Next Article in Journal
Effect of Different Extraction Methods on the Total Phenolics of Sugar Cane Products
Next Article in Special Issue
Quinone Pool, a Key Target of Plant Flavonoids Inhibiting Gram-Positive Bacteria
Previous Article in Journal
The Ethnopharmacological, Phytochemical, and Pharmacological Review of Euryale ferox Salisb.: A Chinese Medicine Food Homology
Previous Article in Special Issue
Autohydrolysis Application on Vine Shoots and Grape Stalks to Obtain Extracts Enriched in Xylo-Oligosaccharides and Phenolic Compounds
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Dracocephalum jacutense Peschkova from Yakutia: Extraction and Mass Spectrometric Characterization of 128 Chemical Compounds

by
Zhanna M. Okhlopkova
1,
Mayya P. Razgonova
2,3,*,
Zoya G. Rozhina
1,
Polina S. Egorova
4 and
Kirill S. Golokhvast
2,3,5
1
Department of Biology, North-Eastern Federal University, Belinsky Str. 58, 677000 Yakutsk, Russia
2
N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B. Morskaya 42-44, 190000 Saint-Petersburg, Russia
3
Institute of Biotechnology, Bioengineering and Food System, Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia
4
Yakutsk Botanical Garden, Institute for Biological Problems of Cryolithozone Siberian Branch of Russian Academy Sciences, Lenina pr. 41, 677000 Yakutsk, Russia
5
Siberian Federal Scientific Centre of Agro-BioTechnologies of the Russian Academy of Sciences, Centralnaya 2b, 630501 Krasnoobsk, Russia
*
Author to whom correspondence should be addressed.
Molecules 2023, 28(11), 4402; https://doi.org/10.3390/molecules28114402
Submission received: 9 April 2023 / Revised: 22 May 2023 / Accepted: 23 May 2023 / Published: 28 May 2023

Abstract

:
Dracocephalum jacutense Peschkova is a rare and endangered species of the genus Dracocephalum of the Lamiaceae family. The species was first described in 1997 and listed in the Red Data Book of Yakutia. Significant differences in the multicomponent composition of extracts from D. jacutense collected in the natural environment and successfully introduced in the Botanical Garden of Yakutsk were identified by a team of authors earlier in a large study. In this work, we studied the chemical composition of the leaves, stem, and inflorescences of D. jacutense using the tandem mass spectrometry method. Only three cenopopulations of D. jacutense were found by us in the territory of the early habitat—in the vicinity of the village of Sangar, Kobyaysky district of Yakutia. The aboveground phytomass of the plant was collected, processed and dried as separate parts of the plant: inflorescences, stem and leaves. Firstly, a total of 128 compounds, 70% of which are polyphenols, were tentatively identified in extracts of D. jacutense. These polyphenol compounds were classified as 32 flavones, 12 flavonols, 6 flavan-3-ols, 7 flavanones, 17 phenolic acids, 2 lignans, 1 dihydrochalcone, 4 coumarins, and 8 anthocyanidins. Other chemical groups were presented as carotenoids, omega-3-fatty acids, omega-5-fatty acids, amino acids, purines, alkaloids, and sterols. The inflorescences are the richest in polyphenols (73 polyphenolic compounds were identified), while 33 and 22 polyphenols were found in the leaves and stems, respectively. A high level of identity for polyphenolic compounds in different parts of the plant is noted for flavanones (80%), followed by flavonols (25%), phenolic acids (15%), and flavones (13%). Furthermore, 78 compounds were identified for the first time in representatives of the genus Dracocephalum, including 50 polyphenolic compounds and 28 compounds of other chemical groups. The obtained results testify to the unique composition of polyphenolic compounds in different parts of D. jacutense.

1. Introduction

The genus Dracocephalum (family Lamiaceae) includes a total of 77 species. They are annual and perennial herbaceous plants, and occasionally dwarf shrubs. The species are native to Europe, Eurasia, North Asia and North America. The genus Dracocephalum is of high practical interest due to the accumulation of secondary metabolites, especially polyphenolic compounds, in its vegetative and generative organs. Terpenoids, steroids, flavonoids, alkaloids, lignans, phenols, coumarins, cyanogenic compounds, and glucosides have been identified in the chemical composition of representatives of the genus Dracocephalum [1,2,3,4,5]. Some components have antioxidant, antihypoxic, immunomodulatory, and anticancer effects [6,7,8,9].
Many scientific studies have been carried out on the phytochemical composition of representatives of the genus Dracocephalum in recent years. Four new (undescribed) terpenoids have been isolated from dried aerial parts of D. moldavica, including a monoterpenoid glycoside, an iridoid glycoside, a sesquiterpene and a triterpenoid, as well as nine known terpenoids. The chemical structure of the compounds was established using spectroscopy, HRESIMS data analysis and acid hydrolysis. Of these, five compounds were found in the genus Dracocephalum for the first time [10]. The UPLC-Q-TOF-MS method was used to study the qualitative and quantitative composition of secondary metabolites (flavonoids, phenolic acids, and coumarins) in the aerial part of D. moldavica, depending on the growth period and geographical location [11]. The study of polyphenolic compounds in D. moldavica using LC-MS revealed the content of rosmarinic acid as the main component, in the range of 5.337 ± 0.0411 and 6.320 ± 0.0535 mg/mL [12].
Five species of Dracocephalum grow in the territory of Yakutia, which is characterized by a sharply continental climate, close continuous occurrence of permafrost, and snow cover that is preserved for almost seven months a year. Among these species, D. jacutense is the only one listed in the Red Data Book of Yakutia [13]. D. jacutense grows in stony sparse steppe phytocenoses (Figure 1). To date, only a few cenopopulations of the plant have survived. The comparative analysis of the chemical composition of aerial parts of D. jacutense Peschkova collected both in controlled conditions (the Botanical Garden of Yakutia) and in a natural-growth area (the vicinity of the village of Sangar, Kobyaysky district of Yakutia) was performed by a team of authors in a previous large study [14]. A total of 156 bioactive compounds were successfully characterized in extracts of D. jacutense based on their accurate MS (Mass Spectrometry) fragment ions by searching online databases and the reported literature. A detailed study of the composition by tandem mass spectrometry revealed a significant difference in the polyphenol composition of the samples.
Wild-grown plant samples had a higher number of polyphenolic compounds (92 compounds) than plant samples grown in the Botanical Garden (56 compounds), which was not previously described in the genus Dracocephalum. In addition, a total of 37 compounds of other chemical groups were identified that were not previously identified in the genus Dracocephalum. In general, the extract of D. jacutense grown in wild conditions was found to be a richer source of flavones, flavanols, flavan-3-ols, phenolic acids, and anthocyanidins than plants grown in controlled conditions in the Botanical Garden.
In general, studies of the phytochemical composition of representatives of the genus Dracocephalum are of great importance for determining their potential use in medicine, the development of new drugs and other pharmaceutical industries. The aim of this work is a comparative analysis of the phytochemical profile of various parts of D. jacutense, i.e., leaves, inflorescences, and stems, collected in the vicinity of the village of Sangar in the Kobyaysky district of Yakutia during an expedition in July 2022. Maceration extracts of D. jacutense were analyzed by ion trap HPLC-MS/MS and showed a greater diversity of chemical compounds present in different parts of the plant. The ion trap was used in the scan range m/z 100–1700 for MS. A four-stage ion separation mode (MS/MS mode) was implemented. Extracts of plant inflorescences, leaves and stems were analyzed separately. The extracts from D. jacutense were analyzed by high-performance liquid chromatography (HPLC) coupled with the ion trap in order to characterize chemical compounds from different parts of D. jacutense. The compounds were characterized by interpreting the mass spectrum provided by the ion trap-MS/MS, as well as comparing with information from the literature.

2. Results

A total of 128 compounds were tentatively identified in the plant extracts, of which 70% were polyphenols. These polyphenol compounds were classified as 32 flavones, 12 flavonols, 6 flavan-3-ols, 7 flavanones, 17 phenolic acids, 2 lignans, 1 dihydrochalcone, 4 coumarins, and 8 anthocyanidins. Other chemical groups were presented as carotenoids, omega-3-fatty acids, omega-5-fatty acids, amino acids, purines, alkaloids, and sterols.
All the identified compounds, along with MS/MS data, molecular formulas, and their comparative profile for D. jacutense, are summarized in Table A1 (Appendix A). Of the identified compounds, 70% are polyphenols, and 30% are amino acids, fatty acids, purine, alkaloid, sterol, carotenoids, etc. Compounds of the polyphenol group were represented in inflorescences by 73 variations, in leaf extracts by 33 compounds, and in stem extracts by 22 polyphenols.
Of these compounds, 78 were identified for the first time in the genus Dracocephalum; 50 were polyphenolic compounds and 28 were from other chemical groups (amino acids, fatty acids, triterpenic acids, etc.). Furthermore, 36 polyphenolic compounds and compounds of other chemical groups (fatty acids, naphthoquinone, pterocarpan, amino acids, triterpenic acids, zeaxanthin, etc.) were found for the first time in extracts from the inflorescences, while 6 polyphenolic compounds were found for the first time in leaf extracts, and 2 polyphenolic compounds were found in stem extracts. Figure A1, Figure A2 and Figure A3 (from Appendix A) below show ion chromatograms separately for extracts from inflorescences, stems, and leaves of D. jacutense.
The greatest similarity in the identified chemical compounds is found in representatives of the genera Mentha, Vaccinium, Rosmarinus, Astragali, and Eucalyptus. In addition, Rhodioloside C (monoterpene glycoside), previously described in Rhodiola rosea, was found in leaf extracts [15,16,17] and Rhodiola crenulata [18].
The newly identified polyphenols belonged to nine classes, including 11 phenolic acids and their conjugates, 14 flavones, 6 flavonols, 4 flavan-3-ols, 3 flavanone, 5 anthocyanins, 2 lignans, 4 coumarins, and 1 dihydrochalcone (Table 1). Newly identified compounds from other chemical groups belonged to 11 classes, including 1 benzenediol, 3 amino acid and their conjugates, 2 fatty amides, 3 omega-3 fatty acids, 1 omega-5 fatty acid, 4 carotenoids, 1 monoterpene glycoside, 1 diterpenoid naphthoquinone, 4 triterpenic acids, 1 pterocarpan, 1 dihydrochalcone, and others.

2.1. Flavones

2.1.1. 7-Hydroxy(iso)flavones

The flavones formononetin (compound 1), and calycosin [3′-Hydroxyformononetin] (compound 4) have already been characterized as a component of Astragali Radix [19,20,21], Huolisu Oral Liquid [22], and the Chinese herbal formula Jian-Pi-Yi-Shen pill [23]. The flavone formononetin and calycosin were found in extracts from leaves of D. jacutense. The CID-spectrum in positive ion mode of flavone calycosin from extracts of leaves of D. jacutense is shown in Figure 2.
The [M + H]+ ion produced two fragment ions at m/z 253.27 [aglycone-CH3OH] and m/z 167.21 (Figure 2). The fragment ion with m/z 253.3 yielded two daughter ions at m/z 209.33 and m/z 135.36. It was identified in the bibliography in extracts of Astragali radix [19,20,21] and Huolisu Oral Liquid [22]. The CID-spectrum in positive ion mode of formononetin from extracts of leaves of D. jacutense is shown in Figure 3.
The [M + H]+ ion produced six fragment ions at m/z 213.3, m/z 199.35, m/z 185.29, m/z 161.24, m/z 133.33, and m/z 117.3 (Figure 3). The fragment ion for m/z 213.3 yielded four daughter ions at m/z 169.21, m/z 157.26, m/z 143.24, and m/z 129.29. The fragment ion for m/z 169.21 yielded two daughter ions at m/z 143.27 and m/z 129.33. It was identified in the bibliography in extracts of Astragali radix [19,20,21], Huolisu Oral Liquid [22] and the Chinese herbal formula Jian-Pi-Yi-Shen pill [23]. The base peak ion chromatogram in positive ion mode and base peak ion chromatogram in negative ion mode of D. jacutense (experiment 2484) are shown in Figure 4.

2.1.2. Dihydroxyflavones

The flavones genkwanin (compound 5) and Dihydroxy-dimethoxy(iso)flavone (compound 10) have already been characterized as a component of D. palmatum [1], Astragali radix [20], Rosmarinus officinalis [24], propolis [25], etc. These flavones were found in extracts from leaves and flowers of D. jacutense. The CID-spectrum in positive ion mode of genkwanin from extracts of leaves of D. jacutense is shown in Figure 5.
The [M + H]+ ion produced three fragment ions at m/z 270, m/z 242, and m/z 167 (Figure 5). The fragment ion for m/z 270 yielded daughter ions at m/z 242. The fragment ion for m/z 242 yielded daughter ions at m/z 213, m/z 197, and m/z 124. It was identified in the bibliography in extracts of D. palmatum [1,5], Rosmarinus officinalis [24], and Menthae Haplocalycis [26]. The base peak ion chromatogram in positive ion mode and base peak ion chromatogram in negative ion mode of D. jacutense (experiment 2490) are shown in Figure 6.

2.1.3. Trihydroxyflavones

The flavones apigenin (compound 2), diosmetin (compound 7), and chrysoeriol (compound 8) have already been characterized as a component of D. palmatum [1], Dracocephalum [5,14], propolis [25], D. moldavica [27], Rhus coriaria [28], etc. The flavones diosmetin, and chrysoeriol were found in extracts from the leaves of D. jacutense, and the flavone apigenin was found in extracts of the flowers of D. jacutense.

