Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (149)

Search Parameters:
Keywords = antibiosis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1282 KiB  
Article
Biosolutions from Native Trichoderma Strains Against Grapevine Trunk Diseases
by Laura Zanfaño, Guzmán Carro-Huerga, Álvaro Rodríguez-González, Daniela Ramírez-Lozano, Sara Mayo-Prieto, Santiago Gutiérrez and Pedro A. Casquero
Agronomy 2025, 15(8), 1901; https://doi.org/10.3390/agronomy15081901 (registering DOI) - 7 Aug 2025
Abstract
Fungi of the genus Trichoderma show strong potential as biological control agents (BCAs) against grapevine trunk diseases (GTDs) through mechanisms like antibiotic metabolite production and lytic enzymes. This study evaluated the biocontrol activity of four native Trichoderma strains—T. gamsii T065 and T071, [...] Read more.
Fungi of the genus Trichoderma show strong potential as biological control agents (BCAs) against grapevine trunk diseases (GTDs) through mechanisms like antibiotic metabolite production and lytic enzymes. This study evaluated the biocontrol activity of four native Trichoderma strains—T. gamsii T065 and T071, T. carraovejensis T154, and T. harzianum T214—against Phaeoacremonium minimum, Phaeomoniella chlamydospora, and Diplodia seriata. Culture filtrates obtained at 8, 16, and 24 days post-incubation were tested using antibiogram and mycelial inhibition assays. Strains T071, T154, and T214 effectively inhibited D. seriata, while T154 and T214 also suppressed P. chlamydospora. Nevertheless, the limited effectiveness of all filtrates against P. minimum suggests that antibiosis is not the predominant mechanism involved in its control. These findings highlight the potential of specific Trichoderma strains and incubation times to directly control GTD pathogens and support the development of scalable biocontrol solutions. Full article
(This article belongs to the Special Issue Molecular Advances in Crop Protection and Agrobiotechnology)
Show Figures

Figure 1

13 pages, 1560 KiB  
Article
Detection of the Early Sensitive Stage and Natural Resistance of Broad Bean (Vicia faba L.) Against Black Bean and Cowpea Aphids
by Fouad Meradsi, Adel Lekbir, Oussama A. Bensaci, Abdelkader Tifferent, Asim Abbasi, Assia Djemoui, Nazih Y. Rebouh, Abeer Hashem, Graciela Dolores Avila-Quezada, Khalid F. Almutairi and Elsayed Fathi Abd_Allah
Insects 2025, 16(8), 817; https://doi.org/10.3390/insects16080817 - 7 Aug 2025
Abstract
Broad bean is one of the most important leguminous crops worldwide. However, its productivity is greatly affected by the infestation of Aphis fabae and Aphis craccivora (Hemiptera: Aphididae). The main objective of the current study was to identify the most susceptible phenological stages [...] Read more.
Broad bean is one of the most important leguminous crops worldwide. However, its productivity is greatly affected by the infestation of Aphis fabae and Aphis craccivora (Hemiptera: Aphididae). The main objective of the current study was to identify the most susceptible phenological stages of the broad bean variety (Histal) against black aphids’ herbivory. This had been achieved through an evaluation of plant resistance mechanisms such as antixenosis and antibiosis. The results regarding an antixenosis test revealed that the four tested phenological stages of V. faba did not have a significant effect on the preference of A. craccivora and A. fabae towards the crop plant. Overall, a slightly higher number of adults settled on the three and four unfolded leaves’ stage of the crop plant. Similarly, the highest number of developed embryos were found in the four leaves’ stage of the crop, and the lowest in the second leaf stage. The adult body size of A. craccivora was slightly larger in the case of the three unfolded leaves. Furthermore, the maximum body size of A. fabae adults was recorded in the case of the first unfolded leaf stage crop. Linear correlations between the biological parameters for both species revealed only one significant relationship between developed and total embryos for A. craccivora. The results of the current study highlight the need to protect broad bean crops against infestations of black aphids, i.e., A. craccivora and A. fabae. This is essential for reducing direct damage and preventing the transmission of phytoviruses. However, future studies should aim to evaluate the susceptibility of all developmental phenological stages of the crop against black aphids to mitigate potential crop losses. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

