Two-Component System Sensor Kinases from Asgardian Archaea May Be Witnesses to Eukaryotic Cell Evolution
Abstract
:1. Introduction
2. Results
2.1. Asgardian TCS Identification and Characteristics
2.2. Sequence Comparison and Analysis of Asgardian TCS
2.3. Structural Models Show Domain Complexity in Asgardian TCS Sensor Kinases
2.4. Unusual Number of PAS Domains in Asgardian TCS Sensor Kinases
3. Discussion
4. Materials and Methods
4.1. Sequence Retrieval
4.2. Protein Sequence Analyses
4.3. Protein Structural Models Using AlphaFold2
4.4. Protein Structure Comparison
4.5. Protein Topology Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Devos, D.P. Reconciling Asgardarchaeota Phylogenetic Proximity to Eukaryotes and Planctomycetes Cellular Features in the Evolution of Life. Mol. Biol. Evol. 2021, 38, 3531–3542. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Makarova, K.S.; Huang, W.C.; Wolf, Y.I.; Nikolskaya, A.N.; Zhang, X.; Cai, M.; Zhang, C.J.; Xu, W.; Luo, Z.; et al. Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature 2021, 593, 553–557. [Google Scholar] [CrossRef] [PubMed]
- Williams, T.A.; Cox, C.J.; Foster, P.G.; Szöllősi, G.J.; Embley, T.M. Phylogenomics provides robust support for a two-domains tree of life. Nat. Ecol. Evol. 2020, 4, 138–147. [Google Scholar] [CrossRef]
- Ishii, E.; Eguchi, Y. Diversity in Sensing and Signaling of Bacterial Sensor Histidine Kinases. Biomolecules 2021, 11, 1524. [Google Scholar] [CrossRef]
- Stock, A.M.; Robinson, V.L.; Goudreau, P.N. Two-component signal transduction. Annu. Rev. Biochem. 2000, 69, 183–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Sang, J.; Wang, J.; Su, M.; Downey, J.S.; Wu, Q.; Wang, S.; Cai, Y.; Xu, X.; Wu, J.; et al. Mechanistic Insights Revealed by the Crystal Structure of a Histidine Kinase with Signal Transducer and Sensor Domains. PLoS Biol. 2013, 11, e1001493. [Google Scholar] [CrossRef]
- Marina, A.; Waldburger, C.D.; Hendrickson, W.A. Structure of the entire cytoplasmic portion of a sensor histidine-kinase protein. EMBO J. 2005, 24, 4247–4259. [Google Scholar] [CrossRef] [PubMed]
- Tomomori, C.; Tanaka, T.; Dutta, R.; Park, H.; Saha, S.K.; Zhu, Y.; Ishima, R.; Liu, D.; Tong, K.I.; Kurokawa, H.; et al. Solution structure of the homodimeric core domain of Escherichia coli histidine kinase EnvZ. Nat. Struct. Biol. 1999, 6, 729–734. [Google Scholar] [PubMed]
- Schaller, G.E.; Shiu, S.H.; Armitage, J.P. Two-component systems and their co-option for eukaryotic signal transduction. Curr. Biol. 2011, 10, R320–R330. [Google Scholar] [CrossRef] [Green Version]
- Moore, J.O.; Hendrickson, W.A. An asymmetry-to-symmetry switch in signal transmission by the histidine kinase receptor for TMAO. Structure 2012, 4, 729–741. [Google Scholar] [CrossRef] [Green Version]
- Ikai, A. Thermostability and aliphatic index of globular proteins. J. Biochem. 1980, 88, 1895–1898. [Google Scholar] [PubMed]
- Ghurye, J.S.; Cepeda-Espinoza, V.; Pop, M. Metagenomic Assembly: Overview, Challenges and Applications. Yale J. Biol. Med. 2016, 30, 353–362. [Google Scholar]
