M.; Drumea, V.; Olariu, L.; Chifiriuc, M.C.; Bezirtzoglou, E. Essential oils with microbicidal and antibiofilm activity. Curr. Pharm. Biotechnol. 2015, 16, 137–151. [Google Scholar] [CrossRef]
- Sheweita, S.A.; El-Hosseiny, L.S.; Nashashibi, M.A. Protective Effects of Essential Oils as Natural Antioxidants against Hepatotoxicity Induced by Cyclophosphamide in Mice. PLoS ONE 2016, 11, e0165667. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, C.; Champati, B.B.; Dash, B.; Jena, S.; Ray, A.; Panda, P.C.; Nayak, S.; Sahoo, A. Volatile Profiling of Magnolia champaca Accessions by Gas Chromatography Mass Spectrometry Coupled with Chemometrics. Molecules 2022, 27, 7302. [Google Scholar] [CrossRef]
- Cheng, K.K.; Nadri, M.H.; Othman, N.Z.; Rashid, S.N.A.A.; Lim, Y.C.; Leong, H.Y. Phytochemistry, Bioactivities and Traditional Uses of Michelia × alba. Molecules 2022, 27, 3450. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Wei, B.; Fu, Y. A Study of the Chemical Composition and Biological Activity of Michelia macclurei Dandy Heartwood: New Sources of Natural Antioxidants, Enzyme Inhibitors and Bacterial Inhibitors. Int. J. Mol. Sci. 2023, 24, 7972. [Google Scholar] [CrossRef] [PubMed]
- Dai, D.N.; Thang, T.D.; Ogunwande, I.A. Essential oil composition of four Magnoliaceae species cultivated in Vietnam. J. Herbs Spices Med. Plants 2016, 22, 279–287. [Google Scholar] [CrossRef]
- Pacciaroni, A.V.; Mongelli, E.; Ariza Espinar, L.; Romano, A.; Ciccia, G.; Silva, G.L. Bioactive constituents of Conyza albida. Planta Med. 2000, 66, 720–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Locksley, H.D.; Fayez, M.B.; Radwan, A.S.; Chari, V.M. Constituents of local plants. Planta Med. 1982, 45, 20–22. [Google Scholar] [CrossRef]
- Ćavar Zeljković, S.; Siljak-Yakovlev, S.; Tan, K.; Maksimović, M. Chemical composition and antioxidant activity of Geranium macrorrhizum in relation to ploidy level and environmental conditions. Plant Syst. Evol. 2020, 306, 1–12. [Google Scholar] [CrossRef]
- Satyal, P.; Mallik, S.; Gautam, T.; Vogler, B.; Setzer, W.N. Composition and Bioactivities of Leaf Essential Oil of Cassia tora. Chem. Nat. Compd. 2013, 49, 553–554. [Google Scholar] [CrossRef]
- Rodriguez, E.; Towers, G.H.N.; Mitchell, J.C. Biological activities of sesquiterpene lactones. Phytochemistry 1976, 15, 1573–1580. [Google Scholar] [CrossRef]
- Venkatadri, B.; Husro, A.; Aarti, C.; Rameshkumar, M.R.; Agastian, P. In vitro assessment on medicinal properties and chemical composition of Michelia nilagirica bark. Asian Pac. J. Trop. Biomed. 2017, 7, 782–790. [Google Scholar] [CrossRef]
- De Ford, C.; Ulloa, J.L.; Catalan, C.A.N.; Grau, A.; Maritino, V.S.; Muschietti, L.V.; Merfort, I. The sesquiterpene lactone polymatin B from Smallanthus sonchifolius induces different cell death mechanisms in three cancer cell lines. Phytochemistry 2015, 117, 332–339. [Google Scholar] [CrossRef]