18 pages, 1289 KiB  
Article
Harnessing Extremophile Bacillus spp. for Biocontrol of Fusarium solani in Phaseolus vulgaris L. Agroecosystems
by Tofick B. Wekesa, Justus M. Onguso, Damaris Barminga and Ndinda Kavesu
Bacteria 2025, 4(3), 39; https://doi.org/10.3390/bacteria4030039 - 1 Aug 2025
Viewed by 114
Abstract
Common bean (Phaseolus vulgaris L.) is a critical protein-rich legume supporting food and nutritional security globally. However, Fusarium wilt, caused by Fusarium solani, remains a major constraint to production, with yield losses reaching up to 84%. While biocontrol strategies have been [...] Read more.
Common bean (Phaseolus vulgaris L.) is a critical protein-rich legume supporting food and nutritional security globally. However, Fusarium wilt, caused by Fusarium solani, remains a major constraint to production, with yield losses reaching up to 84%. While biocontrol strategies have been explored, most microbial agents are sourced from mesophilic environments and show limited effectiveness under abiotic stress. Here, we report the isolation and characterization of extremophilic Bacillus spp. from the hypersaline Lake Bogoria, Kenya, and their biocontrol potential against F. solani. From 30 isolates obtained via serial dilution, 9 exhibited antagonistic activity in vitro, with mycelial inhibition ranging from 1.07–1.93 cm 16S rRNA sequencing revealed taxonomic diversity within the Bacillus genus, including unique extremotolerant strains. Molecular screening identified genes associated with the biosynthesis of antifungal metabolites such as 2,4-diacetylphloroglucinol, pyrrolnitrin, and hydrogen cyanide. Enzyme assays confirmed substantial production of chitinase (1.33–3160 U/mL) and chitosanase (10.62–28.33 mm), supporting a cell wall-targeted antagonism mechanism. In planta assays with the lead isolate (B7) significantly reduced disease incidence (8–35%) and wilt severity (1–5 affected plants), while enhancing root colonization under pathogen pressure. These findings demonstrate that extremophile-derived Bacillus spp. possess robust antifungal traits and highlight their potential as climate-resilient biocontrol agents for sustainable bean production in arid and semi-arid agroecosystems. Full article
Show Figures

Figure 1

18 pages, 6289 KiB  
Article
Antagonistic Interactions Between Dickeya solani and Bacillus subtilis
by Roberta Gatta, Adam Iwanicki, Robert Czajkowski and Michał Obuchowski
Int. J. Mol. Sci. 2025, 26(15), 7193; https://doi.org/10.3390/ijms26157193 - 25 Jul 2025
Viewed by 188
Abstract
Microorganisms in their natural ecological niches are constantly challenged by other inhabitants. Antagonisms exhibited by interacting microbial species are directed towards survival and increasing of their fitness. The Soft Rot Pectobacteriaceae (SRP) is a good model to study these complex microbial interactions. Along [...] Read more.
Microorganisms in their natural ecological niches are constantly challenged by other inhabitants. Antagonisms exhibited by interacting microbial species are directed towards survival and increasing of their fitness. The Soft Rot Pectobacteriaceae (SRP) is a good model to study these complex microbial interactions. Along with being present in various environments, SRPs are often transferred between environments, allowing the bacteria to encounter members of other species. In this study, we investigated interactions between Dickeya solani, a representative of SRPs and a causative agent of potato soft rot, and Bacillus subtilis, which is known to be a potent producer of secondary metabolites mediating antibiosis. We have found that the soil isolate B. subtilis MB73/2 not only suppresses in vitro soft-rotting of infected potato tubers but is also able to cause directional, coordinated escape of natural isolates D. solani IFB0102 and IPO2222. While this coordinated movement of D. solani depends on surfactin produced by B. subtilis MB73/2, we show that both Dickeya strains exhibit different antagonistic interaction phenotypes toward the competing Bacillus. We prove that this antagonism depends on a single nucleotide polymorphism in one of transcriptional regulators of D. solani belonging to the LysR family. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