- Olson, N.D.; Treangen, T.J.; Hill, C.M.; Cepeda-Espinoza, V.; Ghurye, J.; Koren, S.; Pop, M. Metagenomic assembly through the lens of validation: Recent advances in assessing and improving the quality of genomes assembled from metagenomes. Brief Bioinform. 2019, 20, 1140–1150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sigrist, C.J.A.; de Castro, E.; Cerutti, L.; Cuche, B.A.; Hulo, N.; Bridge, A.; Bougueleret, L.; Xenarios, I. New and continuing developments at PROSITE. Nucleic Acids Res. 2012, 41, D344–D347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadav, A.; Borrelli, J.C.; Elshahed, M.S.; Youssef, N.H. Genomic Analysis of Family UBA6911 (Group 18 Acidobacteria) Expands the Metabolic Capacities of the Phylum and Highlights Adaptations to Terrestrial Habitats. Appl. Environ. Microbiol. 2021, 87, e0094721. [Google Scholar] [CrossRef]
- De Castro, E.; Sigrist, C.J.; Gattiker, A.; Bulliard, V.; Langendijk-Genevaux, P.S.; Gasteiger, E.; Bairoch, A.; Hulo, N. ScanProsite: Detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res. 2006, 34, W362–W365. [Google Scholar] [CrossRef] [PubMed]
- Seitz, K.W.; Dombrowski, N.; Eme, L.; Spang, A.; Lombard, J.; Sieber, J.R.; Teske, A.P.; Ettema, T.J.G.; Baker, B.J. Asgard archaea capable of anaerobic hydrocarbon cycling. Nat. Commun. 2019, 10, 1822. [Google Scholar] [CrossRef] [Green Version]
- Farhana, A.; Saini, V.; Kumar, A.; Lancaster, J.R., Jr.; Steyn, A.J. Environmental Heme-Based Sensor Proteins: Implications for Understanding Bacterial Pathogenesis. Antioxid. Redox Signal. 2012, 17, 1232–1245. [Google Scholar] [CrossRef] [Green Version]
- Gondim, A.C.S.; Guimarães, W.G.; Sousa, E.H.S. Heme-Based Gas Sensors in Nature and Their Chemical and Biotechnological Applications. BioChem 2022, 2, 43–63. [Google Scholar] [CrossRef]
- West, A.H.; Stock, A.M. Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem. Sci. 2001, 26, 369–376. [Google Scholar] [CrossRef]
- Repik, A.; Rebbapragada, A.; Johnson, M.S.; Haznedar, J.O.; Zhulin, I.B.; Taylor, B.L. PAS domain residues involved in signal transduction by the Aer redox sensor of Escherichia coli. Mol. Microbiol. 2000, 36, 806–816. [Google Scholar] [CrossRef]
- Omasits, U.; Ahrensm, C.H.; Müller, S.; Wollscheid, B. Protter: Interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics 2014, 30, 884–886. [Google Scholar] [CrossRef] [Green Version]
- Tsirigos, K.D.; Peters, C.; Shu, N.; Käll, L.; Elofsson, A. The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides. Nucleic Acids Res. 2015, 43, W401–W407. [Google Scholar] [CrossRef]
- Zhulin, I.B.; Taylor, B.L.; Dixon, R. PAS domain S-boxes in Archaea, Bacteria and sensors for oxygen and redox. Trends Biochem. Sci. 1997, 22, 331–333. [Google Scholar] [CrossRef]
- Borgstahl, G.E.; Williams, D.R.; Getzoff, E.D. A structure of photoactive yellow protein, a cytosolic photoreceptor: Unusual fold, active site, and chromophore. Biochemistry 1995, 34, 6278–6287. [Google Scholar] [CrossRef]
