Dracocephalum jacutense Peschkova from Yakutia: Extraction and Mass Spectrometric Characterization of 128 Chemical Compounds
Abstract
:1. Introduction
2. Results
2.1. Flavones
2.1.1. 7-Hydroxy(iso)flavones
2.1.2. Dihydroxyflavones
2.1.3. Trihydroxyflavones
2.1.4. Hexahydroxyflavone
2.2. Flavan-3-ols
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Chemicals and Reagents
4.3. Fractional Maceration
4.4. Liquid Chromatography
4.5. Mass Spectrometry
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
Appendix A
No | Class of Compounds | Identified Compounds | Formula | Retention Time, min | Molecular Ion [M − H]− | Molecular Ion [M + H]+ | 2 Fragmentation MS/MS | 3 Fragmentation MS/MS | 4 Fragmentation MS/MS | References |
---|---|---|---|---|---|---|---|---|---|---|
POLYPHENOLS | ||||||||||
1 | Flavone | Formononetin [Biochanin B; Formononetol] * | C16H12O4 | 31.9 | 269 | 213 | 170; 156; 129 | 141 | Astragali Radix [19,20,21]; Huolisu Oral Liquid [22] | |
2 | Flavone | Apigenin [5,7-Dixydroxy-2-(40Hydroxyphenyl)-4H-Chromen-4-One] | C15H10O5 | 8.0 | 269 | 225 | 181 | 117 | D. palmatum [1]; Dracocephalum [5]; Andean blueberry [30]; Lonicera japonicum [36]; Mexican lupine species [37] | |
3 | Flavone | Acacetin [Linarigenin; Buddleoflavonol] | C16H12O5 | 35.7 | 285 | 268 | 211; 143 | D. palmatum [1]; Dracocephalum [5]; Mentha [26]; D. moldavica [27]; Mexican lupine species [37] | ||
4 | Flavone | Calycosin [3′-Hydroxyformononetin] * | C16H12O5 | 38.5 | 285 | 253; 242; 225; 200 | 235; 221; 209; 203 | Astragali Radix [19,20,21]; Huolisu Oral Liquid [22] | ||
5 | Flavone | Genkwanin [Gengkwanin; Puddumetin; Apigenin 7-Methyl Ether] | C16H12O5 | 38.0 | 285 | 165 | D. palmatum [1]; Rosmarinus officinalis [24]; Mentha [27] | |||
6 | Flavone | Luteolin | C15H10O6 | 7.9 | 287 | 286; 153 | 171 | 153 | D. palmatum [1]; Dracocephalum [5]; Lonicera japonicum [36] | |
7 | Flavone | Diosmetin [Luteolin 4′-Methyl Ether; Salinigricoflavonol] | C16H12O6 | 8.8 | 301 | 286 | 258 | Dracocephalum [1]; Mentha [26]; D. moldavica [27]; Andean blueberry [30]; Lonicera japonicum [36] | ||
8 | Flavone | Chrysoeriol [Chryseriol] | C16H12O6 | 9.0 | 301 | 286; 167 | 258 | 203 | D. jacutense [14]; Propolis [25]; Rhus coriaria [28] | |
9 | Flavone | Cirsimaritin [Scrophulein; 4′,5-Dihydroxy-6,7-Dimethoxyflavone; 7-Methylcapillarisin] * | C17H14O6 | 30.9 | 315 | 282 | 254 | 226; 119 | Rosmarinus officinalis [24]; Ocimum [38] | |
10 | Flavone | Dihydroxy-dimethoxy(iso)flavone * | C17H14O6 | 38.1 | 315 | 300; 272 | 272 | 257; 243; 217; 201; 185; 167 | Astragali radix [21]; Rosmarinus officinalis [24]; Propolis [25] | |
11 | Flavone | 5,7-Dimethoxyluteolin * | C17H14O6 | 38.2 | 313 | 285; 213; 185 | 185; 145 | Syzygium aromaticum [39]; Rosa rugosa [40] | ||