13 pages, 980 KiB  
Article
Determination of Rice Accession Status Using Infochemical and Visual Cues Emitted to Sustainably Control Diopsis apicalis Dalman
by Roland Bocco, Esther Pegalepo, Abou Togola, Francis Nwilene, Christophe Bernard Gandonou, Yedomon Ange Bovys Zoclanclounon, Marie Noelle Ndjiondjop, Mounirou Sow, Jeong Jun Kim and Manuele Tamò
Insects 2025, 16(8), 752; https://doi.org/10.3390/insects16080752 - 23 Jul 2025
Viewed by 287
Abstract
This study assessed the host plant selection behavior of female stalk-eyed flies (SEFs) or Diopsis apicalis, where a Y-tube olfactometer was used to compare SEF attraction to the odor of leaves from four rice varieties (ITA306, WAB56-104, CG14, and RAM55). Another step [...] Read more.
This study assessed the host plant selection behavior of female stalk-eyed flies (SEFs) or Diopsis apicalis, where a Y-tube olfactometer was used to compare SEF attraction to the odor of leaves from four rice varieties (ITA306, WAB56-104, CG14, and RAM55). Another step of the evaluation consisted of pairing leaf odors from two rice varieties. Also, potted plants of the tested varieties were displayed in a screened cage and submitted to female SEF selection. The results indicated that the odor produced by leaves from rice varieties CG14, WAB56-104, and ITA306 significantly attracted SEFs, at rates of 81%, 70%, and 97%, respectively, while SEF females were rarely attracted by the odor of leaves from the resistant rice variety RAM55, at a rate of 35%. The results suggested that the use of a Y-tube olfactometer was similar to the use of a screened cage. The resistance exhibited by rice variety CG14 against SEFs is related to an antibiosis interaction acting as bait, while that in RAM55 is an antixenosis one. Farmers can plant the traditional CG14 variety on the edge of rice fields to draw SEFs and poison their larvae. However, RAM55 can be inserted in an intercropping system to repel SEFs from laying eggs. The authors recommend CG14 and RAM55 as candidates for breeding to create resistant lines against SEF. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

19 pages, 1297 KiB  
Review
Biology and Application of Chaetomium globosum as a Biocontrol Agent: Current Status and Future Prospects
by Shailja Sharma, Saurabh Pandey, Sourabh Kulshreshtha and Mukesh Dubey
Microorganisms 2025, 13(7), 1646; https://doi.org/10.3390/microorganisms13071646 - 11 Jul 2025
Viewed by 1232
Abstract
Chaetomium globosum is a widely distributed fungal species recognized for its ability to produce a range of secondary metabolites. This fungus plays a significant ecological role by degrading organic matter and contributing to nutrient cycling in diverse ecosystems. In recent years, C. globosum [...] Read more.
Chaetomium globosum is a widely distributed fungal species recognized for its ability to produce a range of secondary metabolites. This fungus plays a significant ecological role by degrading organic matter and contributing to nutrient cycling in diverse ecosystems. In recent years, C. globosum has attracted considerable scientific interest due to its potential as a biocontrol agent [BCA] against a wide array of diseases in numerous plant species. While the precise mechanisms of C. globosum as a BCA remain poorly understood, interference competition through antibiosis is one of the key mechanisms. Moreover, C. globosum can enhance plant health by promoting nutrient availability, manipulating the rhizosphere microbiome, and inducing plant defense responses. The formulation of C. globosum for agricultural applications has been reported, which can significantly improve stability and efficacy under field conditions. However, despite significant advancements in omics and molecular biology technologies, the biology of C. globosum is understudied. Enhanced research into the genetics and functional genomics of C. globosum could pave the way for its applications in sustainable agriculture. This review summarizes the role of C. globosum as a BCA, focusing on its underlying mechanisms such as genomics and transcriptomics, and the effects of C. globosum application on soil health and the rhizosphere microbiome. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