- Ponting, C.P.; Aravind, L. PAS: A multifunctional domain family comes to light. Curr. Biol. 1997, 7, R674–R677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Firrincieli, A.; Negroni, A.; Zanaroli, G.; Cappelletti, M. Unraveling the Metabolic Potential of Asgardarchaeota in a Sediment from the Mediterranean Hydrocarbon-Contaminated Water Basin Mar Piccolo (Taranto, Italy). Microorganisms 2021, 9, 859. [Google Scholar] [CrossRef]
- Georgellis, D.; Kwon, O.; Lin, E.C.; Wong, S.M.; Akerley, B.J. Redox signal transduction by the ArcB sensor kinase of Haemophilus influenzae lacking the PAS domain. J. Bacteriol. 2001, 183, 7206–7212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulzu, P.A.; Andrei, A.Ş.; Salcher, M.M.; Mehrshad, M.; Inoue, K.; Kandori, H.; Beja, O.; Ghai, R.; Banciu, H.L. Casting light on Asgardarchaeota metabolism in a sunlit microoxic niche. Nat. Microbiol. 2019, 4, 1129–1137. [Google Scholar] [CrossRef] [Green Version]
- Theodorou, M.C.; Panagiotidis, C.A.; Panagiotidis, C.H.; Pantazaki, A.A.; Kyriakidis, D.A. Involvement of the AtoS-AtoC signal transduction system in poly-(R)-3-hydroxybutyrate biosynthesis in Escherichia coli. Biochim. Biophys. Acta 2006, 1760, 896–906. [Google Scholar] [CrossRef] [PubMed]
- Lesley, J.A.; Waldburger, C.D. Repression of Escherichia coli PhoP-PhoQ signaling by acetate reveals a regulatory role for acetyl coenzyme A. J. Bacteriol. 2003, 185, 2563–2570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russum, S.; Lam, K.J.K.; Wong, N.A.; Iddamsetty, V.; Hendargo, K.J.; Wang, J.; Dubey, A.; Zhang, Y.; Medrano-Soto, A.; Saier, M.H., Jr. Comparative population genomic analyses of transporters within the Asgard archaeal superphylum. PLoS ONE 2021, 26, e0247806. [Google Scholar] [CrossRef] [PubMed]
- Georgellis, D.; Kwon, O.; Lin, E.C. Amplification of signaling activity of the arc two-component system of Escherichia coli by anaerobic metabolites. An in vitro study with different protein modules. J. Biol. Chem. 1999, 10, 35950–35954. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Speth, D.R.; Philosof, A.; Crémière, A.; Narayanan, A.; Barco, R.A.; Connon, S.A.; Amend, J.P.; Antoshechkin, I.A.; Orphan, V.J. Unique mobile elements and scalable gene flow at the prokaryote-eukaryote boundary revealed by circularized Asgard archaea genomes. Nat. Microbiol. 2022, 7, 200–212. [Google Scholar] [CrossRef]
- Bourret, R.B.; Kennedy, E.N.; Foster, C.A.; Sepúlveda, V.E.; Goldman, W.E. A Radical Reimagining of Fungal Two-Component Regulatory Systems. Trends Microbiol. 2021, 29, 883–893. [Google Scholar] [CrossRef]
- Collins, M.J.; Childers, W.S. The upcycled roles of pseudoenzymes in two-component signal transduction. Curr. Opin. Microbiol. 2021, 61, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Ghaly, T.M.; Tetu, S.G.; Penesyan, A.; Qi, Q.; Rajabal, V.; Gillings, M.R. Discovery of integrons in Archaea: Platforms for cross-domain gene transfer. Sci. Adv. 2022, 8, eabq6376. [Google Scholar] [CrossRef]
- Raval, P.K.; Garg, S.G.; Gould, S.B. Endosymbiotic selective pressure at the origin of eukaryotic cell biology. eLife 2022, 11, e81033. [Google Scholar] [CrossRef]
