Effect of Different Extraction Methods on the Total Phenolics of Sugar Cane Products
Abstract
1. Introduction
2. Results and Discussion
2.1. Identification and Quantification of Polyphenolic Compounds by HPLC
2.2. UHPLC–QTOFMS Analysis
2.3. α-Glucosidase and α-Amylase Inhibitory Assay Determination
3. Materials and Methods
3.1. Sample Extraction
3.2. Ultrasonic-Assisted Extraction (Method A)
3.3. Solid-Phase Extraction (Method B)
3.4. Ethyl Acetate Extraction (Method C)
3.5. High-Performance Liquid Chromatography (HPLC) Analysis
3.6. UHPLC–QTOFMS Analysis
3.7. α-Amylase Inhibitory Assay
3.8. α-Glucosidase Inhibitory Assay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barrera, N.; Betoret, L.; Seguí, L. Phenolic Profile of Cane Sugar Derivatives Exhibiting Antioxidant and Antibacterial Properties. Sugar Technol. 2020, 22, 798–811. [Google Scholar] [CrossRef]
- Abbas, S.R.; Sabir, S.M.; Ahmad, S.D.; Boligon, A.A.; Athayde, M.L. Phenolic profile, antioxidant potential and DNA damage protecting activity of sugarcane (Saccharum officinarum). Food Chem. 2014, 147, 10–16. [Google Scholar] [CrossRef] [PubMed]
- El-Abasy, M.; Motobu, M.; Nakamura, K.; Koge, T.; Onodera, O.; Vainio, P.; Toivanen, Y. Hirota, Preventive and therapeutic effects of sugar cane extract on cyclophosphamide-induced immunosuppression in chickens. Int. Immunopharmacol. 2004, 4, 983–990. [Google Scholar] [CrossRef]
- Molina-Cortés, A.; Quimbaya, M.; Toro-Gomez, A.; Tobar-Tosse, F. Bioactive compounds as an alternative for the sugarcane industry: Towards an integrative approach. Heliyon 2023, 9, e13276. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Lal, U.; Mukhtar, H.; Singh, P.; Shah, R. Dhawan, Phytochemical profile of sugarcane and its potential health aspects. Pharmacogn. Rev. 2015, 9, 45. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Takara, K.; Ushijima, K.; Wada, H.; Iwasaki, M.; Yamashita, M. Phenolic Compounds from Sugarcane Molasses Possessing Antibacterial Activity against Cariogenic Bacteria. J. Oleo Sci. 2007, 56, 611–614. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Azlan, A.; Khoo, H.E.; Sajak, A.A.B.; Aizan, N.A.; Kadir, A.; Yusof, B.N.M.; Mahmood, Z.; Sultana, S. Antioxidant activity, nutritional and physicochemical characteristics, and toxicity of minimally refined brown sugar and other sugars. Food Sci. Nutr. 2020, 8, 5048–5062. [Google Scholar] [CrossRef]
- Payet, B.; Sing, A.S.C.; Smadja, J. Comparison of the concentrations of phenolic constituents in cane sugar manufacturing products with their antioxidant activities. J. Agric. Food Chem. 2006, 54, 7270–7276. [Google Scholar] [CrossRef]
- Duarte-Almeida, J.M.; Salatino, A.; Genovese, M.I.; Lajolo, F.M. Phenolic composition and antioxidant activity of culms and sugarcane (Saccharum officinarum L.) products. Food Chem. 2011, 125, 660–664. [Google Scholar] [CrossRef]