- Tian, M.; Wu, X.; Hong, Y.; Wang, H.; Deng, G.; Zhou, Y. Comparison of Chemical Composition and Bioactivities of Essential Oils from Fresh and Dry Rhizomes of Zingiber zerumbet (L.) Smith. BioMed Res. Int. 2020, 11, 9641284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chithiraikumar, S.; Gandhimathi, S.; Neelakantan, M. Structural Characterization, Surface Characteristics and Noncovalent Interactions of a Heterocyclic Schi Base: Evaluation of Antioxidant Potential by UV–visible Spectroscopy and DFT. J. Mol. Struct. 2017, 1137, 569–580. [Google Scholar] [CrossRef]
- Sinan, K.I.; Zengin, G.; Fiorentino, A.; D’Abrosca, B.; Ak, G.; Lobine, D.; Etienne, O.K.; Subratty, A.H.; Mahomoodally, M.F. Biological insights and NMR metabolic profiling of differ- ent extracts of Spermacoce verticillata (L.) G. Mey. Chem. Biodivers. 2021, 18, e2100371. [Google Scholar] [CrossRef] [PubMed]
- Bezek, K.; Kramberger, K.; Barlič-Maganja, D. Antioxidant and Antimicrobial Properties of Helichrysum italicum (Roth) G. Don Hydrosol. Antibiotics 2022, 11, 1017. [Google Scholar] [CrossRef]
- Ćavar, S.; Maksimović, M. Antioxidant Activity of Essential Oil and Aqueous Extract of Pelargonium Graveolens L’Her. Food Control 2012, 23, 263–267. [Google Scholar] [CrossRef]
- Singh, G.; Kapoor, I.P.; Singh, P.; Heluani, C.S.; Lampasona, M.P.; Catalan, C.A. Comparative study of chemical composition and antioxidant activity of fresh and dry rhizomes of turmeric (Curcuma longa Linn.). Food Chem. Toxicol. 2010, 48, 1026–1031. [Google Scholar] [CrossRef]
- Kessy, H.N.E.; Hu, Z.; Zhao, L.; Zhou, M. Effect of Steam Blanching and Drying on Phenolic Compounds of Litchi Pericarp. Molecules 2016, 21, 729. [Google Scholar] [CrossRef] [Green Version]
- Djenane, D. Chemical profile, antibacterial and antioxidant activity of Algerian citrus essential oils and their application in Sardina pilchardus. Foods 2015, 4, 208–228. [Google Scholar] [CrossRef] [Green Version]
- Czek, K.B.; Kosakowska, O.; Przybył, J.L.; Pióro-Jabrucka, E.; Costa, R.; Mondello, L.; Gniewosz, M.; Synowiec, A.; Węglarz, Z. Antibacterial and antioxidant activity of essential oils and extracts from costmary (Tanacetum balsamita L.) and tansy (Tanacetum vulgare L.). Ind. Crops Prod. 2017, 102, 154–163. [Google Scholar] [CrossRef]
- Kratchanova, M.; Denev, P.; Ciz, M.; Lojek, A.; Mihailov, A. Evaluation of antioxidant activity of medicinal plants containing polyphenol compounds. Comparison of two extraction systems. Acta Biochim. Pol. 2010, 57, 229–234. [Google Scholar] [CrossRef] [Green Version]