2.1.4. Hexahydroxyflavone

The flavone myricetin (compound 12) has already been characterized as a component of Vaccinium macrocarpon [29] and Andean blueberry [30]. This flavone was found in extracts from inflorescences of D. jacutense.

2.2. Flavan-3-ols

The flavan-3-ols catechin (compound 46), (epi)catechin (compound 47), gallocatechin (compound 48), catechin-3-O-gallate (compound 49), and epigallocatechin-3-gallate (compound 50) have already been characterized as a component of Dracocephalum [1,5,14], Sanguisorba officinalis [31], C. edulis [32], and Camellia kucha [33]. The flavan-3-ol catechin-3-O-gallate was found in extracts from leaves of D. jacutense.

3. Discussion

The polyphenol composition distribution table is shown in Table A2 (Appendix B). The comparison table shows the presence of some flavonoids in all three types of extracts, including the polyphenols acacetin, luteolin, cirsimaritin, luteolin 7-O-glucoside, kaempferol, astragalin, kaempferol-3-O-glucuronide, naringenin, eriodictyol, prunin, eriodictyol 7-O-glucoside, rosmarinic acid, and caffeic acid derivative. The results of the research turned out to be more representative, finding 73 polyphenols in extracts from inflorescences, 33 polyphenols in extracts from leaves and 22 polyphenols in extracts from stems of D. jacutense.
The analysis shows that the overwhelming presence of the polyphenolic group was found in the inflorescence of D. jacutense. Moreover, the majority of this group of flavonoids are flavones, amounting to 21 chemical compounds, 29% of the total compounds of the polyphenol group. In second place in terms of the number of identified polyphenol groups are hydroxybenzoic and hydroxycinnamic acids, amounting to 15 chemical compounds, 21% of the total compounds. In third place in terms of the number of detected compounds are flavonols, amounting to 12 chemical compounds, 16% of the total amount of polyphenols.
It should be noted that some of the chemical compounds found in D. jacutense were first tentatively identified in the genus Dracocephalum. These include the polyphenol compounds formononetin, calycosin, cirsimaritin, 5,7-dimethoxyluteolin, myricetin, cirsiliol, taxifolin-3-O-hexoside, catechin 3-O-gallate, epigallocatechin-3-gallate, ferreirin, homoeriodictyol, salvianic acid, protocatechuic acid-O-hexoside, etc.
Figure 7 shows a Venn diagram built on the data obtained during the mass spectrometric study of the presence of polyphenols in different parts of the plant. The Venn diagram data shows that 13 compounds (14.6%) are present in all three parts of the plant, 8 polyphenolic compounds (9%) are present in both the inflorescences and in the leaves, and 4 polyphenolic compounds (4.5%) are present in both the inflorescences and in the stems of the plant.
A detailed interpretation of the identified compounds in inflorescences, leaves, and stems of D. jacutense is presented in Table 2.

4. Materials and Methods

4.1. Plant Material

Separate parts (leaves, stems, inflorescences) of D. jacutense Peschkova were collected during expedition work in the territory of the Kobyaysky district of Yakutia from July 14 to 19 July 2022 (Figure 8). The aboveground phytomass was collected at the stage of full flowering of the plant. A few seeds were at the stage of milky ripeness and were husked (extracted) from inflorescences during office processing before drying the phytomass. All samples were morphologically authenticated according to the current standard of the State Pharmacopoeia of the Russian Federation [34].

4.2. Chemicals and Reagents

HPLC-grade acetonitrile was purchased from Fisher Scientific (Southborough, UK), and MS-grade formic acid was obtained from Sigma-Aldrich (Steinheim, Germany). Ultrapure water was prepared using a Siemens Ultra Clear system (Siemens Water Technologies, Gunzburg, Germany), and all other chemicals were analytical grade.

4.3. Fractional Maceration

Fractional maceration (repeated infusion) provides for a change in the concentration difference at the phase boundary due to the renewal of the extractant. In this case, the amount of the extractant is divided into portions, and the infusion time is divided into periods. [35]. From 300 g of the sample, 10 g of inflorescences, leaves, and stems were randomly selected for maceration. The total amount of the extractant (ethyl alcohol of reagent grade) was divided into three parts, and the parts of plant were consistently infused in the first, second, and third parts. The solid–solvent ratio was 1:20. The infusion of each part of the D. jacutense samples continued for 7 days at room temperature.

4.4. Liquid Chromatography

A Shimadzu LC-20 Prominence HPLC Pump (Shimadzu, Kyoto, Japan) equipped with a UV sensor and C18 silica reverse phase column (4.6 × 150 mm, particle size: 2.7 μm) was used to perform the separation of multicomponent mixtures. The gradient elution program with two mobile phases (A, deionized water; B, CH3CN with formic acid 0.1% v/v) was as follows: 0, 0–4 min, 100% CH3CN; 4–60 min, 100–25% CH3CN; 60–75 min, 25–0% CH3CN; control washing 50–60 min, 100% A. The entire HPLC analysis was performed with a UV–VIS detector SPD-20A (Shimadzu, Kyoto, Japan) at a wavelength of 230 nm for identification compounds, a temperature of 50 °C, and a total flow rate of 0.25 mL min−1. The liquid chromatography equipment was combined into one line with an ion trap amaZon SL (Bruker Daltoniks, Bremen, Germany) for the identification of biologically active compounds.

4.5. Mass Spectrometry

The chemical compounds were identified by comparing their mass spectra, mass spectrometry fragmentation, and retention time with a home-library database built by the Food Products Group at the Far East Federal University (Russian Federation), based on data from other spectroscopic equipment and data from scientific literature. MS analysis was performed on an ion trap amaZon SL (Bruker Daltonics, Germany) equipped with an ESI source in negative and positive ion modes. The optimized parameters were as follows: ionization source temperature, 70 °C; gas flow, 4 L/min; nebulizer gas (atomizer), 7.3 psi; capillary voltage, 4500 V; end plate bend voltage, 1500 V; fragmentary, 280 V; collision energy, 60 eV.

5. Conclusions

In total, 128 chemical compounds were identified in the extracts of the rare species D. jacutense, which grows only in the environs of the village of Sangar, the Kobyaysky district of Yakutia, using HPLC-MS/MS with an ion trap and database comparison. Of these, 73 polyphenolic compounds were found in extracts from inflorescences, 33 in extracts from leaves, and 22 in extracts from stems. Of the total number of polyphenols found, 14% of the compounds are found in all types of extracts. These include four flavones, three flavanols, four flavanones and two phenolic acids. A large share of the identity for polyphenolic compounds in different parts of D. jacutense is noted for flavanones, for which the identity is 80%, then for flavonols (25%), phenolic acids (15%), and flavones (13%).
Thus, in terms of the individuality of the classes of polyphenolic compounds in D. jacutense, it can be noted that flavonoids, isoflavanone, phenylpropanoic acid, hydroxycinnamic acids, lignans, hydroxycoumarins, coumarins, and coumarin glucoside are found only in inflorescences, while hydroxybenzoic acid and dihydrochalcone are found only in stems.
All obtained data testify to the unique phytochemical composition of extracts from different parts of D. jacutense. This plant species is characterized by a narrow local distribution; at present, only three cenopopulations have been preserved in the sparse steppe phytocenoses of the Kobyaysky district of Yakutia.

Author Contributions

Conceptualization, M.P.R. and Z.M.O.; methodology, Z.G.R., P.S.E. and K.S.G.; software, M.P.R. and K.S.G.; validation, Z.M.O., M.P.R. and K.S.G.; formal analysis, M.P.R. and Z.M.O.; investigation, Z.M.O. and K.S.G.; resources, K.S.G.; data curation, Z.G.R. and P.S.E.; writing—original draft preparation, M.P.R. and Z.M.O.; writing—review and editing, M.P.R. and K.S.G.; visualization, M.P.R. and Z.M.O.; supervision, K.S.G.; project administration, Z.M.O. and K.S.G. All authors have read and agreed to the published version of the manuscript.

Funding

The study was carried out at the North-Eastern Federal University under Russian Science Foundation Grant No. 22-14-20031, https://rscf.ru/en/project/22-14-20031/ accessed on 23 Marth 2022, and a Grant from the Yakut Science Foundation based on Agreement No. 38.

Institutional Review Board Statement

Not applicable.

Informed consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

Sample Availability

Not applicable.