- Levasseur, A.; Merhej, V.; Baptiste, E.; Sharma, V.; Pontarotti, P.; Raoult, D. The Rhizome of Lokiarchaeota Illustrates the Mosaicity of Archaeal Genomes. Genome Biol. Evol. 2017, 9, 2635–2639. [Google Scholar] [CrossRef] [Green Version]
- Eme, L.; Tamarit, D.; Caceres, E.F.; Stairs, C.W.; De Anda, V.; Schön, M.E.; Seitz, K.W.; Dombrowski, N.; Lewis, W.H.; Homa, F.; et al. Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes. Nature 2023. [Google Scholar] [CrossRef]
- Imachi, H.; Nobu, M.K.; Nakahara, N.; Morono, Y.; Ogawara, M.; Takaki, Y.; Takano, Y.; Uematsu, K.; Ikuta, T.; Ito, M.; et al. Isolation of an archaeon at the prokaryote-eukaryote interface. Nature 2020, 577, 519–525. [Google Scholar] [CrossRef] [Green Version]
- Zaremba-Niedzwiedzka, K.; Caceres, E.F.; Saw, J.H.; Bäckström, D.; Juzokaite, L.; Vancaester, E.; Seitz, K.W.; Anantharaman, K.; Starnawski, P.; Kjeldsen, K.U.; et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 2017, 19, 353–358. [Google Scholar] [CrossRef] [Green Version]
- Keseler, I.M.; Gama-Castro, S.; Mackie, A.; Billington, R.; Bonavides-Martínez, C.; Caspi, R.; Kothari, A.; Krummenacker, M.; Midford, P.E.; Muñiz-Rascado, L.; et al. The EcoCyc Database in 2021. Front. Microbiol. 2021, 12, 711077. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Marchler-Bauer, A.; Derbyshire, M.K.; Gonzales, N.R.; Lu, S.; Chitsaz, F.; Geer, L.Y.; Geer, R.C.; He, J.; Gwadz, M.; Hurwitz, D.I.; et al. CDD: NCBI’s conserved domain database. Nucleic Acids Res. 2015, 43, D222–D226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Mirdita, M.; Steinegger, M.; Söding, J. MMseqs2 desktop and local web server app for fast, interactive sequence searches. Bioinformatics 2019, 35, 2856–2858. [Google Scholar] [CrossRef] [Green Version]
- Fowler, N.J.; Williamson, M.P. The accuracy of protein structures in solution determined by AlphaFold and NMR. Structure 2022, 30, 925–933.e2. [Google Scholar] [CrossRef]
- Kwon, O.; Georgellis, D.; Lin, E.C. Rotational on-off switching of a hybrid membrane sensor kinase Tar-ArcB in Escherichia coli. J. Biol. Chem. 2003, 278, 13192–13195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braberg, H.; Webb, B.M.; Tjioe, E.; Pieper, U.; Sali, A.; Madhusudhan, M.S. SALIGN: A web server for alignment of multiple protein sequences and structures. Bioinformatics 2012, 28, 2072–2073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schrödinger & DeLano. PyMOL. 2020. Available online: http://www.pymol.org/pymol (accessed on 24 July 2022).
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein Identification and Analysis Tools on the ExPASy Server. In The Proteomics Protocols Handbook; Walker, J.M., Ed.; Humana Press: Totowa, NJ, USA, 2005; pp. 571–607. [Google Scholar]
C. Lokiarchaeum (Metagenome) | ||||
---|---|---|---|---|
Accession Number | Molecular Weight | pI | Aliphatic Index | Domains and Features * |
KKK45741.1 | 52,780.54 | 6.5 | 105.88 | PAS (2); BaeS; AdeS_HK; HK_VicK; PRK15347; HATPase_C (2) |