- Aazza, S.; Lyoussi, B.; Miguel, M.G. Antioxidant activity of some Morrocan hydrosols. J. Med. Plants Res. 2011, 5, 6688–6696. [Google Scholar] [CrossRef]
- Aćimović, M.; Tešević, V.; Smiljanić, K.; Cvetković, M.; Stanković, J.; Kiprovski, B.; Sikora, V. Hydrolates—By-Products of Essential Oil Distillation: Chemical Composition, Biological Activity and Potential Uses. Savrem. Tehnol. 2020, 9, 54–70. [Google Scholar] [CrossRef]
- Karabıyıklı, S.; Degirmenci, H.; Karapinar, M. Inhibitory effect of sour orange (Citrus aurantium) juice on Salmonella typhimurium and Listeria monocytogenes. LWT-Food Sci. Technol. 2014, 55, 421–425. [Google Scholar] [CrossRef]
- Vuko, E.; Dunkić, V.; Maravić, A.; Ruščić, M.; Nazlić, M.; Radan, M.; Ljubenkov, I.; Soldo, B.; Fredotović, Ž. Not Only a Weed Plant-Biological Activities of Essential Oil and Hydrosol of Dittrichia viscosa (L.) Greuter. Plants 2021, 4, 1837. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.C.; Huang, S.L.; Ko, C.H.; Chang, H.T. Antifungal Sesquiterpenoids from Michelia formosana Leaf Essential Oil against Wood-Rotting Fungi. Molecules 2022, 27, 2136. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.S.; He, Y.H.; Zheng, X.K.; Wang, J.C.; Cao, Y.G.; Zhang, Y.L.; Song, K. Four New Monoterpenoid Glycosides from the Flower Buds of Magnolia biondii. Molecules 2016, 21, 728. [Google Scholar] [CrossRef]
- Ali-Shtayeh, M.S.; Yaghmour, R.M.; Faidi, Y.R.; Salem, K.; Al-Nuri, M.A. Antimicrobial activity of 20 plants used in folkloric medicine in the Palestinian area. J. Ethnopharmacol. 1998, 60, 265–271. [Google Scholar] [CrossRef]
- Değirmenci, H.; Erkurt, H. Relationship between volatile components, antimicrobial and antioxidant properties of the essential oil, hydrosol and extracts of Citrus aurantium L. flowers. J. Infect. Public Health 2020, 13, 58–67. [Google Scholar] [CrossRef]
- Liu, Y.; Meng, D.H.; Li, L.Z.; Zhang, X.Y.; Hu, J.Z.; Lv, Z.L. Preparation of Bamboo Leaf Hydrosols by the Steam-distillation Extraction Process. Bioresources 2018, 13, 1930–2126. [Google Scholar] [CrossRef]
- Jeevitha, M.; Ravi, P.V.; Subramaniyam, V.; Pichumani, M.; Sripathi, S.K. Exploring the phyto—And physicochemical evaluation, fluorescence characteristics, and antioxidant activities of Acacia ferruginea Dc: An endangered medicinal plant. Future J. Pharm. Sci. 2021, 7, 228. [Google Scholar] [CrossRef]
- Hassanpour, H.; Khoshamad, R. Antioxidant Capacity, Phenolic Compounds and Antioxidant Enzymes of Wild Grape Seeds from Different Accessions Grown in Iran. Erwerbs-Obstbau 2017, 59, 281–290. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Hawkins Byrne, D. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Bauer, A.W.; Kirby, W.M.; Sherris, J.C.A.; Turck, M.T. Antibiotic susceptibility testing by standardized single disk method. Am. J. Clin. Pathol. 1966, 36, 493–496. [Google Scholar] [CrossRef]