12 | Flavone | Myricetin * | C15H10O8 | 2.9 | 319 | 291; 219; 143 | 191; 143 | 173 | Propolis [25]; Vaccinium macrocarpon [29]; Andean blueberry [30]; Sanguisorba officinalis [31]; F. glaucescens [32] | |
13 | Flavone | Isothymusin | C17H14O7 | 24.2 | 331 | 303; 203 | 203; 275 | 203 | D. palmatum [1] | |
14 | Flavone | Cirsiliol * | C17H14O7 | 34.2 | 331 | 316; 298; 233; 157 | 297; 187; 134 | Ocimum [38] | ||
15 | Flavone | Dimethoxy-trihydroxy(iso)flavone * | C17H14O7 | 28.4 | 331 | 316; 226 | 298; 226 | 270; 226 | Propolis [25]; Jatropha [41] | |
16 | Flavone | Nevadensin | C18H16O7 | 34.1 | 345 | 312; 241; 147 | 284; 269 | 269; 213; 135 | Dracocephalum [1]; Mentha [26]; Ocimum [40] | |
17 | Flavone | Gardenin B [Demethyltangeretin] * | C19H18O7 | 40.3 | 359 | 326; 298 | 298 | 270; 239; 162 | Mentha [26]; Ocimum [38]; Actinocarya tibetica [42] | |
18 | Flavone | 5-Hydroxy-6,7,8,3′,4′-pentamethoxyflavone * | C20H20O8 | 40.2 | 389 | 356 | 313 | 295; 221; 149 | Mentha [26] | |
19 | Flavone | Apigenin O-hexoside | C21H20O10 | 25.5 | 431 | 269 | 269; 225; 149 | 224; 157 | D. palmatum [1]; F. glaucescens; F. pottsii [32]; Chamaecrista nictitans [43] | |
20 | Flavone | Apigenin-7-O-glucoside [Apigetrin; Cosmosiin] | C21H20O10 | 25.8 | 433 | 271 | 153 | D. palmatum [1]; Dracocephalum [5]; Mexican lupine species [37]; Mentha spicata [44] | ||
21 | Flavone | Apigenin 7-O-glucuronide | C21H18O11 | 25.5 | 447 | 271 | 153 | 271; 171 | Dracocephalum [5]; Pear [45]; Bougainvillea [46] | |
22 | Flavone | Acacetin 7-O-glucoside [Tilianin] | C22H22O10 | 30.1 | 447 | 285; 149 | 270 | 242 | D. palmatum [1]; Dracocephalum [5]; Bougainvillea [46] | |
23 | Flavone | Luteolin 7-O-glucoside [Cynaroside; Luteoloside] | C21H20O11 | 23.6 | 449 | 287; 199 | 153 | Dracocephalum [5]; Lonicera japonicum [36]; Pear [45]; Passiflora incarnata [47] | ||
24 | Flavone | Acacetin 7-O-beta-d-glucuronide | C22H20O11 | 24.5 | 461 | 270; 242; 153 | 242 | Dracocephalum [5]; D. moldavica [27] | ||
25 | Flavone | 6,4′-Dimethoxyisoflavone-7-O-glucoside * | C23H24O10 | 30.1 | 461 | 285 | 270; 242; 153 | 242 | Astragali radix [19,20,21] | |
26 | Flavone | Diosmetin-7-O-beta-glucoside | C22H22O11 | 9.3 | 463 | 287 | 168 | 123 | Dracocephalum [5]; D. moldavica [27]; Oxalis corniculata [48] | |
27 | Flavone | Apigenin-O-rhamnoside * | C22H22O11 | 27.1 | 463 | 273; 153 | 153; 171 | 171 | Passion fruit [49] | |
28 | Flavone | Chrysoeriol-7-O-glucuronide * | C22H20O12 | 26.5 | 477 | 301 | 286 | 258 | Propolis [25] | |
29 | Flavone | Acacetin 7-beta-O-(6″-acetyl)-glucoside | C24H24O11 | 6.6 | 489 | 472; 354; 296; 223 | D. moldavica [27] | |||
30 | Isoflavone | Apigenin 7-O-beta-d-(6″-O-malonyl)-glucoside | C24H22O13 | 43.1 | 519 | 184; 500; 466; 371; 258 | 125 | Dracocephalum [5]; D. moldavica [27]; Zostera marina [50] | ||