21 pages, 1384 KiB  
Review
Biocontrol Strategies Against Plant-Parasitic Nematodes Using Trichoderma spp.: Mechanisms, Applications, and Management Perspectives
by María Belia Contreras-Soto, Juan Manuel Tovar-Pedraza, Alma Rosa Solano-Báez, Heriberto Bayardo-Rosales and Guillermo Márquez-Licona
J. Fungi 2025, 11(7), 517; https://doi.org/10.3390/jof11070517 - 11 Jul 2025
Viewed by 596
Abstract
Plant-parasitic nematodes represent a significant threat to agriculture, causing substantial economic losses worldwide. Among the biological alternatives for their control, the genus Trichoderma has emerged as a promising solution for suppressing various nematode species. This article reviews key studies on the interaction between [...] Read more.
Plant-parasitic nematodes represent a significant threat to agriculture, causing substantial economic losses worldwide. Among the biological alternatives for their control, the genus Trichoderma has emerged as a promising solution for suppressing various nematode species. This article reviews key studies on the interaction between Trichoderma spp. and plant-parasitic nematodes, highlighting the most studied species such as Trichoderma harzianum, Trichoderma longibrachiatum, Trichoderma virens, and Trichoderma viride, mainly against the genera Meloidogyne, Pratylenchus, Globodera, and Heterodera. Trichoderma spp. act through mechanisms such as mycoparasitism, antibiosis, competition for space in the rhizosphere, production of lytic enzymes, and modulation of plant defense responses. They also produce metabolites that affect nematode mobility, reproduction, and survival, such as gliotoxin, viridin and cyclosporine A. In addition, they secrete enzymes such as chitinases, proteases, lipases, and glucanases, which degrade the cuticle of nematodes and their eggs. Furthermore, Trichoderma spp. induce systemic resistance in plants through modulation of phytohormones such as jasmonic acid, ethylene, salicylic acid and auxins. The use of Trichoderma in integrated nematode management enables its application in combination with crop rotation, organic amendments, plant extracts, and resistant varieties, thereby reducing the reliance on synthetic nematicides and promoting more sustainable and climate-resilient agriculture. Full article
Show Figures

Figure 1

29 pages, 4367 KiB  
Article
Endophytic Microbiome Is a Unique Repository of Bio-Foes Against Toxigenic Fungi Harming Peanut Productivity
by Nagwa I. M. Helal, Mona H. Badawi, Abeer M. El-Hadidy, Mohamed K. M. Agha, Ahmed Abou-Shady and Mohamed Fayez
Microbiol. Res. 2025, 16(7), 141; https://doi.org/10.3390/microbiolres16070141 - 1 Jul 2025
Viewed by 360
Abstract
The major objective was to investigate the protective capabilities of endophytic bacterial strains isolated from a number of medicinal plant species towards Aspergillus spp. secured from the internal tissues of fungi-infected peanuts. Among 32 fungal isolates surveyed for mycotoxin production in various culture [...] Read more.
The major objective was to investigate the protective capabilities of endophytic bacterial strains isolated from a number of medicinal plant species towards Aspergillus spp. secured from the internal tissues of fungi-infected peanuts. Among 32 fungal isolates surveyed for mycotoxin production in various culture media (PDA, RBCA, YES, CA), 10 isolates qualitatively producing AFB1, besides 10 OTA-producers, were assayed by HPLC for quantitative toxin production. Aspergillus spp. isolate Be 13 produced an extraordinary quantity of 1859.18 μg mL−1 AFB1, against the lowest toxin level of 280.40 μg mL−1 produced by the fungus isolate IS 4. The estimated amounts of OTA were considerably lower and fell in the range 0.88–6.00 μg mL−1; isolate Sa 1 was superior, while isolate Be 7 seemed inferior. Based on ITS gene sequencing, the highly toxigenic Aspergillus spp. isolates Be 13 and Sa 1 matched the description of A. novoparasiticus and A. ochraceus, respectively, ochraceus, respectively, which are present in GenBank with identity exceeding 99%. According to 16S rRNA gene sequencing, these antagonists labeled Ar6, Ma27 and So34 showed the typical characteristics of Pseudomonas aeruginosa, Bacillus subtilis and Bacillus velezensis, respectively, with similarity percentages of 99–100. The plant growth-promoting activity measurements of the identified endophytes indicated the production of 16.96–80.00 μg/100 mL culture medium of IAA. Phosphate-solubilizing capacity varied among endophytes from 2.50 to 21.38 μg/100 mL. The polysaccharide production pool of bacterial strains ranged between 2.74 and 6.57 mg mL−1. P. aeruginosa Ar6 and B. velezensis successfully produced HCN, but B. subtilis failed. The in vitro mycotoxin biodegradation potential of tested bacterial endophytes indicated the superiority of B. velezensis in degrading both mycotoxins (AFB1-OTA) with average percentage of 88.7; B. subtilis ranked thereafter (85.6%). The 30-day old peanut (cv. Giza 6) seedlings grown in gnotobiotic system severely injured due to infection with AFB1/OTA-producing fungi, an effect expressed in significant reductions in shoot and root growth traits. Simultaneous treatment with the endophytic antagonists greatly diminished the harmful impact of the pathogens; B. velezensis was the pioneer, not P. aeruginosa Ar6. In conclusion, these findings proved that several endophytic bacterial species have the potential as alternative tools to chemical fungicides for protecting agricultural commodities against mycotoxin-producing fungi. Full article
Show Figures