- Canales, M. Evaluation of the antimicrobial activity of Acalypha monostachya Cav. (Euphorbiales: Euphorbiaceae). Afr. J. Pharm. Pharmacol. 2011, 5, 640–647. [Google Scholar] [CrossRef] [Green Version]
Numbering | Compound | Retention Time/min | Molecular Formula | Comparative Content/% | ||
---|---|---|---|---|---|---|
MSFLAE | MSDLAE | MSFLAE | MSDLAE | |||
1 | 3-methyl-Pentanal | 5.505 | C6H12O | 0.51 | ||
2 | (E)-3-(2-hydroxyphenyl)-2-Propenoic acid | 9.678 | C9H8O3 | 1.63 | ||
3 | 5-Methyl-2,4-diisopropylphenol | 15.144 | C13H20O | 0.48 | ||
4 | 2,6-Ditert-butyl-4-methyl phenol | 16.806 | 23.857 | C15H24O | 3.05 | 5.15 |
5 | β-Ionone | 20.047 | C13H20O | 3.38 | ||
6 | cis-Z-α-bisabolene epoxide | 20.759 | 30.149 | C15H24O | 1.54 | 3.76 |
7 | (-)-Spathulenol | 21.228 | 28.552 | C15H24O | 0.73 | 6.63 |
8 | 4-(2,2,6-Trimethyl-7-oxabicyclo [4.1.0]hept-4-en-1-yl)pent-3-en-2-one | 21.56 | C14H20O2 | 0.6 | ||
9 | 3-Methyl-2-butenoic acid, tridec-2-ynyl ester | 21.667 | C18H30O2 | 11.29 | ||
10 | Isoaromadendrene epoxide | 21.733 | C15H24O | 8.86 | ||
11 | Caryophylene oxide | 21.863 | C15H24O | 2.95 | ||
12 | 3a,9-Dimethyldodecahydrocyclohepta[d]inden-3-one | 22.291 | C16H26O | 0.51 | ||
13 | Cryptomeridiol | 22.391 | 29.703 | C15H28O2 | 9.67 | 8.86 |
14 | 4-(1,5-Dihydroxy-2,6,6-trimethylcyclohex-2-enyl)bμt-3-en-2-one | 22.552 | C13H20O3 | 0.98 | ||
15 | 1,2,3,6-tetramethyl-Bicyclo [2.2.2]octa-2,5-diene | 22.659 | C12H18 | 7.2 | ||
16 | Aromadendrene oxide-(II) | 22.807 | C15H24O | 5.26 | ||
17 | Kessane | 22.86 | C15H26O | 1.55 | ||
18 | valenca-1(10),8-dien-11-ol | 23.116 | C15H24O | 2.2 | ||
19 | (–)-7βH-eudesmane-4α,11-diol | 23.187 | C15H28O2 | 11.66 | ||
20 | (E)-Atlantone | 23.276 | C15H22O | 2 | ||
21 | 5-epi-7α,15-dihydroxyacorenol | 24.386 | C15H26O2 | 1.24 | ||
22 | Ledene oxide-(II) | 25.039 | C15H24O | 0.76 | ||
23 | 1,2-Benzenedicarboxylic acid, bis(2-methoxyethyl) ester | 26.214 | C14H18O6 | 1.65 | ||
24 | Hexadecane | 27.08 | C16H34 | 0.36 | ||
25 | Cyclooctenone, dimer | 27.852 | C16H24O2 | 0.84 | ||
26 | Acetic acid, octadecyl ester | 30.808 | C20H40O2 | 0.64 | ||
27 | 2,2′-methylenebis [6-(1,1-dimethylethyl)-4-methyl-Phenol | 34.025 | C23H32O2 | 10.39 | ||
28 | 1,3-Benzenedicarboxylic acid, bis(2-ethylhexyl) ester | 38.957 | C24H38O4 | 3.83 | ||
29 | 8-Hydroxy-2-octanone | 17.554 | C8H16O2 | 1 | ||
30 | − | 27.163 | 1.01 | |||
31 | − | 27.3 | 0.59 | |||
32 | − | 27.573 | 0.6 | |||
33 | 6-Isopropenyl-4,8a-dimethyl-1,2,3,5,6,7,8,8a-octahydronaphthalene-2,3-diol | 27.709 | C15H24O2 | 1.71 | ||
34 | − | 27.78 | 0.51 | |||
35 | 5,6,6-Trimethyl-5-(3-oxobut-1-enyl)-1-oxaspiro [2.5] octan-4-one | 27.964 | C14H20O3 | 0.96 | ||
36 | − | 28.03 | 0.87 | |||