KKK40441.1 | 42,288.66 | 5.74 | 111.19 | PAS; BaeS; AdeS_HK; HK_VicK; HATPase_c (2) |
KKK44257.1 | 58,336.03 | 7.11 | 99.39 | VicK; HK_WalK; PRK11360; HATPase_c (3) |
KKK46537.1 | 37,305.37 | 7.02 | 115.39 | BaeS; AdeS_HK; HK_WalK |
KKK46579.1 | 58,196.20 | 5.1 | 97.24 | Heme pocket; PAS (4); BaeS; HATPase_c (3); AdeS_HK; HK_WalK |
KKK43125.1 | 160,358.88 | 6.61 | 98.12 | Heme pocket (4); REC_NtrC1-like; ActR_PrrA_rreg; AtoC; PAS (13); GAF_2; BaeS; AdeS_HK, HK_VicK |
KKK45609.1 | 59,864.19 | 5.17 | 96.48 | PAS_3; BaeS; HK_walK; AdeS_HK: |
KKK46428.1 | 102,728.72 | 8.59 | 99.83 | BaeS; HK_WalK; Sensor Box 1 (3); PAS (10); AdeS_HK; Heme pocket (3) |
KKK46295.1 | 101,567.75 | 5.79 | 99.66 | Heme pocket (2); HATPase_EvgS-ArcB-TorS; HK_WalK; PAS (9); PAS_3 (2); AdeS_HK |
KKK44457.1 | 57,183.86 | 5.35 | 102.91 | Heme pocket; HK_WalK; HK_VicK; HATPase_EvgS-ArcB-TorS; PAS (4) |
Sensory Box 1 | ||||
KKK40347.1 | 39,337.96 | 8.89 | 117.84 | BaeS; BaeS_SmeS; PRK10364; HATPase; HK_WalK; HK _VicK; AdeS_HK |
KKK46010.1 | 34,171.73 | 7.64 | 104.08 | HisKA; REC; CheY; PRK11100; PRK10365; KdpD |
KKK46009.1 | 131,820.89 | 5.49 | 99.11 | Heme Pocket (3); 9 PAS/PAC domains in 5 superfamilies; BaeS; AdeS_HK; HATPase |
KKK41094.1 | 112,435.23 | 5.64 | 90.78 | Putative Active Site (3); Sensory Box (3); Heme Pocket (3); ATP Binding Site (1); ATP Lid (1); Mg-Binding Site (1) |
GxG Motif (1); Contiene 7 PAS en 3 superfamilias; BaeS (1); BaeS_Smes (1); HK-WalK (1); HK-VicK (1); AdeS_HK (1); HATPase (1); HATPase_c (2); PRK09303 (1) | ||||
KKK43837.1 | 90,199.53 | 6.14 | 104.49 | Putative Active Site (1); Sensory Box (1); Heme Pocket (1); ATP Binding Site (1); ATP Lid (1); Mg-Binding Site (1); GxG Motif (1); Contiene 3 PAS en 1 superfamilia; BaeS (1); BaeS_Smes (1); HK-WalK (1); HK-VicK (1); AdeS_HK (1); HATPase (1); HATPase_c (2); PRK11360 (1) |
KKK46292.1 | 43,755.07 | 5.13 | 106.96 | Sensory Box (1); ATP Binding Site (1); ATP Lid (1); Mg-Binding Site (1); GxG Motif (1); PAS (1); BaeS (1); BaeS_Smes (1); HK-WalK (1); HK-VicK (1); AdeS_HK (1); HATPase (1); HATPase_c (2); PRK09303 (1) |
KKK40193.1 | 60,981.80 | 8.54 | 108.46 | COG4251 (Bacteriophytochrome, light-regulated signal transduction histidine kinase) |
C. Prometheoarchaeum (Sequenced Genome) | ||||
QEE16613.1 | 78,222.81 | 5.52 | 99.49 | Putative active site (1); Sensory box (1); Heme Pocket (1); ATP Binding Site (1); ATP Lid (1); Mg-Binding Site (1); GxG Motif (1); PAS (4); 4 PAS domains in 2 superfamilies; Periplasmic Binding Protein Type 2 (1); BaeS (1); BaeS_Smes (1); HK-WalK (1); HK-VicK (1); TMAO_TorS (1); AdeS_HK (1); HATPase_Walk_EvgS-ArcB-TorS like (1); HATPase_c (2) |
QEE16628.1 | 113,413.22 | 8.83 | 95.55 | Putative active site (2); Sensory box (2); Heme Pocket (2); ATP Binding Site (1); ATP Lid (1); Mg-Binding Site (1); GxG Motif (1); 7 PAS domains in 3 superfamilies; BaeS (1); BaeS_Smes (1); HK-WalK (1); HK-VicK (1); TMAO_TorS (1); AdeS_HK (1); HATPase_Walk_EvgS-ArcB-T (1); HATPase_c (2); PRK11107 (1) |