Appendix A

Figure A1. Base peak ion chromatogram in positive ion mode (violet line), base peak ion chromatogram in negative ion mode (green line), UV Chromatogram, 230 nm (brown line), UV Chromatogram, 330 nm (gray line) of extracts from inflorescences of D. jacutense.
Figure A1. Base peak ion chromatogram in positive ion mode (violet line), base peak ion chromatogram in negative ion mode (green line), UV Chromatogram, 230 nm (brown line), UV Chromatogram, 330 nm (gray line) of extracts from inflorescences of D. jacutense.
Molecules 28 04402 g0a1
Figure A2. Base peak ion chromatogram in positive ion mode (violet line), base peak ion chromatogram in negative ion mode (green line), UV Chromatogram, 230 nm (brown line), UV Chromatogram, 330 nm (gray line) of extracts from leaves of D. jacutense.
Figure A2. Base peak ion chromatogram in positive ion mode (violet line), base peak ion chromatogram in negative ion mode (green line), UV Chromatogram, 230 nm (brown line), UV Chromatogram, 330 nm (gray line) of extracts from leaves of D. jacutense.
Molecules 28 04402 g0a2
Figure A3. Base peak ion chromatogram in positive ion mode (violet line), base peak ion chromatogram in negative ion mode (gray line), UV Chromatogram, 230 nm (red line), UV Chromatogram, 330 nm (green line) of extracts from stems of D. jacutense.
Figure A3. Base peak ion chromatogram in positive ion mode (violet line), base peak ion chromatogram in negative ion mode (gray line), UV Chromatogram, 230 nm (red line), UV Chromatogram, 330 nm (green line) of extracts from stems of D. jacutense.
Molecules 28 04402 g0a3
Table A1. Compounds identified from the extracts of D. jacutense in positive and negative ionization modes by HPLC-ion trap-MS/MS.
Table A1. Compounds identified from the extracts of D. jacutense in positive and negative ionization modes by HPLC-ion trap-MS/MS.
NoClass of CompoundsIdentified CompoundsFormulaRetention Time, minMolecular Ion [M − H]Molecular Ion [M + H]+2 Fragmentation MS/MS 3 Fragmentation MS/MS 4 Fragmentation MS/MS References
POLYPHENOLS
1FlavoneFormononetin [Biochanin B; Formononetol] *C16H12O431.9 269213170; 156; 129141Astragali Radix [19,20,21]; Huolisu Oral Liquid [22]
2FlavoneApigenin [5,7-Dixydroxy-2-(40Hydroxyphenyl)-4H-Chromen-4-One]C15H10O58.0 269225181117D. palmatum [1]; Dracocephalum [5]; Andean blueberry [30]; Lonicera japonicum [36]; Mexican lupine species [37]
3FlavoneAcacetin [Linarigenin; Buddleoflavonol]C16H12O535.7 285268211; 143 D. palmatum [1]; Dracocephalum [5]; Mentha [26]; D. moldavica [27]; Mexican lupine species [37]
4FlavoneCalycosin [3′-Hydroxyformononetin] *C16H12O538.5 285253; 242; 225; 200235; 221; 209; 203 Astragali Radix [19,20,21]; Huolisu Oral Liquid [22]
5FlavoneGenkwanin [Gengkwanin; Puddumetin; Apigenin 7-Methyl Ether]C16H12O538.0 285165 D. palmatum [1]; Rosmarinus officinalis [24]; Mentha [27]
6FlavoneLuteolinC15H10O67.9 287286; 153171153D. palmatum [1]; Dracocephalum [5]; Lonicera japonicum [36]
7FlavoneDiosmetin [Luteolin 4′-Methyl Ether; Salinigricoflavonol]C16H12O68.8 301286258 Dracocephalum [1]; Mentha [26]; D. moldavica [27]; Andean blueberry [30]; Lonicera japonicum [36]
8FlavoneChrysoeriol [Chryseriol]C16H12O69.0 301286; 167258203D. jacutense [14]; Propolis [25]; Rhus coriaria [28]
9FlavoneCirsimaritin [Scrophulein; 4′,5-Dihydroxy-6,7-Dimethoxyflavone; 7-Methylcapillarisin] *C17H14O630.9 315282254226; 119Rosmarinus officinalis [24]; Ocimum [38]
10FlavoneDihydroxy-dimethoxy(iso)flavone *C17H14O638.1 315300; 272272257; 243; 217; 201; 185; 167Astragali radix [21]; Rosmarinus officinalis [24]; Propolis [25]
11Flavone5,7-Dimethoxyluteolin *C17H14O638.2313 285; 213; 185185; 145 Syzygium aromaticum [39]; Rosa rugosa [40]
12FlavoneMyricetin *C15H10O82.9 319291; 219; 143191; 143173Propolis [25]; Vaccinium macrocarpon [29]; Andean blueberry [30]; Sanguisorba officinalis [31]; F. glaucescens [32]
13FlavoneIsothymusinC17H14O724.2 331303; 203203; 275203D. palmatum [1]
14FlavoneCirsiliol *C17H14O734.2 331316; 298; 233; 157297; 187; 134 Ocimum [38]
15FlavoneDimethoxy-trihydroxy(iso)flavone *C17H14O728.4 331316; 226298; 226270; 226Propolis [25]; Jatropha [41]
16FlavoneNevadensinC18H16O734.1 345312; 241; 147284; 269269; 213; 135Dracocephalum [1]; Mentha [26]; Ocimum [40]
17FlavoneGardenin B [Demethyltangeretin] *C19H18O740.3 359326; 298298270; 239; 162Mentha [26]; Ocimum [38]; Actinocarya tibetica [42]
18Flavone5-Hydroxy-6,7,8,3′,4′-pentamethoxyflavone *C20H20O840.2 389356313295; 221; 149Mentha [26]
19FlavoneApigenin O-hexosideC21H20O1025.5431 269269; 225; 149224; 157D. palmatum [1]; F. glaucescens; F. pottsii [32]; Chamaecrista nictitans [43]
20FlavoneApigenin-7-O-glucoside [Apigetrin; Cosmosiin]C21H20O1025.8 433271153 D. palmatum [1]; Dracocephalum [5]; Mexican lupine species [37]; Mentha spicata [44]
21FlavoneApigenin 7-O-glucuronideC21H18O1125.5 447271153271; 171Dracocephalum [5]; Pear [45]; Bougainvillea [46]
22FlavoneAcacetin 7-O-glucoside [Tilianin]C22H22O1030.1 447285; 149270242D. palmatum [1]; Dracocephalum [5]; Bougainvillea [46]
23FlavoneLuteolin 7-O-glucoside [Cynaroside; Luteoloside]C21H20O1123.6 449287; 199153 Dracocephalum [5]; Lonicera japonicum [36]; Pear [45]; Passiflora incarnata [47]
24FlavoneAcacetin 7-O-beta-d-glucuronideC22H20O1124.5 461270; 242; 153242 Dracocephalum [5]; D. moldavica [27]
25Flavone6,4′-Dimethoxyisoflavone-7-O-glucoside *C23H24O1030.1 461285270; 242; 153242Astragali radix [19,20,21]
26FlavoneDiosmetin-7-O-beta-glucosideC22H22O119.3 463287168123Dracocephalum [5]; D. moldavica [27]; Oxalis corniculata [48]
27FlavoneApigenin-O-rhamnoside *C22H22O1127.1 463273; 153153; 171171Passion fruit [49]
28FlavoneChrysoeriol-7-O-glucuronide *C22H20O1226.5 477301286258Propolis [25]
29FlavoneAcacetin 7-beta-O-(6″-acetyl)-glucosideC24H24O116.6 489472; 354; 296; 223 D. moldavica [27]
30IsoflavoneApigenin 7-O-beta-d-(6″-O-malonyl)-glucosideC24H22O1343.1 519184; 500; 466; 371; 258125 Dracocephalum [5]; D. moldavica [27]; Zostera marina [50]
31FlavoneAcacetin 7-O-beta-d-(6″-O-malonylated)-glucosideC25H24O1329.4 533371; 285; 191; 165353; 285; 191; 165147D. moldavica [27]
32FlavoneChrysoeriol O-hexoside C-hexoside *C28H32O1642.8 625445; 463; 377; 347357; 217 Triticum aestivum L. [51,52]
33FlavonolKaempferol [3,5,7-Trihydroxy-2-(4-hydro- xyphenyl)-4H-chromen-4-one] C15H10O65.5 287269; 202233; 205216Dracocephalum [5]; Rhus coriaria [28]; Andean blueberry [30]; Lonicera japonica [36]; Rapeseed petals [53]
34FlavonolQuercetinC15H10O79.0 303285; 228; 165229; 165141Propolis [25]; Rhus coriaria [28]; Vaccinium macrocarpon [29,54]
35FlavonolDihydroquercetin (Taxifolin; Taxifoliol)C15H12O728.0 305287286; 186185Dracocephalum [5]; Andean blueberry [30]; Camellia kucha [33]
36FlavonolIsorhamnetin [Isorhamnetol; Quercetin 3′-Methyl ether; 3-Methylquercetin] *C16H12O745.4 317299; 257; 214; 173281; 188 Rosmarinus officinalis [24]; Propolis [25]; Vaccinium macrocarpon [29]; Andean blueberry [30]; Embelia [55]
37Flavonoid3,5-Diacetyltambulin *C22H20O922.3427 381; 249249; 161161; 124A. cordifolia [32]
38FlavonolAstragalin [Kaempferol 3-O-glucoside; Astragaline]C21H20O1131.0447 285; 327241199Dracocephalum [5]; Camellia kucha [33]; Lonicera japonicum [36]; Mexican lupine species [37]; pear [45]
39FlavonolQuercitrin [Quercetin 3-O-rhamnoside; Quercetrin] *C21H20O1124.2 449302202; 174; 127175Propolis [25]; Rhus coriaria [28]; Vaccinium macrocarpon [29,54]; Camellia kucha [33]; Bryophyllum pinnatum [48]; Embelia [55]; Euphorbia hirta [56]
40FlavonolKaempferol-3-O-glucuronideC21H18O1223.9 463287268; 169241; 119Dracocephalum [5]; Rhus coriaria [28]; A. cordifolia; G. linguiforme [32]
41FlavonolTaxifolin-3-O-hexoside [Dihydroquercetin-3-O-hexoside] *C21H22O1218.5 467305; 259; 195; 153259; 195; 153231; 149Andean blueberry [30]; Euphorbia hirta [56]; millet grains [57]
42FlavonolKaempferol 3-O-rutinosideC27H30O1528.3 595287; 345; 389; 449287; 245; 153171Dracocephalum [5]; Rhus coriaria [28]; Camellia kucha [33]; Lonicera japonica [36]; Pear [45]
43FlavonolKaempferol-3,7-Di-O-glucoside *C27H30O1615.8 611287; 449287; 213; 185; 137185; 157Rapeseed petals [53]; Tomato [58]; Taraxacum officinale [59]
44FlavonolKaempferol dihexoside rhamnoside *C33H40O2021.5 757595; 287287; 213; 137185; 168C. edulis [32]
45Flavan-3-ol(epi)Afzelechin *C15H14O58.7 275228; 210; 175; 157; 132212; 203; 183; 170194A. cordifolia; F. glaucescens; F. herrerae [32]; Cassia granidis [60]; Cassia abbreviata [61]
46Flavan-3-olCatechin [d-Catechol] *C15H14O634.4 291207; 123123 C. edulis [32]; Camellia kucha [33]; Vaccinium macrocarpon [54]; Actinidia [62]
47Flavan-3-ol(epi)catechinC15H14O618.6 291273; 117255; 145 Dracocephalum [5]; Andean blueberry [30]; C. edulis [32]; Camellia kucha [33]
48Flavan-3-olGallocatechin [+(−)Gallocatechin]C15H14O78.3 307289259 Dracocephalum [5]; G. linguiforme [32]; Rhodiola rosea [63]
49Flavan-3-olCatechin 3-O-gallate * C22H18O107.2 443273; 205263; 211; 171; 143 Camellia kucha [33]; Rhododendron [64]; Terminalia arjuna [65]
50Flavan-3-olEpigallocatechin-3-gallate *C22H18O116.3 459290; 207207; 123 F. glaucescens [32]; Camellia kucha [33]; Clidemia rubra [66]
51FlavanoneNaringenin [Naringetol; Naringenine]C15H12O58.4 273153; 256125 D. palmatum [1]; Dracocephalum [5]; Andean blueberry [30]; Mexican lupine species [37]; Rapeseed petals [53]
52FlavanoneEriodictyol [3′,4′,5,7-tetrahydroxy-flavanone]C15H12O620.5 289163; 271145117D. palmatum [1]; Dracocephalum [5]; Andean blueberry [30]; Mentha [44]
53IsoflavanoneFerreirin *C16H14O627.0 303177; 285163135Mentha [44]
54TrihydroxyflavanoneHomoeriodictyol *C16H14O627.1 303285; 177163145Mentha [26]
55FlavanonePrunin [Naringenin-7-O-glucoside]C21H22O1022.7433 271; 151269; 151 D. palmatum [1]; Dracocephalum [5]; Rapeseed petals [53]
56FlavanoneEriodictyol-7-O-glucoside [Pyracanthoside; Miscanthoside]C21H22O116.3449 285; 151243; 151 D. palmatum [1]; Dracocephalum [5]; Mentha [44]
57FlavanoneEriodictyol-7-O-glucuronide *C21H20O1223.3463 285; 151285; 243; 151 Thymus vulgaris [67]