- Chen, M.; Zhao, Y.; Yu, S. Optimisation of ultrasonic-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from sugar beet molasses. Food Chem. 2015, 172, 543–550. [Google Scholar] [CrossRef]
- Preet, A. Metabolomics: Approaches and Applications to Diabetes Research. J. Diabetes Metab. 2013, 1, 1–8. [Google Scholar] [CrossRef][Green Version]
- Yan, J.; Zhang, G.; Pan, J.; Wang, Y. α-Glucosidase inhibition by luteolin: Kinetics, interaction and molecular docking. Int. J. Biol. Macromol. 2014, 64, 213–223. [Google Scholar] [CrossRef]
- Balasubramaniam, V.; Lee Chelyn, J.; Md Noh, M.; Ahmad, S.; Brownlee, I.; Ismail, A. Alpha-amylase, antioxidant, and anti-inflammatory activities of Eucheuma denticulatum (N.L. Burman) F.S. Collins and Hervey. J. Appl. Phycol. 2015, 28, 1965–1974. [Google Scholar] [CrossRef]
- Khaleeda, N.; Zolkeflee, Z.; Ramli, N.S.; Azlan, A. In Vitro Anti-Diabetic Activities and UHPLC-ESI-MS/MS Profile of Muntingia calabura Leaves Extract. Molecules 2022, 27, 287. [Google Scholar]
- Tombari, G.; Salvetti, C.; Ferrari, G.P. Johari, Kinetics and thermodynamics of sucrose hydrolysis from real-time enthalpy and heat capacity measurements. J. Phys. Chem. B 2007, 111, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Shapla, U.M.; Solayman, M.; Alam, N.; Khalil, M.I.; Gan, S.H. 5-Hydroxymethylfurfural (HMF) levels in honey and other food products: Effects on bees and human health. Chem. Cent. J. 2018, 12, 35. [Google Scholar] [CrossRef]
- Asikin, Y.; Hirose, N.; Tamaki, H.; Ito, S.; Oku, H.; Wada, K. Effects of different drying–solidification processes on physical properties, volatile fraction, and antioxidant activity of non-centrifugal cane brown sugar. LWT Food Sci. Technol. 2016, 66, 340–347. [Google Scholar] [CrossRef]
- Seguí, L.; Calabuig-Jiménez, N.; Betoret, N.; Fito, P. Physicochemical and antioxidant properties of non-refined sugarcane alternatives to white sugar. Int. J. Food Sci. Technol. 2015, 50, 2579–2588. [Google Scholar] [CrossRef]
- Azizan, A.; Ahamad Bustamam, M.S.; Maulidiani, M.; Shaari, K.; Ismail, I.S.; Nagao, N.; Abas, F. Metabolite Profiling of the Microalgal Diatom Chaetoceros Calcitrans and Correlation with Antioxidant and Nitric Oxide Inhibitory Activities via 1H NMR-Based Metabolomics. Mar. Drugs 2018, 16, 154. [Google Scholar] [CrossRef][Green Version]
- Duarte, I.F.; Marques, J.; Ladeirinha, A.F.; Rocha, C.; Lamego, I.; Calheiros, R.; Silva, T.M.; Marques, M.P.M.; Melo, J.B.; Carreira, I.M.; et al. Analytical approaches toward successful human cell metabolome studies by NMR spectroscopy. Anal. Chem. 2009, 81, 5023–5032. Available online: http://pubs.acs.org/doi/pdfplus/10.1021/ac900545q%5Cnhttp://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed9&NEWS=N&AN=2009297146 (accessed on 1 April 2017).