WP_147663689.1 | 84,736.02 | 6.18 | 100.38 | Putative Dimer Interface (1); Sensory Box (2); ATP Binding Site (1); ATP Lid (1); Mg-Binding Site (1); Metal Binding Site (1); GxG Motif (1); Active site (1); 2 PAS in 2 superfamilies; BaeS (1); BaeS_Smes (1); HK-WalK (1); HK-VicK (1); TMAO_TorS (1); AdeS_HK (1); HATPase_AtoS like (1); HATPase_c (2); REC (4 belonging to 1 CheY, 2 REC and 1 Response_reg; |
PRK11360 (AtoS) (1) | ||||
WP_147663673.1 | 80,618.67 | 5.49 | 106.34 | Heme Pocket (2); PAS (7); 7 PAS domains in 3 superfamilies; TMAO_TorS; BaeS; PRK11091; AdeS_HK; HATPase |
QEE16740.1 | 80,618.67 | 5.49 | 106.34 | Heme Pocket (2); 7 PAS domains in 3 superfamilies; BaeS; TMAO_TorS; PRK11091; AdeS_HK; HATPase |
WP_147664519.1 | 89,139.07 | 6.49 | 111.80 | PAS (1); BaeS; AdeS_HK; HATPase_c (2) |
WP_147662496.1 | 87,008.08 | 5.22 | 102.36 | PAS (8); BaeS; PRK13557; HATPase_c (2); Heme pocket (2) |
WP_147664078.1 | 76,672.69 | 5.89 | 100.02 | Heme pocket (2); PAS (3); BaeS; HATPase_c (2); AdeS_HK; HK_WalK |
QEE16621.1 | 122,598.94 | 8.17 | 102.3 | Heme pocket (2); PAS (9); GAF_2; TMAO_torS; HK_VicK; HK_WalK; AdeS_HK; HATPase_c (2) |
QEE16756.1 | 84,736.02 | 6.18 | 100.38 | PAS (3); BaeS; PRK11360; HATPase_c (2); CheY; REC (2); ActR_PrrA_rreg; Metal binding site |
QEE16389.1 | 77,609.99 | 4.94 | 104.50 | PBP2_HisK; HK_WalK; HK_VicK |
WP_147661239.1 | 119,091.40 | 5.86 | 90.98 | PAS (11); BaeS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padilla-Vaca, F.; de la Mora, J.; García-Contreras, R.; Ramírez-Prado, J.H.; Alva-Murillo, N.; Fonseca-Yepez, S.; Serna-Gutiérrez, I.; Moreno-Galván, C.L.; Montufar-Rodríguez, J.M.; Vicente-Gómez, M.; et al. Two-Component System Sensor Kinases from Asgardian Archaea May Be Witnesses to Eukaryotic Cell Evolution. Molecules 2023, 28, 5042. https://doi.org/10.3390/molecules28135042
Padilla-Vaca F, de la Mora J, García-Contreras R, Ramírez-Prado JH, Alva-Murillo N, Fonseca-Yepez S, Serna-Gutiérrez I, Moreno-Galván CL, Montufar-Rodríguez JM, Vicente-Gómez M, et al. Two-Component System Sensor Kinases from Asgardian Archaea May Be Witnesses to Eukaryotic Cell Evolution. Molecules. 2023; 28(13):5042. https://doi.org/10.3390/molecules28135042
Chicago/Turabian StylePadilla-Vaca, Felipe, Javier de la Mora, Rodolfo García-Contreras, Jorge Humberto Ramírez-Prado, Nayeli Alva-Murillo, Sofia Fonseca-Yepez, Isaac Serna-Gutiérrez, Carolina Lisette Moreno-Galván, José Manolo Montufar-Rodríguez, Marcos Vicente-Gómez, and et al. 2023. "Two-Component System Sensor Kinases from Asgardian Archaea May Be Witnesses to Eukaryotic Cell Evolution" Molecules 28, no. 13: 5042. https://doi.org/10.3390/molecules28135042
APA StylePadilla-Vaca, F., de la Mora, J., García-Contreras, R., Ramírez-Prado, J. H., Alva-Murillo, N., Fonseca-Yepez, S., Serna-Gutiérrez, I., Moreno-Galván, C. L., Montufar-Rodríguez, J. M., Vicente-Gómez, M., Rangel-Serrano, Á., Vargas-Maya, N. I., & Franco, B. (2023). Two-Component System Sensor Kinases from Asgardian Archaea May Be Witnesses to Eukaryotic Cell Evolution. Molecules, 28(13), 5042. https://doi.org/10.3390/molecules28135042