58Hydroxycinnamic acidp-Coumaric acid [4-Hydroxycinnamic acid; P-Hydroxycinnamic acid; 4-Coumarate] *C9H8O316.7 165147119 F. pottsii [32]; Rhus coriaria [28]; Andean blueberry [30]; Rapeseed petals [53]; Vaccinium macrocarpon [54]
59Hydroxycinnamic acid3,4-Dihydroxyhydrocinnamic acid*C9H10O433.6 183137 Eucalyptus Globulus [68]
60Phenolic acid2,3,4,5-Tetrahydroxybenzoic acid [2-Hydroxygallussaure; 3,4,5-Trihydroxysalicylic acid] *C7H6O65.9 187144 PubChem
61Phenolic acidSalvianic acid A [Danshensu] *C9H10O515.3197 179; 135135 Huolisu Oral Liquid [22]; Hedyotis diffusa [69]
62Hydroxybenzoic acidEllagic acid [Benzoaric acid; Elagostasine; Lagistase; Eleagic acid]C14H6O85.5301 284221112Dracocephalum [5]; Rhus coriaria [28]; Eucalyptus Globulus [68]
63Phenolic acidProtocatechuic acid-O-hexoside *C13H16O916.1315 153; 123123 Rhus coriaria [28]; Euphorbia hirta [56]; Eucalyptus Globulus [68]
64Phenolic acidCaffeic acid-4-O-beta-d-hexoside [Caffeoyl-O-hexoside]C15H18O96.7341 179; 119143; 131 Dracocephalum [5]; pear [45]; Cherimoya, papaya [49]; Sasa veitchii [70]
65Phenolic acidChlorogenic acid [3-O-Caffeoylquinic acid]C16H18O917.9 355179; 338; 227127 D. palmatum [1]; Vaccinium macrocarpon [29,54]; Andean blueberry [30]; Rhus coriaria [28]; Camellia kucha [33]; Lonicera japonica [36]; Bougainvillea [46]; Rapeseed petals [53]
66Phenolic acidIsochlorogenic acid *C16H18O929.5 355323; 269; 165295; 208; 133295; 249; 221Actinidia [62]
67Phenolic acidRosmarinic acidC18H16O824.5359 161133 D. palmatum [1]; Mentha [26]; Dracocephalum [5]; Salvia miltiorrhiza [71]
68Phenolic acidCaffeic acid derivativeC16H18O9Na6.8377 341; 215179 Dracocephalum [5]; Bougainvillea [46]
69Phenolic acid1/3/4/5-p-Coumaroylquinic acid * + C2H2OC18H20O97.3 381321; 275; 233260; 218; 143 Actinidia [62]
70Phenolic acid8,8′-Aryl-Diferulic acid *C20H18O836.9385 193; 285193; 161 millet grains [57]
71Phenolic acidCaffeic acid hexoside dimer *C31H40O176.9683 341179; 161143Strawberry, Lemon, Cherimoya, Passion fruit [49]
72Phenolic acidSalvianolic acid B [Danfensuan B] *C36H30O1626.3717 519; 321321; 279279; 185Huolisu Oral Liquid [22]; Mentha [26]; Bougainvillea [46]; Salvia miltiorrhiza [71]
73Phenylpropanoic acid Sagerinic acidC36H32O1625.7719 359161; 197133D. palmatum [1]; Huolisu Oral Liquid [22]; Rosmarinus officinalis [24]; Mentha [26]; Salvia miltiorrhiza [71]
74Phenolic acidClerodendranoic acid H *C36H32O1626.1719 359161 Lepechinia [72]
75LignanPhillygenin [Sylvatesmin; Phyllygenol; Forsythigenol] *C21H24O616.7371 163; 325119 Lignans [73]
76LignanMedioresinol *C21H24O720.8387 207; 163; 119163 Rosmarinus officinalis [24]; Lignans [73]; Bituminaria [74]
77DihydrochalconePhloretin [Dihydronaringenin; Phloretol] *C15H14O57.6 275255; 229; 131237; 209; 164 G. linguiforme [32]; Rosa rugosa [40]; Punica granatum [75]
78HydroxycoumarinUmbelliferone [Skimmetin; Hydragin] *C9H6O326.2 163145; 135; 117117 Sanguisorba officinalis [31]; F. glaucescens [32]; Zostera marina [50]; Actinidia [62]
79CoumarinFraxetin [7,8-Dihydroxy-6-methoxycoumarin] *C10H8O520.5 209191; 149149147Jatropha [41]; Embelia [56]; Actinidia [62]
80HydroxycoumarinUmbelliferone hexoside *C15H16O87.1 325307; 288; 271; 253; 241127; 118 G. linguiforme [32]
81Coumarin glycoside Fraxin [Fraxetin-8-O-glucoside] *C16H18O107.3 371209 Rosa davurica [40]; Actinidia [62]
82AnthocyanidinPetunidinC16H13O7+35.6 318166; 300121 Dracocephalum [1]; A. cordifolia; C. edulis [32]
83AnthocyanidinPelargonidin-3-O-glucoside (callistephin)C21H21O1025.8 433271153; 225171Dracocephalum [1]; Triticum aestivum [76]; Rubus ulmifolius [77]
84AnthocyanidinCyanidin-3-O-glucoside [Cyanidin 3-O-beta-d-Glucoside; Kuromarin]C21H21O11+7.5 449287153 Dracocephalum [1]; Triticum aestivum [76]; Malpighia emarginata [78]
85AnthocyanidinCyanidin 3,5-O-diglucoside *C27H31O1616.1 611287; 449287; 241; 213; 175; 149213; 185; 172; 157; 145Rapeseed petals [53]; Muscadine pomace [79]; Berberis microphylla [80]
86AnthocyanidinPeonidin-3,5-diglucoside [Peonin; Peonidin 3-Glucoside-5-Glucoside] *C28H33O1644.1 625463; 374; 301445; 373 Triticum aestivum [76]; Muscadine pomace [79]
87AnthocyanidinCyanidin-3-O-rutinoside-5-O-glucoside *C33H41O2021.1 757287; 449; 595287; 213; 137185Camellia kucha [33]
88AnthocyanidinDelphinidin 3-O-rutinoside-5-O-glucoside *C33H41O2120.5 773303; 465; 611257; 303; 229; 165257; 229; 201; 116Berberis microphylla [80]; Iris dichotoma [81]; Solanium nigrum [82]
89AnthocyanidinMalonyl-shisonin *C39H39O21+23.0 843595; 535; 491; 287287; 259; 213; 147213; 185Perilla frutescens [83,84]
OTHERS
90BenzenediolCatechol derivative *C6H6O35.9 127124; 118 Embelia [55]
91Amino acidPhenylalanine [L-Phenylalanine] *C9H11NO28.7 166120 G. linguiforme [32]; Camellia kucha [33]; Lonicera japonica [36]; Rapeseed petals [53]; Potato leaves [85]
92Amino acidTyrosine [(2S)-2-Amino-3-(4-Hydroxyphnyl)Propanoic acid] *C9H11NO38.1 182165; 150113 Euphorbia hirta [56]; Hylocereus polyrhizus [86]
93Monobasic carboxylic acidHydroxyphenyllactic acid *C9H10O417.6181 163; 135119 Mentha [87]
94Amino acidL-Tryptophan [Tryptophan; (S)-Tryptophan]C11H12N2O29.2 205188144118Dracocephalum [1]; Camellia kucha [33]; Rosa acicularis [40]; Rapeseed petals [53]
95Omega-5 fatty acidMyristoleic acid [Cis-9-Tetradecanoic acid]C14H26O220.5 227209139 Dracocephalum [1]; F. glaucescens [32]
96XanthoneMangiferitin [Norathyriol; 1,3,6,7-Tetrahydroxyxanthone] *C13H8O69.7 261193; 135179; 124111Rhus coriaria [28]
97Ribonucleoside composite of adenine (purine)AdenosineC10H13N5O49.2 268136; 258 Dracocephalum [1]; Lonicera japonica [36]
98Omega 3-fatty acidStearidonic acid [6,9,12,15-Octadecatetraenoic acid; Moroctic acid] *C18H28O217.9 277177; 247175 Rhus coriaria [28]; G. linguiforme [32]; Jatropha [41]; Salviae miltiorrhiza [88]
99Omega 3-fatty acidLinolenic acid [Alpha-Linolenic acid; Linolenate] *C18H30O210.9 279219; 259159 Jatropha [41]; Salviae miltiorrhiza [88]
100Fatty amideLinoleic acid amide *C18H33NO8.2 280262; 244244; 234; 216; 196; 172196; 168; 151Propolis [25]; Rhus coriaria [28]
101Fatty amideOleamide *C18H35NO7.1 282263; 246; 192245; 228; 217; 197; 170 Propolis [25]
102AlkaloidMesembrenolC17H23NO335.6 290242; 122184; 149 Dracocephalum [1]; Sceletium [89]
103Diterpenoid naphthoquinoneTanshinone IIA [Tanshinone B] *C19H18O38.1 295277; 259; 193; 149259; 241; 199; 149241; 147Huolisu Oral Liquid [22]
104Unsaturated hydroxy fatty acidHydroxyoctadecatrienoic acid*C18H30O344.9293 275; 235; 185; 172231; 205; 177231; 163Jatropha [41]
105Polyunsaturated fatty acidAlpha-Kamlolenic Acid [18-Hydroxy-9Z,11E,13E-Octadecatrienoic Acid] *C18H30O343.9293 275; 231; 171231; 177231G. linguiforme; F. glaucescens; F. pottsii [32]
106Essential fatty acidHydroxyoctadecadienoic acid *C18H32O346.5295 277; 251; 195; 171; 152233; 179; 155 A. cordifolia; F. glaucescens; F. herrerae [32]; Jatropha [41]
107Pterocarpans3-Hydroxy-9,10-dimethoxypterocarpanC17H16O528.9 301286; 257; 229; 177; 153163; 149145Astragali radix [19,20,21]; Huolisu Oral Liquid [22]
108 p-hydroxyphenacyl-β-d-glucopyranoside *C14H18O831.1313 161; 213133; 161133Rhodiola crenulata [18,90]
109Long-chain fatty acidHydroxy eicosenoic acid *C20H38O342.8 327295; 268; 181; 125268237; 135A. cordifolia; F. pottsii [32]
110Amino acidFructose-phenylalanine *C15H21NO78.1 328310; 292292; 264; 244; 216; 198; 178244; 216; 198; 171; 156Potato leaves [85]
111Oxylipins9,10-Dihydroxy-8-oxooctadec-12-enoic acid [oxo-DHODE; oxo-Dihydroxy-octadecenoic acid]C18H32O58.1327 229209183Dracocephalum [1]; Phyllostachys nigra [70]; Bituminaria [74]
112Oxylipins13- Trihydroxy-Octadecenoic acid [THODE]C18H34O534.1329 229; 293; 211; 171211; 229; 155183; 211Dracocephalum [1]; Sasa veitchii [70]; Bituminaria [74]
113Unsaturated omega-3 fatty acidTrihydroxy eicosatetraenoic acid *C20H32O540.5 353261; 293; 243; 207243; 201; 159; 132162F. glaucescens [32]
114Tetrasyclic diterpenoidKomaroviquinoneC21H28O51.9 361343; 302310; 269; 218; 161282D. komarovii [91]
115SterolStigmasterol [Stigmasterin; Beta-Stigmasterol]C29H48O3.5 413395; 301; 237; 189189 Dracocephalum [1]; A. cordifolia; F. pottsii [32]; Hedyotis diffusa [69]
116Anabolic steroid; Androgen; Androgen esterVebonolC30H44O325.2 453435; 336; 226336209Dracocephalum [1]; Rhus coriaria [28]; Hylocereus polyrhizus [86]
117Triterpenic acidBetulonic acid [Betunolic acid; Liquidambaric acid] *C30H46O347.8 455436; 353; 313; 249393; 336; 319; 282154Rhus coriaria [28]; Rosa rugosa [40]
118Triterpenic acid1-Hydroxy-3-oxours-12-en-28-oic acid *C30H46O441.0 471453; 425; 407; 389365; 335; 283; 205177; 121Pear [45]
119Triterpenic acidPomolic acid *C30H48O445.8 473454; 371; 302; 144 Sanguisorba officinalis [31]; Pear [45]; Malus domestica [92]
120Triterpenic acidTormentic acid [Jacarandic acid; Tomentic acid] *C30H48O542.2487 470; 423; 372403; 377 Sanguisorba officinalis [31]; Pear [45]; Actinidia [62]
121Monoterpene glycosideRhodioloside C [(2E,4R)-4-hydroxy-3,7-dimethyl-2,6-octadienyl β-d-glucopyranosyl(1-3)-β-d-glucopyranoside] *C22H38O1230.7493 447; 329; 285309; 285294; 187Rhodiola rosea [15,16,17]; Rhodiola crenulata [18]
122Carotenoid(all-E)-lutein 3′-O-myristate *C40H54O0.6 551533; 509; 429; 385; 355133 Carotenoids [93]; Rosa rugosa [94]
123CarotenoidCryptoxanthin [Beta-cryptoxanthin]C40H56O5.3 553535; 325; 223517 Dracocephalum [1]; Carotenoids [93]; Sarsaparilla [95]
124CarotenoidZeaxanthin [All-Trans-Zeaxanthin; Anchovyxanthin] *C40H56O23.6 569553; 534; 471; 359534; 486; 326; 262516; 473; 308; 262Sarsaparilla [95]; Carotenoids [96]
125Product of Chlorophylle breakdownPheophorbide a *C35H34N4O60.3 607547; 503; 461461; 433433Chlorophyll derivatives [97]
126CycloartanolCyclopassifloic acid glucoside *C37H62O1240.4 699537375; 331; 259; 185 Passiflora incarnata [47]
127CarotenoidCarotenoid *C41H59O102.8 712695; 605; 543; 474; 456412; 369; 200; 143 Carotenoids [98]
128Carotenoid(all-E)-beta-cryptoxanthin laurate [Beta-Cryptoxanthin-Laurate] *C52H78O229.5 735323; 521; 277295; 163249; 173; 134Carotenoids [93]; Sarsaparilla [95]; Carica papaya [99]
* Compounds identified for the first time in genus Dracocephalum.