Figure 1

20 pages, 6360 KiB  
Article
Regulatory Effects of Companion Plants (Maize (Zea mays) and Perilla frutescens) on American Ginseng Growth and Microbiome in Root Rot-Infested Field
by Dan Luo, Dengqun Liao, Tingting Han, Changhao Ji, Chao He and Xianen Li
Plants 2025, 14(12), 1871; https://doi.org/10.3390/plants14121871 - 18 Jun 2025
Viewed by 446
Abstract
American ginseng (AG) cultivation suffers from severe diseases, requiring heavy pesticide use. This study aimed to explore whether companion planting with maize (AG-maize) or Perilla frutescens (AG-perilla) could enhance AG growth and alter rhizosphere/root microbiomes in a root rot-infested field. Compared to monoculture [...] Read more.
American ginseng (AG) cultivation suffers from severe diseases, requiring heavy pesticide use. This study aimed to explore whether companion planting with maize (AG-maize) or Perilla frutescens (AG-perilla) could enhance AG growth and alter rhizosphere/root microbiomes in a root rot-infested field. Compared to monoculture (CK), companion planting significantly improved AG growth and survival rate at wither stage, with AG-maize showing the superior efficacy- increasing root length and fresh weight, and plant height by 39.04%, 46.10%, and 48.69%, respectively, while raising survival rate from 1.51% to 14.54%. Microbial analysis revealed that companion planting increased microbiome diversity and network complexity. At green fruit stage, AG-perilla increased rhizosphere fungal Chao1 index by 42.6%, while AG-maize and AG-perilla elevated endophytic fungal Shannon indices by 46.68% and 74.84%, respectively. At wither stage, AG-maize notably enriched beneficial microbes (e.g., soil Pseudomonas +108.49%, Bacillus +200.73%) while reducing pathogens (soil Fusarium −20.04%, root endophytic Alternaria −54.55%). Structural equation model indicated AG-maize improved AG survival via core species-driven antibiosis and nutrient regulation, with keystone species Lysobacter sp. RHLT3-4 and Verrucomicrobium sp. IMCC25902 significantly correlating with AG health. The AG-maize system fostered synergistic microbial networks, enriching beneficial taxa and suppressing pathogens. These findings provide a foundation for developing eco-friendly disease management and high-yield AG cultivation strategies. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