37 | − | 28.095 | 1.21 | |||
38 | 4,4,11,11-tetramethyl-7-Tetracyclo [6.2.1.0(3.8)0(3.9)] undecanol | 28.629 | C15H24O | 1.77 | ||
39 | − | 28.712 | 3.24 | |||
40 | Aristol-1(10)-en-9-ol | 28.867 | C15H24O | 3.91 | ||
41 | − | 28.932 | 8.98 | |||
42 | − | 29.14 | 0.92 | |||
43 | − | 29.282 | 0.52 | |||
44 | 6-(p-Tolyl)-2-methyl-2-heptenol | 29.603 | C15H22O | 2.39 | ||
45 | Diepi-α-Cedrenepoxide | 30.356 | C15H24O | 20.01 | ||
46 | β-Cedrenoxide | 30.481 | C15H24O | 4.22 | ||
47 | − | 30.618 | 0.54 | |||
48 | − | 30.701 | 0.95 | |||
49 | Spatulenol | 30.837 | C15H24O | 0.51 | ||
50 | − | 30.974 | 1.13 | |||
51 | − | 31.235 | 0.86 | |||
52 | trans-Longipinocarveol | 31.532 | C15H24O | 2.82 | ||
53 | − | 31.763 | 0.7 | |||
54 | 11-hydroxy-valenc-1 (l0)-en-2-one | 31.87 | C15H24O2 | 1.43 | ||
55 | − | 31.994 | 1.48 | |||
56 | − | 32.291 | 0.98 | |||
57 | − | 32.535 | 0.5 | |||
58 | − | 33.461 | 0.52 | |||
59 | − | 33.983 | 0.44 | |||
60 | Tetracosane | 40.749 | C24H50 | 0.54 | ||
61 | 2,2′-methylenebis [6-(1,1-dimethylethyl)-4-methyl-Phenol] | 41.159 | C23H32O2 | 3.19 | ||
62 | Heneicosane | 42.298 | C21H44 | 0.59 | ||
63 | Hexacosane | 43.788 | C26H54 | 0.66 | ||
64 | Tricosane | 45.218 | C23H48 | 0.5 |
Bacteria | Antimicrobial Circle (mm) | |||
---|---|---|---|---|
MSDLAE | MSFLAE | Tween-80 | PGSS | |
Escherichia coli | 7.11 ± 0.89 b | 8.44 ± 0.10 b | 7.57 ± 0.61 b | 21.2 ± 0.34 a |
Candida albicans | 8.10 ± 1.36 a | 8.71 ± 1.08 a | 7.25 ± 0.06 a | 7.48 ± 0.04 a |
Staphylococcus aureus | 8.40 ± 0.36 b | 7.41 ± 0.19 b | 8.23 ± 0.15 b | 49.78 ± 0.99 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, W.; Li, G.; Zhou, W.; Wang, E.; Zhao, X.; Song, X.; Zhao, Y. Comparison of Composition, Free-Radical-Scavenging Capacity, and Antibiosis of Fresh and Dry Leave Aqueous Extract from Michelia shiluensis. Molecules 2023, 28, 5935. https://doi.org/10.3390/molecules28165935
Wu W, Li G, Zhou W, Wang E, Zhao X, Song X, Zhao Y. Comparison of Composition, Free-Radical-Scavenging Capacity, and Antibiosis of Fresh and Dry Leave Aqueous Extract from Michelia shiluensis. Molecules. 2023; 28(16):5935. https://doi.org/10.3390/molecules28165935
Chicago/Turabian StyleWu, Wentao, Gaoyu Li, Weijuan Zhou, Enbo Wang, Xia Zhao, Xiqiang Song, and Ying Zhao. 2023. "Comparison of Composition, Free-Radical-Scavenging Capacity, and Antibiosis of Fresh and Dry Leave Aqueous Extract from Michelia shiluensis" Molecules 28, no. 16: 5935. https://doi.org/10.3390/molecules28165935
APA StyleWu, W., Li, G., Zhou, W., Wang, E., Zhao, X., Song, X., & Zhao, Y. (2023). Comparison of Composition, Free-Radical-Scavenging Capacity, and Antibiosis of Fresh and Dry Leave Aqueous Extract from Michelia shiluensis. Molecules, 28(16), 5935. https://doi.org/10.3390/molecules28165935