Appendix B

Table A2. The polyphenol composition distribution of D. jacutense. Green squares—presence in extracts from stems; violet squares—in extracts from inflorescences; emerald squares—in extracts from leaves.
Table A2. The polyphenol composition distribution of D. jacutense. Green squares—presence in extracts from stems; violet squares—in extracts from inflorescences; emerald squares—in extracts from leaves.
NoClass of CompoundsIdentified CompoundsStemsInflorescencesLeaves
1FlavoneFormononetin [Biochanin B; Formononetol] *
2FlavoneApigenin [5,7-Dixydroxy-2-(40Hydroxyphenyl)-4H-Chromen-4-One]
3FlavoneAcacetin [Linarigenin; Buddleoflavonol]
4FlavoneCalycosin [3′-Hydroxyformononetin] *
5FlavoneGenkwanin [Gengkwanin; Puddumetin; Apigenin 7-Methyl Ether]
6FlavoneLuteolin
7FlavoneDiosmetin [Luteolin 4′-Methyl Ether; Salinigricoflavonol]
8FlavoneChrysoeriol [Chryseriol]
9FlavoneCirsimaritin [Scrophulein] *
10FlavoneDihydroxy-dimethoxy(iso)flavone *
11Flavone5,7-Dimethoxyluteolin *
12FlavoneMyricetin *
13FlavoneIsothymusin
14FlavoneCirsiliol *
15FlavoneDimethoxy-trihydroxy(iso)flavone *
16FlavoneNevadensin
17FlavoneGardenin B [Demethyltangeretin] *
18Flavone5-Hydroxy-6,7,8,3′,4′-pentamethoxyflavone *
19FlavoneApigenin O-hexoside
20FlavoneApigenin-7-O-glucoside [Apigetrin; Cosmosiin]
21FlavoneApigenin 7-O-glucuronide
22FlavoneAcacetin 7-O-glucoside [Tilianin]
23FlavoneLuteolin 7-O-glucoside [Cynaroside; Luteoloside]
24FlavoneAcacetin 7-O-beta-d-glucuronide
25Flavone6,4′-Dimethoxyisoflavone-7-O-glucoside *
26FlavoneDiosmetin-7-O-beta-glucoside
27FlavoneApigenin-O-rhamnoside *
28FlavoneChrysoeriol-7-O-glucuronide *
29FlavoneAcacetin 7-beta-O-(6″-acetyl)-glucoside
30IsoflavoneApigenin 7-O-beta-d-(6″-O-malonyl)-glucoside
31FlavoneAcacetin 7-O-beta-d-(6″-O-malonylated)-glucoside
32FlavoneChrysoeriol O-hexoside C-hexoside *
33FlavonolKaempferol
34FlavonolQuercetin
35FlavonolDihydroquercetin (Taxifolin; Taxifoliol)
36FlavonolIsorhamnetin [Isorhamnetol; Quercetin 3′-Methyl ether; 3-Methylquercetin] *
37Flavonoid3,5-Diacetyltambulin *
38FlavonolAstragalin [Kaempferol 3-O-glucoside; Kaempferol-3-Beta-Monoglucoside; Astragaline]
39FlavonolQuercitrin [Quercetin 3-O-rhamnoside; Quercetrin] *
40FlavonolKaempferol-3-O-glucuronide
41FlavonolTaxifolin-3-O-hexoside [Dihydroquercetin-3-O-hexoside] *
42FlavonolKaempferol 3-O-rutinoside
43FlavonolKaempferol-3,7-Di-O-glucoside *
44FlavonolKaempferol dihexoside rhamnoside *
45Flavan-3-ol(epi)Afzelechin *
46Flavan-3-olCatechin [D-Catechol] *
47Flavan-3-ol(epi)catechin
48Flavan-3-olGallocatechin [+(−)Gallocatechin]
49Flavan-3-olCatechin 3-O-gallate *
50Flavan-3-olEpigallocatechin-3-gallate *
51FlavanoneNaringenin [Naringetol; Naringenine]
52FlavanoneEriodictyol [3′,4′,5,7-tetrahydroxy-flavanone]
53IsoflavanoneFerreirin *
54TrihydroxyflavanoneHomoeriodictyol *
55FlavanonePrunin [Naringenin-7-O-glucoside]
56FlavanoneEriodictyol-7-O-glucoside [Pyracanthoside; Miscanthoside]
57FlavanoneEriodictyol-7-O-glucuronide *
58Hydroxycinnamic acidp-Coumaric acid [4-Hydroxycinnamic acid; P-Hydroxycinnamic acid; 4-Coumarate] *
59Hydroxycinnamic acid3,4-Dihydroxyhydrocinnamic acid *
60Phenolic acid2,3,4,5-Tetrahydroxybenzoic acid [2-Hydroxygallussaure; 3,4,5-Trihydroxysalicylic acid] *
61Phenolic acidSalvianic acid A [Danshensu] *
62Hydroxybenzoic acidEllagic acid [Benzoaric acid; Elagostasine; Lagistase; Eleagic acid]
63Phenolic acidProtocatechuic acid-O-hexoside *
64Phenolic acidCaffeic acid-4-O-beta-d-hexoside [Caffeoyl-O-hexoside]
65Phenolic acidChlorogenic acid [3-O-Caffeoylquinic acid]
66Phenolic acidIsochlorogenic acid *
67Phenolic acidRosmarinic acid
68Phenolic acidCaffeic acid derivative
69Phenolic acid1/3/4/5-p-Coumaroylquinic acid * + C2H2O
70Phenolic acid8,8′-Aryl-Diferulic acid *
71Phenolic acidCaffeic acid hexoside dimer *
72Phenolic acidSalvianolic acid B [Danfensuan B] *
73Phenylpropanoic acidSagerinic acid
74Phenolic acidClerodendranoic acid H *
75LignanPhillygenin [Sylvatesmin; Phyllygenol; Forsythigenol] *
76LignanMedioresinol *
77DihydrochalconePhloretin [Dihydronaringenin; Phloretol] *
78HydroxycoumarinUmbelliferone [Skimmetin; Hydragin] *
79CoumarinFraxetin [7,8-Dihydroxy-6-methoxycoumarin] *
80HydroxycoumarinUmbelliferone hexoside *
81Coumarin glycosideFraxin [Fraxetin-8-O-glucoside] *
82AnthocyanidinPetunidin
83AnthocyanidinPelargonidin-3-O-glucoside (callistephin)
84AnthocyanidinCyanidin-3-O-glucoside [Cyanidin 3-O-beta-d-Glucoside; Kuromarin]
85AnthocyanidinCyanidin 3,5-O-diglucoside *
86AnthocyanidinPeonidin-3,5-diglucoside [Peonin; Peonidin 3-Glucoside-5-Glucoside] *
87AnthocyanidinCyanidin-3-O-rutinoside-5-O-glucoside *
88AnthocyanidinDelphinidin 3-O-rutinoside-5-O-glucoside *
89AnthocyanidinMalonyl-shisonin *
TOTAL227333
* Compounds identified for the first time in genus Dracocephalum.