14 pages, 1109 KiB  
Systematic Review
Impaired Overall Survival of Melanoma Patients Due to Antibiotic Use Prior to Immune Checkpoint Inhibitor Therapy: Systematic Review and Meta-Analysis
by Thilo Gambichler, Sera S. Weyer-Fahlbusch, Jan Overbeck, Nessr Abu Rached, Jürgen C. Becker and Laura Susok
Cancers 2025, 17(11), 1872; https://doi.org/10.3390/cancers17111872 - 3 Jun 2025
Viewed by 769
Abstract
Background: The gut microbiome plays a pivotal role in shaping systemic immunity and modulating anti-tumor responses. Preclinical and clinical studies have shown that higher gut microbial diversity and the presence of specific commensal taxa correlate with improved responses to immune checkpoint inhibitors (ICI) [...] Read more.
Background: The gut microbiome plays a pivotal role in shaping systemic immunity and modulating anti-tumor responses. Preclinical and clinical studies have shown that higher gut microbial diversity and the presence of specific commensal taxa correlate with improved responses to immune checkpoint inhibitors (ICI) in melanoma. Conversely, broad-spectrum antibiotics can induce dysbiosis, reducing T cell activation and cytokine production, and have been linked to diminished ICI efficacy in several cancer types. Methods: We conducted a systematic review and meta-analysis of seven retrospective cohorts (total n = 5213) comparing overall survival in cutaneous melanoma (CM) patients who did or did not receive systemic antibiotics within six weeks before ICI initiation. From each study, we extracted hazard ratios (HRs) for death, antibiotic-to-ICI interval, ICI regimen (PD-1 monotherapy vs. PD-1 + CTLA-4 combination), cohort size, and country. Pooled log-HRs were estimated under fixed-effect and random-effects (REML) models. Statistical heterogeneity was quantified by Cochran’s Q and I2 statistics, and τ2. We performed leave-one-out sensitivity analyses, generated a Baujat plot to identify influential studies, applied trim-and-fill to assess publication bias, and ran meta-regressions for regimen, antibiotic timing, sample size, and geography. Results: Under the fixed-effect model, antibiotic exposure corresponded to a pooled HR of 1.26 (95% CI 1.13–1.41; p < 0.001). The random-effects model yielded a pooled HR of 1.55 (95% CI 1.21–1.98; p = 0.0005) with substantial heterogeneity (Q = 25.1; I2 = 76%). Prediction intervals (0.78–3.06) underscored between-study variability. Leave-one-out analyses produced HRs from 1.50 to 1.75, confirming robustness, and the Baujat plot highlighted two cohorts as primary heterogeneity drivers. Trim-and-fill adjusted the HR to 1.46 (95% CI 1.08–1.97). In subgroup analyses, combination therapy studies (k = 4) showed a pooled HR of ~1.9 (I2 = 58%) versus ~1.3 (I2 = 79%) for monotherapy. Meta-regression attributed the largest variance to the regimen (R2 = 32%; β(monotherapy) = −0.35; p = 0.13). Conclusions: Pre-ICI antibiotic use in CM is consistently associated with a 26–55% increase in mortality risk, particularly with PD-1 + CTLA-4 combinations, reinforcing the mechanistic link between microbiome integrity and ICI success. Looking ahead, integrating prospective microbiome profiling into clinical trials will be critical to personalize ICI therapy, clarify causality, and identify microbial biomarkers for optimal treatment selection. Prospective, microbiome-integrated trials promise to refine melanoma immunotherapy by tailoring antibiotic stewardship and microbial interventions to enhance patient outcomes. Full article
(This article belongs to the Special Issue Oncology: State-of-the-Art Research in Germany)
Show Figures

Figure 1

24 pages, 767 KiB  
Review
The Potential of Beneficial Microbes for Sustainable Alternative Approaches to Control Phytopathogenic Diseases
by Ramadan Bakr, Ali Abdelmoteleb, Vianey Mendez-Trujillo, Daniel Gonzalez-Mendoza and Omar Hewedy
Microbiol. Res. 2025, 16(5), 105; https://doi.org/10.3390/microbiolres16050105 - 20 May 2025
Cited by 1 | Viewed by 874
Abstract
Sustainable agricultural practices are essential for eradicating global hunger, especially in light of the growing world population. Utilizing natural antagonists, such as fungi and bacteria, to combat plant diseases, rather than relying solely on synthetic chemical pesticides, which pose significant risks to the [...] Read more.
Sustainable agricultural practices are essential for eradicating global hunger, especially in light of the growing world population. Utilizing natural antagonists, such as fungi and bacteria, to combat plant diseases, rather than relying solely on synthetic chemical pesticides, which pose significant risks to the environment and human health, is known as biocontrol. Microbial biological control agents (MBCAs) have proven effective against phytopathogens and are increasingly embraced in agricultural practices. MBCAs possess several beneficial traits, including antagonistic potential, rhizosphere competence, and the ability to produce lytic enzymes, antibiotics, and toxins. These biocontrol mechanisms directly target soil-borne pathogens or indirectly stimulate a plant-mediated resistance response. The effectiveness of MBCAs in managing plant diseases depends on various mechanisms, such as hyperparasitism, antibiosis, competition for nutrients or space, disruption of quorum-sensing signals, production of siderophores, generation of cell wall-degrading enzymes, and the induction and priming of plant resistance. Formulating effective biopesticides requires optimal conditions, including selecting effective strains, considering biosafety, appropriate storage methods, and ensuring a prolonged shelf life. Therefore, formulation is crucial in developing pesticide products, particularly concerning efficacy and production costs. However, several challenges must be addressed to ensure the successful application of biological control, including the shelf life of biopesticides, slower efficacy in pest management, inadequate awareness and understanding of biocontrol methods, regulatory registration for commercialization, and suitable agricultural applications. This review clarifies the principles of plant disease biocontrol, highlighting the mechanisms of action and functionality of MBCAs in biocontrol activities, the formulation of biopesticides derived from microorganisms, and the challenges and barriers associated with the development, registration, commercialization, and application of biopesticides. Full article
Show Figures