- Hird, S.J.; Lau, B.P.-Y.; Schuhmacher, R.; Krska, R. Liquid chromatography-mass spectrometry for the determination of chemical contaminants in food. TrAC Trends Anal. Chem. 2014, 59, 59–72. [Google Scholar] [CrossRef][Green Version]
- Keharom, S.; Mahachai, R.; Chanthai, S. The optimisation study of α-amylase activity based on central composite design-response surface methodology by dinitrosalicylic acid method. Int. Food Res. J. 2016, 23, 10–17. [Google Scholar]
- Adisakwattana, S.; Chantarasinlapin, P.; Thammarat, H.; Yibchok-Anun, S. A series of cinnamic acid derivatives and their inhibitory activity on intestinal alpha-glucosidase. J. Enzyme Inhib. Med. Chem. 2004, 24, 1194–1200. [Google Scholar] [CrossRef] [PubMed]
- Jaffé, W.R. Health Effects of Non-Centrifugal Sugar (NCS): A Review. Sugar Technol. 2012, 14, 87–94. [Google Scholar] [CrossRef]
- Mondal, S.C.; Lee, W.H.; Eun, J.B. Ultrasonic extraction of reducing sugar and polyphenols from burdock (Arctium lappa L.) root waste and evaluation of antioxidants and α-glucosidase inhibition activity. Biomass Convers. Biorefinery 2023, 9, 1–8. [Google Scholar] [CrossRef]
Compounds | Retention Time | Ultrasonic-Assisted Extraction (A) | Solid-Phase Extraction (B) | Ethyl Acetate Extraction (C) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
LRS | BS | RS | LRS | BS | RS | LRS | BS | RS | ||
5-HMF | 5.858 | 14.76 | 6.9 | 5.54 | ND | ND | ND | ND | ND | ND |
Syringic acid | 10.632 | ND | ND | ND | Trace | Trace | ND | Trace | Trace | ND |
Caffeic acid | 11.247 | 24.03 | 15.53 | 8.4 | ND | ND | ND | Trace | Trace | ND |
p-coumaric acid | 14.414 | 15.68 | 2.36 | 1.56 | 9.9 | 4.24 | ND | 18.63 | 10.61 | ND |
Ferulic acid | 15.135 | 3.25 | 17.4 | 6.7 | 1.26 | 0.24 | ND | 7.36 | 5.6 | ND |
TOTAL | 57.72 | 42.19 | 22.06 | 11.16 | 4.48 | 25.99 | 16.21 |
Compounds | RT(min) | [M-H]− | Ultrasonic-Assisted Extraction (A) | Solid-Phase Extraction (B) | Ethyl Acetate Extraction (C) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
LRS | BS | RS | LRS | BS | RS | LRS | BS | RS | |||
Phenolic acids | |||||||||||
Syringic acid | 1.93 | 197 | * | * | * | * | * | - | * | * | - |
Caffeic acid | 2.07 | 179 | * | * | * | * | * | * | * | * | * |
p-coumaric acid | 20.76 | 163 | * | * | * | * | * | * | * | * | - |
Ferulic acid | 21.49 | 193 | * | * | * | * | * | * | * | * | * |
Chlorogenic acid | 42.89 | 353 | * | * | * | * | * | * | - | - | - |
3,4-hydroxybenzoic acid | 11.13 | 153 | * | * | * | * | * | * | - | - | - |
Vanilic acid | 16.86 | 167 | * | * | * | * | * | * | - | - | - |
Flavonoids | |||||||||||
Tricin | 32.37 | 329 | - | - | - | * | * | - | - | - | - |
Apigenin | 22.90 | 269 | - | - | - | * | * | - | - | - | - |
Luteolin | 35.23 | 285 | - | - | - | * | * | - | - | - | - |
Vanillin | 15.53 | 151 | - | - | - | * | * | - | - | - | - |
Sample | Inhibition (%) α-Amylase | Inhibition (%) α-Glucosidase |
---|---|---|
LRS | 4.12 ± 0.70 a | 25.16 ± 0.80 c |
BS | 4.51 ± 0.26 b | 21.22 ± 0.51 d |
RS | No inhibition | No inhibition |
Acarbose (IC50) | 0.40 ± 0.21 µg/mL | 2.25 ± 0.63 µg/mL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azlan, A.; Sultana, S.; Mahmod, I.I. Effect of Different Extraction Methods on the Total Phenolics of Sugar Cane Products. Molecules 2023, 28, 4403. https://doi.org/10.3390/molecules28114403
Azlan A, Sultana S, Mahmod II. Effect of Different Extraction Methods on the Total Phenolics of Sugar Cane Products. Molecules. 2023; 28(11):4403. https://doi.org/10.3390/molecules28114403
Chicago/Turabian StyleAzlan, Azrina, Sharmin Sultana, and Ilya Iryani Mahmod. 2023. "Effect of Different Extraction Methods on the Total Phenolics of Sugar Cane Products" Molecules 28, no. 11: 4403. https://doi.org/10.3390/molecules28114403
APA StyleAzlan, A., Sultana, S., & Mahmod, I. I. (2023). Effect of Different Extraction Methods on the Total Phenolics of Sugar Cane Products. Molecules, 28(11), 4403. https://doi.org/10.3390/molecules28114403