References

  1. Olennikov, D.N.; Chirikova, N.K.; Kim, E.; Kim, S.W.; Zulfugarov, I.S. New glycosides of eriodictyol from Dracocephalum palmatum. Chem. Nat. Compd. 2018, 54, 860–863. [Google Scholar] [CrossRef]
  2. Toshmatov, Z.O.; Li, J.; Eshbakova, K.A.; Tang, D.; Xin, X.L.; Aisa, H.A. New monoterpene glucosides from Dracocephalum komarovi and their anti-inflammatory activity. Phytochem. Lett. 2019, 33, 102–105. [Google Scholar] [CrossRef]
  3. Zhang, H.R.; Xu, L.T.; Liu, X.Q.; Fan, J.J.; Wang, X.N.; Shen, T.; Wang, S.Q.; Ren, D.M. Dracomolphesin A–E, five 3,4-seco-phenylpropanoids with Nrf2 inducing activity from Dracocephalum moldavica. Chin. Chem. Lett. 2020, 31, 1259–1262. [Google Scholar] [CrossRef]
  4. Zhang, H.R.; Wang, S.Q.; Liu, Q.Y.; Zheng, H.; Liu, X.Q.; Wang, X.N.; Shen, T.; Ren, D.M. Dracomolphin A–E, new lignans from Dracocephalum moldavica. Fitoterapia 2021, 150, 104841. [Google Scholar] [CrossRef] [PubMed]
  5. Okhlopkova, Z.M.; Razgonova, M.P.; Pikula, K.S.; Zakharenko, A.M.; Piekoszewski, W.; Manakov, Y.A.; Ercisli, S.; Golokhvast, K.S. Dracocephalum palmatum S. and Dracocephalum ruyschiana L. originating from Yakutia: A high-resolution mass spectrometric approach for the comprehensive characterization of phenolic compounds. Appl. Sci. 2022, 12, 1766. [Google Scholar] [CrossRef]
  6. Khodaei, M.; Amanzadeh, Y.; Faramarzi, M.A.; Pirali-Hamedani, M.; Adhami, H.R. Cholinesterase Inhibitory, Anti-oxidant and Anti-tyrosinase Activities of Three Iranian Species of Dracocephalum. Res. J. Pharmacogn. 2019, 6, 25–31. [Google Scholar]
  7. Kim, J.; Kim, J.N.; Park, I.; Sivtseva, S.; Okhlopkova, Z.; Zulfugarov, I.S.; Kim, S.-W. Dracocephalum palmatum Stephan extract induces caspase- and mitochondria-dependent apoptosis via Myc inhibition in diffuse large B cell lymphoma. Oncol. Rep. 2020, 44, 2746–2756. [Google Scholar] [CrossRef]
  8. Lee, S.-E.; Okhlopkova, Z.; Lim, C.; Cho, S. Dracocephalum palmatum Stephan extract induces apoptosis in human prostate cancer cells via the caspase-8-mediated extrinsic pathway. Chin. J. Nat. Med. 2020, 18, 793–800. [Google Scholar] [CrossRef]
  9. Song, E.S.; Choi, J.Y.; Gwon, H.E.; Lee, K.Y.; Choi, S.G.; Islam, M.A.; Chun, J.Y.; Hwang, J.N. Phytochemical profile and antioxidant activity of Dracocephalum moldavica L. seed extracts using different extraction methods. Food Chem. 2021, 350, 128531. [Google Scholar] [CrossRef] [PubMed]
  10. Wang, J.; Sun, J.; Jin, L.; Huang, Y.; Wang, M.; Jin, M.; Diao, S.; Zhou, W.; Li, G. Four new terpenoids and other metabolites with potential anti-complementary activities from the aerial parts of Dracocephalum moldavica (Lamiaceae). Nat. Prod. Res. 2022, 22, 1–9. [Google Scholar] [CrossRef]
  11. Wu, C.; Liu, H.; Rong, X.; Liu, J.; Ding, W.; Cheng, X.; Xing, J.; Wang, C. Phytochemical Composition Profile and Space–Time Accumulation of Secondary Metabolites for Dracocephalum Moldavica Linn. via UPLC–Q/TOF–MS and HPLC–DAD Method. Biomed. Chromatogr. 2020, 34, e4865. [Google Scholar] [CrossRef] [PubMed]
  12. Simea, Ș.; Ielciu, I.; Hanganu, D.; Niculae, M.; Pall, E.; Burtescu, R.F.; Olah, N.-K.; Cenariu, M.; Oniga, I.; Benedec, D.; et al. Evaluation of the Cytotoxic, Antioxidative, and Antimicrobial Effects of Dracocephalum moldavica L. Cultivars. Molecules 2023, 28, 1604. [Google Scholar] [CrossRef] [PubMed]
  13. Red Book of the Republic of Sakha (Yakutia). V. 1: Rare and Endangered Species of Plants and Fungi; Danilova, N.S., Ed.; Publishing House “Reart”: Moscow, Russia, 2017; 412p. (In Russian) [Google Scholar]
  14. Razgonova, M.P.; Okhlopkova, Z.M.; Rozhina, Z.G.; Egorova, P.S.; Ercisli, S.; Golokhvast, K.S. Comparison of Wild and Introduced Dracocephalum jacutense P.: Significant Differences of Multicomponent Composition. Horticulturae 2022, 8, 1211. [Google Scholar] [CrossRef]
  15. Troshchenko, A.T.; Kutikova, G.A. Rhodioloside from Rhodiola rosea and R. quadrifida I. Chem. Nat. Compd. 1967, 3, 244–249. [Google Scholar] [CrossRef]
  16. Saratikov, A.S.; Krasnov, E.A.; Chnikina, L.A.; Duvidson, L.M.; Sotova, M.I.; Marina, T.F.; Nechoda, M.F.; Axenova, R.A.; Tscherdinzeff, S.G. Rhodiolosid, a new glycoside from Rhodiola rosea and its pharmacological properties. Pharmazie 1968, 23, 392–395. [Google Scholar]
  17. van Diermen, D.; Marston, A.; Bravo, J.; Reist, M.; Carrupt, P.A.; Hostettmann, K. Monoamine oxidase inhibition by Rhodiola rosea L. roots. J. Ethnopharmacol. 2009, 122, 397–401. [Google Scholar] [CrossRef]
  18. Han, F.; Li, Y.; Ma, L.; Liu, T.; Wu, Y.; Xu, R.; Song, A.; Yin, R. A rapid and sensitive UHPLC-FT-ICR MS/MS method for identification of chemical constituents in Rhodiola crenulata extract, rat plasma and rat brain after oral administration. Talanta 2016, 160, 183–193. [Google Scholar] [CrossRef]
  19. Huang, X.; Liu, Y.; Song, F.; Liu, Z.; Liu, S. Studies on principal components and antioxidant activity of different Radix astragali samples using high-performance liquid chromatography/electrospray ionization multiple-stage tandem mass spectrometry. Talanta 2009, 78, 1090–1101. [Google Scholar] [CrossRef]
  20. Zhang, J.; Xu, X.-J.; Xu, W.; Huang, J.; Zhu, D.; Qui, X.-H. Rapid Characterization and Identification of Flavonoids in Radix astragali by Ultra-High-Pressure Liquid Chromatography Coupled with Linear Ion Trap-Orbitrap Mass Spectrometry. J. Chromatogr. Sci. 2015, 53, 945–952. [Google Scholar] [CrossRef] [PubMed]
  21. Wang, F.; Zhao, S.; Li, F.; Zhang, B.; Qu, Y.; Sun, T.; Luo, T.; Li, D. Investigation of Antioxidant interactions between Radix Astragali and Cimicifuga foetida and Identification of Synergistic Antioxidant Compounds. PLoS ONE 2014, 9, e87221. [Google Scholar] [CrossRef]
  22. Yin, Y.; Zhang, K.; Wei, L.; Chen, D.; Chen, Q.; Jiao, M.; Li, X.; Huang, J.; Gong, Z.; Kang, N.; et al. The Molecular Mechanism of Antioxidation of Huolisu Oral Liquid Based on Serum Analysis and Network Analysis. Front. Pharma. 2021, 12, 710976. [Google Scholar] [CrossRef] [PubMed]
  23. Wang, F.; Huang, S.; Chen, Q.; Hu, Z.; Li, Z.; Zheng, P.; Liu, X.; Li, S.; Zhang, S.; Chen, J. Chemical characterisation and quantification of the major constituents in the Chinese herbal formula Jian-Pi-Yi-Shen pill by UPLC-Q-TOF-MS/MS and HPLC-QQQ-MS/MS. Phytochem. Anal. 2020, 31, 915–929. [Google Scholar] [CrossRef]
  24. Mena, P.; Cirlini, M.; Tassotti, M.; Herrlinger, K.A.; Dall’Asta, C.; Del Rio, D. Phytochemical Profiling of Flavonoids, Phenolic Acids, Terpenoids, and Volatile Fraction of a Rosemary (Rosmarinus officinalis L.) Extract. Molecules 2016, 21, 1576. [Google Scholar] [CrossRef]
  25. Belmehdi, O.; Bouyahya, A.; Jeko, J.; Cziaky, Z.; Zengin, G.; Sotkó, G.; El Baaboua, A.; Senhaji, N.S.; Abrini, J. Synergistic interaction between propolis extract, essential oils, and antibiotics against Staphylococcus epidermidis and methicillin resistant Staphylococcus aureus. Int. J. Second Metab. 2021, 8, 195–213. [Google Scholar] [CrossRef]
  26. Xu, L.L.; Xu, J.J.; Zhong, K.R.; Shang, Z.P.; Wang, F.; Wang, R.F.; Liu, B. Analysis of non-volatile chemical constituents of Menthae Haplocalycis herba by ultra-high performance liquid chromatography—High resolution mass spectrometry. Molecules 2017, 22, 1756. [Google Scholar] [CrossRef]
  27. Martinez-Vazquez, M.; Estrada-Reyes, R.; Martinez-Laurrabaquio, A.; Lopez-Rubalcava, C.; Heinze, G. Neuropharmacological study of Dracocephalum moldavica L. (Lamiaceae) in mice: Sedative effect and chemical analysis of an aqueous extract. J. Ethnopharmacol. 2012, 141, 908–917. [Google Scholar] [CrossRef] [PubMed]
  28. Abu-Reidah, I.M.; Ali-Shtayeh, M.S.; Jamous, R.M.; Arraes-Roman, D.; Segura-Carretero, A. HPLC–DAD–ESI-MS/MS screening of bioactive components from Rhus coriaria L. (Sumac) fruits. Food Chem. 2015, 166, 179–191. [Google Scholar] [CrossRef]
  29. Rafsanjany, N.; Senker, J.; Brandt, S.; Dobrindt, U.; Hensel, A. In Vivo Consumption of Cranberry Exerts ex Vivo Antiadhesive Activity against FimH-Dominated Uropathogenic Escherichia coli: A Combined in Vivo, ex Vivo, and in Vitro Study of an Extract from Vaccinium macrocarpon. J. Agric. Food Chem. 2015, 63, 8804–8818. [Google Scholar] [CrossRef]
  30. Aita, S.E.; Capriotti, A.L.; Cavaliere, C.; Cerrato, A.; Giannelli Moneta, B.; Montone, C.M.; Piovesana, S.; Lagana, A. Andean Blueberry of the Genus Disterigma: A High-Resolution Mass Spectrometric Approach for the Comprehensive Characterization of Phenolic Compounds. Separations 2021, 8, 58. [Google Scholar] [CrossRef]
  31. Kim, S.; Oh, S.; Noh, H.B.; Ji, S.; Lee, S.H.; Koo, J.M.; Choi, C.W.; Jhun, H.P. In Vitro Antioxidant and Anti-Propionibacterium acnes Activities of Cold Water, Hot Water, and Methanol Extracts, and Their Respective Ethyl Acetate Fractions, from Sanguisorba officinalis L. Roots. Molecules 2018, 23, 3001. [Google Scholar] [CrossRef]
  32. Hamed, A.R.; El-Hawary, S.S.; Ibrahim, R.M.; Abdelmohsen, U.R.; El-Halawany, A.M. Identification of Chemopreventive Components from Halophytes Belonging to Aizoaceae and Cactaceae Through LC/MS—Bioassay Guided Approach. J. Chrom. Sci. 2021, 59, 618–626. [Google Scholar] [CrossRef]
  33. Qin, D.; Wang, Q.; Li, H.; Jiang, X.; Fang, K.; Wang, Q.; Li, B.; Pan, C.; Wu, H. Identification of key metabolites based on non-targeted metabolomics and chemometrics analyses provides insights into bitterness in Kucha [Camellia kucha (Chang et Wang) Chang]. Food Res. Int. 2020, 138 Pt B, 109789. [Google Scholar] [CrossRef]
  34. Pharmacopoeia of the Eurasian Economic Union, Approved by Decision of the Board of Eurasian Economic Commission No. 100 dated 11 August 2020. Available online: http://www.eurasiancommission.org/ru/act/texnreg/deptexreg/LSMI/Documents/Фармакoпея%20Сoюза%2011%2008.pdf (accessed on 15 July 2021).
  35. Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.; Mohamed, A.; Sahena, F.; Jahurul, M.; Ghafoor, K.; Norulaini, N.; Omar, A. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
  36. Cai, Z.; Wang, C.; Zou, L.; Liu, X.; Chen, J.; Tan, M.; Mei, Y.; Wei, L. Comparison of Multiple Bioactive Constituents in the Flower and the Caulis of Lonicera japonica Based on UFLC-QTRAP-MS/MS Combined with Multivariate Statistical Analysis. Molecules 2019, 24, 1936. [Google Scholar] [CrossRef]
  37. Wojakowska, A.; Piasecka, A.; Garcia-Lopez, P.M.; Zamora-Natera, F.; Krajewski, P.; Marczak, L.; Kachlicki, P.; Stobiecki, M. Structural analysis and profiling of phenolic secondary metabolites of Mexican lupine species using LC–MS techniques. Phytochem 2013, 92, 71–86. [Google Scholar] [CrossRef]
  38. Pandey, R.; Kumar, B. HPLC–QTOF–MS/MS-based rapid screening of phenolics and triterpenic acids in leaf extracts of Ocimum species and their interspecies variation. J. Liq. Chromatogr. Relat. Tech. 2016, 39, 225–238. [Google Scholar] [CrossRef]
  39. Fanthoni, A.; Saepudin, E.; Cahyana, A.H.; Rahayu, D.U.C.; Haib, J. Identification of Nonvolatile Compounds in Clove (Syzygium aromaticum) from Manado. In Proceedings of the International Symposium on Current Progress in Mathematics and Sciences 2016 (ISCPMS 2016), Depok City, Indonesia, 1–2 November 2016; Volume 1862, pp. 030079-1–030079-10. [Google Scholar]
  40. Razgonova, M.P.; Bazhenova, B.B.; Zabalueva, Y.Y.; Burkhanova, A.G.; Zakharenko, A.M.; Kupriyanov, A.N.; Sabitov, A.S.; Ercisli, S.; Golokhvast, K.S. Rosa davurica Pall., Rosa rugosa Thumb., and Rosa acicularis Lindl. originating from Far Eastern Russia: Screening of 146 Chemical Constituents in Tree Species of the Genus Rosa. Appl. Sci. 2022, 12, 9401. [Google Scholar] [CrossRef]
  41. Zengin, G.; Mahomoodally, M.F.; Sinan, K.I.; Ak, G.; Etienne, O.K.; Sharmeen, J.B.; Brunetti, L.; Leone, S.; Di Simone, S.C.; Recinella, L.; et al. Chemical composition and biological properties of two Jatropha species: Different parts and different extraction methods. Antioxidants 2021, 10, 792. [Google Scholar] [CrossRef] [PubMed]
  42. Singh, B.; Jain, S.K. Simultaneous Quantification of Five Bioactive Flavonoids in High Altitude Plant Actinocarya tibetica by LC-ESI-MS/MS. J. AOAC Int. 2015, 98, 907–912. [Google Scholar] [CrossRef]
  43. Mateos-Martin, M.L.; Fuguet, E.; Jimenez-Ardon, A.; Herrero-Uribe, L.; Tamayo-Castillo, G.; Torres, J.L. Identification of polyphenols from antiviral Chamaecrista nictitans extract using high-resolution LC–ESI–MS/MS. Anal. Bioanal. Chem. 2014, 406, 5501–5506. [Google Scholar] [CrossRef]
  44. Li, X.; Tian, T. Phytochemical Characterization of Mentha spicata L. Under Differential Dried-Conditions and Associated Nephrotoxicity Screening of Main Compound with Organ-on-a-Chip. Front. Pharmacol. 2018, 9, 1067. [Google Scholar] [CrossRef]
  45. Sun, L.; Tao, S.; Zhang, S. Characterization and Quantification of Polyphenols and Triterpenoids in Thinned Young Fruits of Ten Pear Varieties by UPLC-Q TRAP-MS/MS. Molecules 2019, 24, 159. [Google Scholar] [CrossRef] [PubMed]