Figure 1

30 pages, 12571 KiB  
Article
Injectable and Conductive Polyurethane Gel with Load-Responsive Antibiosis for Sustained Root Canal Disinfection
by Bo Mu, Xiaoyu Lei, Yinglong Zhang, Jingzheng Zhang, Qingda Du, Yuping Li, Dongyu Huang, Li Wang, Jidong Li, Yubao Li and Yi Zuo
Gels 2025, 11(5), 346; https://doi.org/10.3390/gels11050346 - 7 May 2025
Viewed by 474
Abstract
To address the limitations of conventional antibacterial therapies, we developed an injectable, conductive polyurethane-based composite gel system for sustained root canal disinfection. This gel incorporates piezoelectric nanoparticles (n-BaTiO3) and conductive segments (aniline trimer, AT) within a polyurethane matrix, which synergistically interact [...] Read more.
To address the limitations of conventional antibacterial therapies, we developed an injectable, conductive polyurethane-based composite gel system for sustained root canal disinfection. This gel incorporates piezoelectric nanoparticles (n-BaTiO3) and conductive segments (aniline trimer, AT) within a polyurethane matrix, which synergistically interact with a static antimicrobial agent (n-ZnO) to achieve dynamic, mechano-responsive antibacterial activity. Under cyclic compression (simulating mastication), the piezoelectric gels exhibited enhanced electroactivity via the mechano-electric coupling effect, generating 2-fold higher voltage and a 1.8–1.9× increase in current compared to non-piezoelectric controls. The dynamic electroactivity of the gels enabled superior long-term performance, achieving 92–97% biofilm eradication, significantly higher than the static n-ZnO-only gel (88%). XPS and UV-vis spectroscopy analyses confirmed mechano-electrochemically amplified reactive oxygen species (ROS) generation, which contributed to improved biofilm disruption. The ISO-compliant gel provides durable, load-responsive disinfection while maintaining good biocompatibility, offering a promising solution to prevent post-treatment reinfection. Full article
Show Figures

Graphical abstract

8 pages, 4556 KiB  
Case Report
Osteonecrosis of the Jaw Associated with Obinutuzumab in a Patient with Preceding Follicular Non-Hodgkin’s Lymphoma
by Katharina Theresa Obermeier, Thomas Frank, Tim Hildebrandt, Sven Otto, Philipp Poxleitner and Ina Dewenter
J. Pers. Med. 2025, 15(4), 138; https://doi.org/10.3390/jpm15040138 - 1 Apr 2025
Cited by 1 | Viewed by 513
Abstract
Background: Obinutuzumab is a glycoengineered type II anti-CD-20 monoclonal antibody, which can be applied as immunotherapy in patients with follicular lymphoma. To our knowledge, this is the first reported case in the literature describing osteonecrosis of the jaw associated with CD20 monoclonal antibody [...] Read more.
Background: Obinutuzumab is a glycoengineered type II anti-CD-20 monoclonal antibody, which can be applied as immunotherapy in patients with follicular lymphoma. To our knowledge, this is the first reported case in the literature describing osteonecrosis of the jaw associated with CD20 monoclonal antibody therapy. Methods: The following case report describes a 39-year-old female patient under maintaining therapy with Obinutuzumab developing osteonecrosis of the jaw after tooth extraction. The necrotic area was located in the right mandible and was rated as a stage II osteonecrosis. Results: This case report should draw attention to the importance of dental follow-ups during aftercare of patients with Non-Hodgkin’s Lymphoma as well as to the relevant precautions for performing tooth extractions in such patients. Conclusions: As Obinutuzumab seems to be a contributing factor in the development of MRONJ, special attention has to be drawn to tooth extractions in such patients, which should only be performed with perioperative antibiosis, the least amount of trauma possible, always including the smoothening of sharp residual bone segments and a saliva-proof wound closure, as well as constant dental follow-ups. Full article
(This article belongs to the Section Personalized Therapy and Drug Delivery)
Show Figures