  46. El-Sayed, M.A.; Abbas, F.A.; Refaat, S.; El-Shafae, A.M.; Fikry, E. UPLC-ESI-MS/MS Profile of The Ethyl Acetate Fraction of Aerial Parts of Bougainvillea ‘Scarlett O’Hara’ Cultivated in Egypt. Egypt. J. Chem. 2021, 64, 22. [Google Scholar] [CrossRef]
  47. Ozarowski, M.; Piasecka, A.; Paszel-Jaworska, A.; de Siqueira, A.; Chaves, D.; Romaniuk, A.; Rybczynska, M.; Gryszczynska, A.; Sawikowska, A.; Kachlicki, P.; et al. Comparison of bioactive compounds content in leaf extracts of Passiflora incarnata, P. caerulea and P. alata and in vitro cytotoxic potential on leukemia cell lines. Braz. J. Pharmacol. 2018, 28, 179–191. [Google Scholar] [CrossRef]
  48. Pandey, B.P.; Pradhan, S.P.; Adhikari, K. LC-ESI-QTOF-MS for the Profiling of the Metabolites and in Vitro Enzymes Inhibition Activity of Bryophyllum pinnatum and Oxalis corniculata Collected from Ramechhap District of Nepal. Chem. Biodivers. 2020, 17, e2000155. [Google Scholar]
  49. Spinola, V.; Pinto, J.; Castilho, P.C. Identification and quantification of phenolic compounds of selected fruits from Madeira Island by HPLC-DAD-ESI-MSn and screening for their antioxidant activity. Food Chem. 2015, 173, 14–30. [Google Scholar] [CrossRef]
  50. Razgonova, M.P.; Tekutyeva, L.A.; Podvolotskaya, A.B.; Stepochkina, V.D.; Zakharenko, A.M.; Golokhvast, K.S. Zostera marina L. Supercritical CO2-Extraction and Mass Spectrometric Characterization of Chemical Constituents Recovered from Seagrass. Separations 2022, 9, 182. [Google Scholar] [CrossRef]
  51. Cavaliere, C.; Foglia, P.; Pastorini, E.; Samperi, R.; Laganà, A. Identification and mass spectrometric characterization of glycosylated flavonoids in Triticum durum plants by high-performance liquid chromatography with tandem mass spectrometry. Rapid Commun. Mass Spectrom. Int. J. Devoted Rapid Dissem. Up—Minute Res. Mass Spectrom. 2005, 19, 3143–3158. [Google Scholar] [CrossRef] [PubMed]
  52. Wojakowska, A.; Perkowski, J.; Góral, T.; Stobiecki, M. Structural characterization of flavonoid glycosides from leaves of wheat (Triticum aestivum L.) using LC/MS/MS profiling of the target compounds. J. Mass Spectrom. 2013, 48, 329–339. [Google Scholar] [CrossRef]
  53. Yin, N.-W.; Wang, S.-X.; Jia, L.-D.; Zhu, M.-C.; Yang, J.; Zhou, B.-J.; Yin, J.-M.; Lu, K.; Wang, R.; Li, J.-N.; et al. Identification and Characterization of Major Constituents in Different-Colored Rapeseed Petals by UPLC−HESI-MS/MS. J. Agric. Food Chem. 2019, 67, 11053–11065. [Google Scholar] [CrossRef]
  54. Abeywickrama, G.; Debnath, S.C.; Ambigaipalan, P.; Shahidi, F. Phenolics of selected cranberry genotypes (Vaccinium macrocarpon Ait.) and their antioxidant efficacy. J. Agr. Food Chem. 2016, 64, 9342–9351. [Google Scholar] [CrossRef]
  55. Vijayan, K.P.R.; Raghu, A.V. Tentative characterization of phenolic compounds in three species of the genus Embelia by liquid chromatography coupled with mass spectrometry analysis. Spectrosc. Lett. 2019, 52, 653–670. [Google Scholar] [CrossRef]
  56. Mekam, P.N.; Martini, S.; Nguefack, J.; Tagliazucchi, D.; Stefani, E. Phenolic compounds profile of water and ethanol extracts of Euphorbia hirta L. leaves showing antioxidant and antifungal properties. South Afr. J. Bot. 2019, 127, 319–332. [Google Scholar] [CrossRef]
  57. Chandrasekara, A.; Shahidi, F. Determination of antioxidant activity in free and hydrolyzed fractions of millet grains and characterization of their phenolic profiles by HPLC-DAD-ESI-MSn. J. Funct. Foods 2011, 3, 144–158. [Google Scholar] [CrossRef]
  58. Le Gall, G.; DuPont, M.S.; Davis, A.L.; Collins, G.J.; Verhoeyen, M.E.; Colquhoun, I.J. Characterization and Content of Flavonoid Glycosides in Genetically Modified Tomato (Lycopersicum esculentum) Fruits. Roots. Agric. Food Chem. 2003, 51, 2438–2446. [Google Scholar] [CrossRef]
  59. Aabideen, Z.U.; Mumtaz, M.W.; Akhtar, M.T.; Mukhtar, H.; Raza, S.A.; Touqeer, T.; Saari, N. Anti-Obesity Attributes; UHPLC-QTOF-MS/MS-Based Metabolite Profiling and Molecular Docking Insights of Taraxacum officinale. Molecules 2020, 25, 4935. [Google Scholar] [CrossRef]
  60. Marcia Fuentes, J.A.; Lopez-Salas, L.; Borras-Linares, I.; Navarro-Alarcon, M.; Segura-Carretero, A.; Lozano-Sanchez, J. Development of an Innovative Pressurized Liquid Extraction Procedure by Response Surface Methodology to Recover Bioactive Compounds from Carao Tree Seeds. Foods 2021, 10, 398. [Google Scholar] [CrossRef]
  61. Sobeh, M.; Mahmoud, M.F.; Abdelfattah, M.A.O.; Cheng, H.; El-Shazly, A.M.; Wink, M. A proanthocyanidin-rich extract from Cassia abbreviata exhibits antioxidant and hepatoprotective activities in vivo. J. Ethnopharmacol. 2018, 213, 38–47. [Google Scholar] [CrossRef] [PubMed]
  62. Chen, Y.; Cai, X.; Li, G.; He, X.; Yu, X.; Wang, C.; Xiao, Q.; Xiang, Z. Chemical constituents of radix Actinidia chinensis planch by UPLC–QTOF–MS. Biomedical Chromatography. Biomed. Chromatogr. 2021, 35, e5103. [Google Scholar] [CrossRef]
  63. Zakharenko, A.M.; Razgonova, M.P.; Pikula, K.S.; Golokhvast, K.S. Simultaneous determination of 78 compounds of Rhodiola rosea extract using supercritical CO2-extraction and HPLC-ESI-MS/MS spectrometry. HINDAWY. Biochem. Res. Int. 2021, 2021, 9957490. [Google Scholar] [CrossRef]
  64. Jaiswal, R.; Jayasinghe, L.; Kuhnert, N. Identification and characterization of proanthocyanidins of 16 members of the Rhododendron genus (Ericaceae) by tandem LC–MS. J. Mass Spectrom. 2012, 47, 502–515. [Google Scholar] [CrossRef]
  65. Singh, A.; Bajpai, V.; Kumar, S.; Sharma, K.R.; Kumar, B. Profiling of Gallic and Ellagic Acid Derivatives in Different Plant Parts of Terminalia arjuna by HPLC-ESI-QTOF-MS/MS. Nat. Prod. Com. 2016, 11, 239–244. [Google Scholar] [CrossRef]
  66. Gordon, A.; Schadow, B.; Quijano, K.E.; Marx, F. Chemical characterization and antioxidant capacity of berries from Clidemia rubra (Aubl.) Mart. (Melastomataceae). Food Res. Int. 2011, 44, 2120–2127. [Google Scholar] [CrossRef]
  67. Justesen, U. Negative atmospheric pressure chemical ionisation low-energy collision activation mass spectrometry for the characterisation of flavonoids in extracts of fresh herbs. J. Chromatogr. A 2000, 902, 369–379. [Google Scholar] [CrossRef] [PubMed]
  68. Pan, M.; Lei, Q.; Zang, N.; Zhang, H. A Strategy Based on GC-MS/MS, UPLC-MS/MS and Virtual Molecular Docking for Analysis and Prediction of Bioactive Compounds in Eucalyptus Globulus Leaves. Int. J. Mol. Sci. 2019, 20, 3875. [Google Scholar] [CrossRef] [PubMed]
  69. Chen, X.; Zhu, P.; Liu, B.; Wei, L.; Xu, Y. Simultaneous determination of fourteen compounds of Hedyotis diffusa Willd extract in rats by UHPLC-MS/MS method: Application to pharmacokinetics and tissue distribution study. J. Pharmaceut. Biomed. Analys. 2018, 159, 490–512. [Google Scholar] [CrossRef]
  70. Van Hoyweghen, L.; De Bosscher, K.; Haegeman, G.; Deforce, D.; Heyerick, A. In Vitro Inhibition of the Transcription Factor NF-kB and Cyclooxygenase by Bamboo Extracts. Phytother. Res. 2014, 28, 224–230. [Google Scholar] [CrossRef]
  71. Jiang, R.-W.; Lau, K.-M.; Hon, P.-M.; Mak, T.C.W.; Woo, K.-S.; Fung, K.-P. Chemistry and Biological Activities of Caffeic Acid Derivatives from Salvia miltiorrhiza. Curr. Med. Chem. 2005, 12, 237–246. [Google Scholar]
  72. Serrano, C.A.; Villena, G.K.; Rodriguez, E.F. Phytochemical profile and rosmarinic acid purification from two Peruvian Lepechinia Willd. species (Salviinae, Mentheae, Lamiaceae). Sci. Rep. 2021, 11, 7260. [Google Scholar] [CrossRef]
  73. Eklund, P.C.; Backman, M.J.; Kronberg, L.A.; Smeds, A.I.; Sjoholm, R.E. Identification of lignans by liquid chromatography-electrospray ionization ion-trap mass spectrometry. J. Mass Spectr. 2008, 43, 97–107. [Google Scholar] [CrossRef]
  74. Llorent-Martinez, E.J.; Spinola, V.; Gouveia, S.; Castilho, P.C. HPLC-ESI-MSn characterization of phenolic compounds, terpenoid saponins, and other minor compounds in Bituminaria bituminosa. Industr. Crops Prod. 2015, 69, 80–90. [Google Scholar] [CrossRef]
  75. Mena, P.; Calani, L.; Dall’Asta, C.; Galaverna, G.; Garcia-Viguera, C.; Bruni, R.; Crozier, A.; Del Rio, D. Rapid and Comprehensive Evaluation of (Poly)phenolic Compounds in Pomegranate (Punica granatum L.) Juice by UHPLC-MSn. Molecules 2012, 17, 14821–14840. [Google Scholar] [CrossRef]
  76. Garg, M.; Chawla, M.; Chunduri, V.; Kumar, R.; Sharma, S.; Sharma, N.K.; Kaur, N.; Kumar, A.; Mundey, J.K.; Saini, M.K.; et al. Transfer of grain colors to elite wheat cultivars and their characterization. J. Cereal Sci. 2016, 71, 138–144. [Google Scholar] [CrossRef]
  77. Da Silva, L.P.; Pereira, E.; Pires, T.C.S.P.; Alves, M.J.; Pereira, O.R.; Barros, L.; Ferreira, I.C.F.R. Rubus ulmifolius Schott fruits: A detailed study of its nutritional, chemical and bioactive properties. Food Res. Int. 2019, 119, 34–43. [Google Scholar] [CrossRef] [PubMed]
  78. Vera de Rosso, V.; Hillebrand, S.; Cuevas Montilla, E.; Bobbio, F.O.; Winterhalter, P.; Mercadante, A.Z. Determination of anthocyanins from acerola (Malpighia emarginata DC.) and ac-ai (Euterpe oleracea Mart.) by HPLC–PDA–MS/MS. J. Food Composit. Analys. 2008, 21, 291–299. [Google Scholar] [CrossRef]
  79. Anari, Z.; Mai, C.; Sengupta, A.; Howard, L.; Brownmiller, C.; Wickramasinghe, R. Combined Osmotic and Membrane Distillation for Concentration of Anthocyanin from Muscadine Pomace. J. Food Sci. 2019, 84, 2199–2208. [Google Scholar] [CrossRef] [PubMed]
  80. Ruiz, A.; Hermosín-Gutiérrez, I.; Vergara, C.; von Baer, D.; Zapata, M.; Hitschfeld, A.; Obando, L.; Mardones, C. Anthocyanin profiles in south Patagonian wild berries by HPLC-DAD-ESI-MS/MS. Food Res. Int. 2013, 51, 706–713. [Google Scholar] [CrossRef]
  81. Xu, W.; Luo, I.; Vergara, G.; Yu, F.; Jia, Q.; Zeng, Y.; Bi, X.; Lei, J. Characterization of anthocyanins in the hybrid progenies derived from Iris dichotoma and I. domestica by HPLC-DAD-ESI/MS analysis. Phytochem 2018, 150, 60–74. [Google Scholar] [CrossRef]
  82. Chhon, S.; Jeon, J.; Kim, J.; Park, S.Y. Accumulation of Anthocyanins through Overexpression of AtPAP1 in Solanum nigrum Lin. (Black Nightshade). Biomolecules 2020, 10, 277. [Google Scholar] [CrossRef] [PubMed]
  83. Yamazaki, M.; Nakajima, J.; Yamanashi, M.; Sugiyama, M.; Makita, Y.; Springob, K.; Awazuhara, M.; Saito, K. Metabolomics and differential gene expression in anthocyanin chemo-varietal forms of Perilla frutescens. Phytochem 2003, 62, 987–995. [Google Scholar] [CrossRef]
  84. He, Y.-K.; Yao, Y.-Y.; Chang, Y.-N. Characterization of Anthocyanins in Perilla frutescens var. acuta Extract by Advanced UPLC-ESI-IT-TOF-MSn Method and Their Anticancer Bioactivity. Molecules 2015, 20, 9155–9169. [Google Scholar] [CrossRef]
  85. Rodriguez-Perez, C.; Gomez-Caravaca, A.M.; Guerra-Hernandez, E.; Cerretani, L.; Garcia-Villanova, B.; Verardo, V. Comprehensive metabolite profiling of Solanum tuberosum L. (potato) leaves T by HPLC-ESI-QTOF-MS. Food Res. Int. 2018, 112, 390–399. [Google Scholar] [CrossRef]
  86. Wu, Y.; Xu, J.; He, Y.; Shi, M.; Han, X.; Li, W.; Zhang, X.; Wen, X. Metabolic Profiling of Pitaya (Hylocereus polyrhizus) during Fruit Development and Maturation. Molecules 2019, 24, 1114. [Google Scholar] [CrossRef]
  87. Cirlini, M.; Mena, P.; Tassotti, M.; Herrlinger, K.A.; Nieman, K.M.; Dall’Asta, C.; Del Rio, D. Phenolic and volatile composition of a dry spearmint (Mentha spicata L.) extract. Molecules 2016, 21, 1007. [Google Scholar] [CrossRef]
  88. Yang, S.T.; Wu, X.; Rui, W.; Guo, J.; Feng, Y.F. UPLC/Q-TOF-MS analysis for identification of hydrophilic phenolics and lipophilic diterpenoids from Radix Salviae Miltiorrhizae. Acta Chromatogr. 2015, 27, 711–728. [Google Scholar] [CrossRef]
  89. Patnala, S.; Kanfer, I. Medicinal use of Sceletium: Characterization of Phytochemical Components of Sceletium Plant Species using HPLC with UV and Electrospray Ionization—Tandem Mass Spectroscopy. J. Pharm. Pharm. Sci. 2015, 18, 414–423. [Google Scholar] [CrossRef]
  90. Chen, D.; Fan, J.; Wang, P.; Zhu, L.; Jin, Y.; Peng, Y.; Du, S. Isolation, identification and antioxidative capacity of water-soluble phenylpropanoid compounds from Rhodiola crenulata. Food Chem. 2012, 134, 2126–2133. [Google Scholar] [CrossRef] [PubMed]
  91. Uchiyama, N.; Kiuchi, F.; Ito, M.; Honda, G.; Takeda, Y.; Khodzhimatov, O.K.; Ashurmetov, O.A. New Icetexane and 20-Norabietane Diterpenes with Trypanocidal Activity from Dracocephalum komarovi. J. Nat. Prod. 2003, 66, 128–131. [Google Scholar] [CrossRef]
  92. Sut, S.; Zengin, G.; Maggi, F.; Malagoli, M.; Dall’Acqua, S. Triterpene Acid and Phenolics from Ancient Apples of Friuli Venezia Giulia as Nutraceutical Ingredients: LC-MS Study and In Vitro Activities. Molecules 2019, 24, 1109. [Google Scholar] [CrossRef]
  93. Mercadante, A.Z.; Rodrigues, D.B.; Petry, F.C.; Barros Mariutti, L.R. Carotenoid esters in foods—A review and practical directions on analysis and occurrence. Food Res. Int. 2017, 99, 830–850. [Google Scholar] [CrossRef] [PubMed]
  94. Al-Yafeai, A.; Malarski, A.; Bohm, V. Characterization of carotenoids and vitamin E in R. rugosa and R. canina: Comparative analysis. Food Chem. 2018, 242, 435–442. [Google Scholar] [CrossRef] [PubMed]
  95. Delgado-Pelayo, R.; Homero-Mendez, D. Identification and Quantitative Analysis of Carotenoids and Their Esters from Sarsaparilla (Smilax aspera L.) Berries. J. Chromatogr. A 2012, 60, 8225–8232. [Google Scholar] [CrossRef] [PubMed]
  96. Zoccali, M.; Giuffrida, D.; Salafia, F.; Giofre, S.V.; Mondello, L. Carotenoids and apocarotenoids determination in intact human blood samples by online supercritical fluid extraction-supercritical fluid chromatography-tandem mass spectrometry. J. Pharmaceut. Biomed. Analys. 2018, 1032, 40–47. [Google Scholar] [CrossRef]
  97. van Breemen, R.B.; Canjura, F.L.; Schwartz, S.J. Identification of Chlorophyll Derivatives by Mass Spectrometry. J. Agric. Food Chem. 1991, 39, 1452–1456. [Google Scholar] [CrossRef]
  98. Murador, D.C.; Salafia, F.; Zoccali, M.; Martins, P.L.G.; Ferreira, A.; Dugo, P.; Mondello, L.; de Rosso, V.V.; Giuffrida, D. Green Extraction Approaches for Carotenoids and Esters: Characterization of Native Composition from Orange Peel. Antioxidants 2019, 8, 613. [Google Scholar] [CrossRef]
  99. Lara-Abia, S.; Lobo-Rodrigo, G.; Welti-Chanes, J.; Pilar Cano, M. Carotenoid and Carotenoid Ester Profile and Their Deposition in Plastids in Fruits of New Papaya (Carica papaya L.) Varieties from the Canary Islands. Foods 2021, 10, 434. [Google Scholar] [CrossRef] [PubMed]
Figure 1. D. jacutense Peschkova (Kobyaysky district of Yakutia, photo taken by Rhozina, July 2022).
Figure 1. D. jacutense Peschkova (Kobyaysky district of Yakutia, photo taken by Rhozina, July 2022).
Molecules 28 04402 g001
Figure 2. CID-spectrum of calycosin [3′-Hydroxyformononetin] from extracts of leaves of D. jacutense, at m/z 285.24.
Figure 2. CID-spectrum of calycosin [3′-Hydroxyformononetin] from extracts of leaves of D. jacutense, at m/z 285.24.
Molecules 28 04402 g002
Figure 3. CID-spectrum of formononetin from extracts of leaves of D. jacutense, at m/z 269.4.
Figure 3. CID-spectrum of formononetin from extracts of leaves of D. jacutense, at m/z 269.4.
Molecules 28 04402 g003
Figure 4. Base peak ion chromatogram in positive ion mode and base peak ion chromatogram in negative ion mode of D. jacutense (experiment 2484).
Figure 4. Base peak ion chromatogram in positive ion mode and base peak ion chromatogram in negative ion mode of D. jacutense (experiment 2484).
Molecules 28 04402 g004
Figure 5. CID-spectrum (experiment 2490) of genkwanin from extracts of leaves of D. jacutense, at m/z 285.
Figure 5. CID-spectrum (experiment 2490) of genkwanin from extracts of leaves of D. jacutense, at m/z 285.
Molecules 28 04402 g005
Figure 6. Base peak ion chromatogram in positive ion mode and base peak ion chromatogram in negative ion mode of D. jacutense (experiment 2490).
Figure 6. Base peak ion chromatogram in positive ion mode and base peak ion chromatogram in negative ion mode of D. jacutense (experiment 2490).
Molecules 28 04402 g006
Figure 7. Venn diagram representing a study of the polyphenolic composition of compounds in the inflorescences, leaves, and stems of D. jacutense.
Figure 7. Venn diagram representing a study of the polyphenolic composition of compounds in the inflorescences, leaves, and stems of D. jacutense.
Molecules 28 04402 g007
Figure 8. Collection areas of D. jacutense Peschkova in the territory of the Kobyaysky district of Yakutia (Russian Federation).
Figure 8. Collection areas of D. jacutense Peschkova in the territory of the Kobyaysky district of Yakutia (Russian Federation).
Molecules 28 04402 g008
Table 1. Polyphenols identified in the extracts of D. jacutense in positive and negative ionization modes using HPLC-ion trap-MS/MS.
Table 1. Polyphenols identified in the extracts of D. jacutense in positive and negative ionization modes using HPLC-ion trap-MS/MS.
NoClass of CompoundIdentified PolyphenolFormula
1FlavoneFormononetin [Biochanin B; Formononetol] *C16H12O4
2FlavoneApigenin [5,7-Dixydroxy-2-(40Hydroxyphenyl)-4H-Chromen-4-One]C15H10O5
3FlavoneAcacetin [Linarigenin; Buddleoflavonol]C16H12O5
4FlavoneCalycosin [3′-Hydroxyformononetin] *C16H12O5
5FlavoneGenkwanin [Gengkwanin; Puddumetin; Apigenin 7-Methyl Ether]C16H12O5
6FlavoneLuteolinC15H10O6
7FlavoneDiosmetin [Luteolin 4′-Methyl Ether; Salinigricoflavonol]C16H12O6
8FlavoneChrysoeriol [Chryseriol]C16H12O6
9FlavoneCirsimaritin *C17H14O6
10FlavoneDihydroxy-dimethoxy(iso)flavone *C17H14O6
11Flavone5,7-Dimethoxyluteolin *C17H14O6
12FlavoneMyricetin *C15H10O8
13FlavoneIsothymusinC17H14O7
14FlavoneCirsiliol *C17H14O7
15FlavoneDimethoxy-trihydroxy(iso)flavone *C17H14O7
16FlavoneNevadensinC18H16O7
17FlavoneGardenin B [Demethyltangeretin] *C19H18O7
18Flavone5-Hydroxy-6,7,8,3′,4′-pentamethoxyflavone *C20H20O8
19FlavoneApigenin O-hexosideC21H20O10
20FlavoneApigenin-7-O-glucoside [Apigetrin; Cosmosiin]C21H20O10
21FlavoneApigenin 7-O-glucuronideC21H18O11
22FlavoneAcacetin 7-O-glucoside [Tilianin]C22H22O10
23FlavoneLuteolin 7-O-glucoside [Cynaroside; Luteoloside]C21H20O11
24FlavoneAcacetin 7-O-β-d-glucuronideC22H20O11
25Flavone6,4′-Dimethoxyisoflavone-7-O-glucoside *C23H24O10
26FlavoneDiosmetin-7-O-β-glucosideC22H22O11
27FlavoneApigenin-O-rhamnoside *C22H22O11
28FlavoneChrysoeriol-7-O-glucuronide *C22H20O12
29FlavoneAcacetin 7-β-O-(6″-acetyl)-glucosideC24H24O11
30IsoflavoneApigenin 7-O-β - d-(6″-O-malonyl)-glucosideC24H22O13
31FlavoneAcacetin 7-O-β-d-(6″-O-malonylated)-glucosideC25H24O13
32FlavoneChrysoeriol O-hexoside C-hexoside *C28H32O16
33FlavonolKaempferolC15H10O6
34FlavonolQuercetinC15H10O7
35FlavonolDihydroquercetin (Taxifolin; Taxifoliol)C15H12O7
36FlavonolIsorhamnetin *C16H12O7
37Flavonoid3,5-Diacetyltambulin *C22H20O9
38FlavonolAstragalin [Kaempferol 3-O-glucoside; Astragaline]C21H20O11
39FlavonolQuercitrin [Quercetin 3-O-rhamnoside; Quercetrin] *C21H20O11
40FlavonolKaempferol-3-O-glucuronideC21H18O12
41FlavonolTaxifolin-3-O-hexoside [Dihydroquercetin-3-O-hexoside] *C21H22O12
42FlavonolKaempferol 3-O-rutinosideC27H30O15
43FlavonolKaempferol-3,7-Di-O-glucoside *C27H30O16
44FlavonolKaempferol dihexoside rhamnoside *C33H40O20
45Flavan-3-ol(epi)Afzelechin * C15H14O5
46Flavan-3-olCatechin [D-Catechol] *C15H14O6
47Flavan-3-ol(epi)catechinC15H14O6
48Flavan-3-olGallocatechin [+(−)Gallocatechin]C15H14O7
49Flavan-3-olCatechin 3-O-gallate * C22H18O10
50Flavan-3-olEpigallocatechin-3-gallate *C22H18O11
51FlavanoneNaringenin [Naringetol; Naringenine]C15H12O5
52FlavanoneEriodictyol [3′,4′,5,7-tetrahydroxy-flavanone]C15H12O6
53IsoflavanoneFerreirin *C16H14O6
54TrihydroxyflavanoneHomoeriodictyol *C16H14O6
55FlavanonePrunin [Naringenin-7-O-glucoside]C21H22O10
56FlavanoneEriodictyol-7-O-glucoside [Pyracanthoside; Miscanthoside]C21H22O11
57FlavanoneEriodictyol-7-O-glucuronide *C21H20O12
58Hydroxycinnamic acidp-Coumaric acid *C9H8O3
59Hydroxycinnamic acid3,4-Dihydroxyhydrocinnamic acid *C9H10O4
60Phenolic acid2,3,4,5-Tetrahydroxybenzoic acid *C7H6O6
61Phenolic acidSalvianic acid A [Danshensu] *C9H10O5
62Hydroxybenzoic acidEllagic acid [Benzoaric acid; Elagostasine; Lagistase; Eleagic acid]C14H6O8
63Phenolic acidProtocatechuic acid-O-hexoside *C13H16O9
64Phenolic acidCaffeic acid-4-O-β-d-hexoside [Caffeoyl-O-hexoside]C15H18O9
65Phenolic acidChlorogenic acid [3-O-Caffeoylquinic acid]C16H18O9
66Phenolic acidIsochlorogenic acid *C16H18O9
67Phenolic acidRosmarinic acidC18H16O8
68Phenolic acidCaffeic acid derivativeC16H18O9Na
69Phenolic acid1/3/4/5-p-Coumaroylquinic acid * + C2H2OC18H20O9
70Phenolic acid8,8′-Aryl-Diferulic acid *C20H18O8
71Phenolic acidCaffeic acid hexoside dimer *C31H40O17
72Phenolic acidSalvianolic acid B [Danfensuan B] *C36H30O16
73Phenylpropanoic acid Sagerinic acidC36H32O16
74Phenolic acidClerodendranoic acid H *C36H32O16
75LignanPhillygenin [Sylvatesmin; Phyllygenol; Forsythigenol] *C21H24O6
76LignanMedioresinol *C21H24O7
77DihydrochalconePhloretin [Dihydronaringenin; Phloretol] *C15H14O5
78HydroxycoumarinUmbelliferone [Skimmetin; Hydragin] *C9H6O3
79CoumarinFraxetin [7,8-Dihydroxy-6-methoxycoumarin] *C10H8O5
80HydroxycoumarinUmbelliferone hexoside *C15H16O8
81Coumarin glycoside Fraxin [Fraxetin-8-O-glucoside] *C16H18O10
82AnthocyanidinPetunidinC16H13O7+
83AnthocyanidinPelargonidin-3-O-glucoside (callistephin)C21H21O10
84AnthocyanidinCyanidin-3-O-glucoside [Cyanidin 3-O-beta-d-Glucoside; Kuromarin]C21H21O11+
85AnthocyanidinCyanidin 3,5-O-diglucoside *C27H31O16
86AnthocyanidinPeonidin-3,5-diglucoside [Peonin; Peonidin 3-Glucoside-5-Glucoside] *C28H33O16
87AnthocyanidinCyanidin-3-O-rutinoside-5-O-glucoside *C33H41O20
88AnthocyanidinDelphinidin 3-O-rutinoside-5-O-glucoside *C33H41O21
89AnthocyanidinMalonyl-shisonin *C39H39O21+
* Polyphenols identified for the first time in genus Dracocephalum.
Table 2. Detailed interpretation of the identified compounds in inflorescences, leaves, and stems of D. jacutense.
Table 2. Detailed interpretation of the identified compounds in inflorescences, leaves, and stems of D. jacutense.
NamesTotalElements
Inflorescences Leaves Stems13Prunin; Kaempferol-3-O-glucuronide; Naringenin; Eriodictyol; Rosmarinic acid; Caffeic acid derivative; Luteolin 7-O-glucoside; Luteolin; Acacetin; Eriodictyol-7-O-glucoside; Cirsimaritin; Kaempferol; Astragalin;
Inflorescences Stems4Apigenin-7-O-glucoside; Apigenin; Acacetin 7-O-glucoside; Homoeriodictyol;
Leaves Stems1Diosmetin;
Inflorescences Leaves8Petunidin; Fraxetin; Isorhamnetin; Genkwanin; Gallocatechin; Apigenin 7-O-beta-d-(6″-O-malonyl)-glucoside; Catechin; Cyanidin-3-O-glucoside;
Stems4Phloretin; Acacetin 7-beta-O-(6″-acetyl)-glucoside; 1/3/4/5-p-Coumaroylquinic acid; Ellagic acid;
Inflorescences483,4-Dihydroxyhydrocinnamic acid; Epigallocatechin-3-gallate; Chrysoeriol-7-O-glucuronide; Delphinidin 3-O-rutinoside-5-O-glucoside; Protocatechuic acid-O-hexoside; Pelargonidin-3-O-glucoside; Eriodictyol-7-O-glucuronide; Cyanidin-3-O-rutinoside-5-O-glucoside; Quercetin; Diosmetin-7-O-beta-glucoside; Ferreirin; Quercetrin; (epi)Afzelechin; Kaempferol-3,7-Di-O-glucoside; Fraxin; Apigenin 7-O-glucuronide; 3,5-Diacetyltambulin; 2,3,4,5-Tetrahydroxybenzoic acid; Salvianic acid A; Apigenin O-hexoside; Caffeic acid hexoside dimer; Cirsiliol; Salvianolic acid B; Chlorogenic acid; (epi)catechin; Apigenin-O-rhamnoside; Acacetin 7-O-beta-d-glucuronide; Cyanidin 3,5-O-diglucoside; Umbelliferone; Medioresinol; Malonyl-shisonin; 8,8′-Aryl-Diferulic acid; Phillygenin; p-Coumaric acid; Kaempferol dihexoside rhamnoside; 6,4′-Dimethoxyisoflavone-7-O-glucoside; Sagerinic acid; Taxifolin-3-O-hexoside; Caffeic acid-4-O-beta-d-hexoside; Umbelliferone hexoside; Clerodendranoic acid H; Myricetin; Chrysoeriol O-hexoside C-hexoside; 5,7-Dimethoxyluteolin; Isochlorogenic acid; 5-Hydroxy-6,7,8,3′,4′-pentamethoxyflavone; Dihydroquercetin; Kaempferol 3-O-rutinoside;
Leaves11Gardenin B; Nevadensin; Peonidin-3,5-diglucoside; Isothymusin; Chrysoeriol; Formononetin; Calycosin; Dihydroxy-dimethoxy(iso)flavone; Acacetin 7-O-beta-d-(6″-O-malonylated)-glucoside; Catechin 3-O-gallate; Dimethoxy-trihydroxy(iso)flavone;
The polyphenol composition distribution of D. jacutense is summarized in Table A2 (Appendix B). It should be noted that some of the chemical compounds found in D. jacutense were first tentatively identified in the genus Dracocephalum. These include the polyphenol compounds formononetin, calycosin, cirsimaritin, 5,7-dimethoxyluteolin, myricetin, cirsiliol, taxifolin-3-O-hexoside, catechin 3-O-gallate, epigallocatechin-3-gallate, ferreirin, homoeriodictyol, salvianic acid, protocatechuic acid-O-hexoside, etc.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Okhlopkova, Z.M.; Razgonova, M.P.; Rozhina, Z.G.; Egorova, P.S.; Golokhvast, K.S. Dracocephalum jacutense Peschkova from Yakutia: Extraction and Mass Spectrometric Characterization of 128 Chemical Compounds. Molecules 2023, 28, 4402. https://doi.org/10.3390/molecules28114402

AMA Style

Okhlopkova ZM, Razgonova MP, Rozhina ZG, Egorova PS, Golokhvast KS. Dracocephalum jacutense Peschkova from Yakutia: Extraction and Mass Spectrometric Characterization of 128 Chemical Compounds. Molecules. 2023; 28(11):4402. https://doi.org/10.3390/molecules28114402

Chicago/Turabian Style

Okhlopkova, Zhanna M., Mayya P. Razgonova, Zoya G. Rozhina, Polina S. Egorova, and Kirill S. Golokhvast. 2023. "Dracocephalum jacutense Peschkova from Yakutia: Extraction and Mass Spectrometric Characterization of 128 Chemical Compounds" Molecules 28, no. 11: 4402. https://doi.org/10.3390/molecules28114402

APA Style

Okhlopkova, Z. M., Razgonova, M. P., Rozhina, Z. G., Egorova, P. S., & Golokhvast, K. S. (2023). Dracocephalum jacutense Peschkova from Yakutia: Extraction and Mass Spectrometric Characterization of 128 Chemical Compounds. Molecules, 28(11), 4402. https://doi.org/10.3390/molecules28114402

Article Metrics

Back to TopTop