Figure 1

15 pages, 2648 KiB  
Article
Methodology for the Evaluation of Varietal Resistance to Haplaxius crudus, Vector of the Causal Agent of Lethal Wilt in Oil Palm in Colombia
by Ivette Johana Beltrán-Aldana, Gladys Alejandra Romero-Guerrero, Eloina Mesa-Fuquen and Anuar Morales-Rodriguez
Insects 2025, 16(2), 197; https://doi.org/10.3390/insects16020197 - 11 Feb 2025
Viewed by 976
Abstract
Lethal Wilt is a limiting disease for oil palm cultivation in the eastern and central zones of Colombia. In the eastern zone, it caused the eradication of approximately 8700 ha of oil palm between 2010 and 2022, with economic losses of more than [...] Read more.
Lethal Wilt is a limiting disease for oil palm cultivation in the eastern and central zones of Colombia. In the eastern zone, it caused the eradication of approximately 8700 ha of oil palm between 2010 and 2022, with economic losses of more than 185 million dollars. Studies conducted by Cenipalma reported that the pathogen causing this disease is Candidatus Liberibacter, which is possibly transmitted by Haplaxius crudus (Van Duzee). The adults feed on the foliage of the palms and move between them, spreading the pathogen in the plantation. A strategy to contribute to the management of LW is establishing cultivars resistant to the insect vector; however, no resistant cultivars or sources of resistance have been identified in the country’s commercial cultivars or germplasm collections. Therefore, this work aimed to design and validate a methodology to characterize the oil palm genotypes Elaeis guineensis and Elaeis oleifera and interspecific OxG hybrids against adults of H. crudus, evaluating resistance through antixenosis and antibiosis to identify genotypes with possible sources of resistance. An arena with leaflets of the different genotypes in free-choice tests was used to assess antixenosis. For antibiosis, entomological sleeves were installed on the palm leaves, which were infested with adults of H. crudus from a breeding unit. The results of antixenosis and antibiosis in both the first phase (design) and the second phase (validation) indicated greater preference and survival for the genotypes of E. guineensis and lower preference and survival for the interspecific hybrids and E. oleifera. In the genotype E. guineensis, the average mortality was reached after 30 days, while in E. oleifera and the hybrids, it occurred between the third and fourth days. The results of this research provide a reproducible methodology for the evaluation of oil palm germplasms against H. crudus and sucking insects for the selection of sources of resistance for incorporation into breeding programs. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

15 pages, 1405 KiB  
Article
Biological Control of Sclerotinia sclerotiorum on Greenhouse Lettuce Using Trichoderma koningiopsis Agg
by Snježana Topolovec-Pintarić, Ana Maria Kovaček, Olga Malev, Ivana Kušan, Neven Matočec, Ana Pošta, Lucia Pole and Armin Mešić
Microbiol. Res. 2025, 16(2), 35; https://doi.org/10.3390/microbiolres16020035 - 31 Jan 2025
Cited by 1 | Viewed by 1431
Abstract
The lettuce drop or white mold is an economically important disease as the causal fungus Sclerotinia sclerotiorum can infect the lettuce at any stage of plant development. Polyphagous nature of S. sclerotiorum, the longevity of soil-borne sclerotia and air-borne ascospores makes the [...] Read more.
The lettuce drop or white mold is an economically important disease as the causal fungus Sclerotinia sclerotiorum can infect the lettuce at any stage of plant development. Polyphagous nature of S. sclerotiorum, the longevity of soil-borne sclerotia and air-borne ascospores makes the control difficult. Chemical fungicides are available only for foliar application against infections by ascospores so, the development of bio-control is of great importance. We tested antagonism of native isolate T. koningiopsis agg. (Hypocreales) (STP8) under laboratory and greenhouse environments. In vitro tests showed excellent STP8 antagonisms to S. sclerotiorum evidencing hyperparasitic activity on mycelia and sclerotia as well as antibiosis. The sclerotia were completely degraded after two months. In the greenhouse, infection of lettuce with S. sclerotiorum was reduced by treating the seedlings with an STP8 spore suspension. Uninfected plants treated with STP8 were of the best quality based on morphological parameters, confirming the ability of STP8 to promote lettuce growth. Even the infected lettuce treated with STP8 were healthier and in better condition than the control lettuce, suggesting that STP8 was also enhancing plant defense system. Full article
Show Figures

Figure 1

Back to TopTop