31 | Flavone | Acacetin 7-O-beta-d-(6″-O-malonylated)-glucoside | C25H24O13 | 29.4 | 533 | 371; 285; 191; 165 | 353; 285; 191; 165 | 147 | D. moldavica [27] | |
32 | Flavone | Chrysoeriol O-hexoside C-hexoside * | C28H32O16 | 42.8 | 625 | 445; 463; 377; 347 | 357; 217 | Triticum aestivum L. [51,52] | ||
33 | Flavonol | Kaempferol [3,5,7-Trihydroxy-2-(4-hydro- xyphenyl)-4H-chromen-4-one] | C15H10O6 | 5.5 | 287 | 269; 202 | 233; 205 | 216 | Dracocephalum [5]; Rhus coriaria [28]; Andean blueberry [30]; Lonicera japonica [36]; Rapeseed petals [53] | |
34 | Flavonol | Quercetin | C15H10O7 | 9.0 | 303 | 285; 228; 165 | 229; 165 | 141 | Propolis [25]; Rhus coriaria [28]; Vaccinium macrocarpon [29,54] | |
35 | Flavonol | Dihydroquercetin (Taxifolin; Taxifoliol) | C15H12O7 | 28.0 | 305 | 287 | 286; 186 | 185 | Dracocephalum [5]; Andean blueberry [30]; Camellia kucha [33] | |
36 | Flavonol | Isorhamnetin [Isorhamnetol; Quercetin 3′-Methyl ether; 3-Methylquercetin] * | C16H12O7 | 45.4 | 317 | 299; 257; 214; 173 | 281; 188 | Rosmarinus officinalis [24]; Propolis [25]; Vaccinium macrocarpon [29]; Andean blueberry [30]; Embelia [55] | ||
37 | Flavonoid | 3,5-Diacetyltambulin * | C22H20O9 | 22.3 | 427 | 381; 249 | 249; 161 | 161; 124 | A. cordifolia [32] | |
38 | Flavonol | Astragalin [Kaempferol 3-O-glucoside; Astragaline] | C21H20O11 | 31.0 | 447 | 285; 327 | 241 | 199 | Dracocephalum [5]; Camellia kucha [33]; Lonicera japonicum [36]; Mexican lupine species [37]; pear [45] | |
39 | Flavonol | Quercitrin [Quercetin 3-O-rhamnoside; Quercetrin] * | C21H20O11 | 24.2 | 449 | 302 | 202; 174; 127 | 175 | Propolis [25]; Rhus coriaria [28]; Vaccinium macrocarpon [29,54]; Camellia kucha [33]; Bryophyllum pinnatum [48]; Embelia [55]; Euphorbia hirta [56] | |
40 | Flavonol | Kaempferol-3-O-glucuronide | C21H18O12 | 23.9 | 463 | 287 | 268; 169 | 241; 119 | Dracocephalum [5]; Rhus coriaria [28]; A. cordifolia; G. linguiforme [32] | |
41 | Flavonol | Taxifolin-3-O-hexoside [Dihydroquercetin-3-O-hexoside] * | C21H22O12 | 18.5 | 467 | 305; 259; 195; 153 | 259; 195; 153 | 231; 149 | Andean blueberry [30]; Euphorbia hirta [56]; millet grains [57] | |
42 | Flavonol | Kaempferol 3-O-rutinoside | C27H30O15 | 28.3 | 595 | 287; 345; 389; 449 | 287; 245; 153 | 171 | Dracocephalum [5]; Rhus coriaria [28]; Camellia kucha [33]; Lonicera japonica [36]; Pear [45] | |
43 | Flavonol | Kaempferol-3,7-Di-O-glucoside * | C27H30O16 | 15.8 | 611 | 287; 449 | 287; 213; 185; 137 | 185; 157 | Rapeseed petals [53]; Tomato [58]; Taraxacum officinale [59] | |
44 | Flavonol | Kaempferol dihexoside rhamnoside * | C33H40O20 | 21.5 | 757 | 595; 287 | 287; 213; 137 | 185; 168 | C. edulis [32] | |
45 | Flavan-3-ol | (epi)Afzelechin * | C15H14O5 | 8.7 | 275 | 228; 210; 175; 157; 132 | 212; 203; 183; 170 | 194 | A. cordifolia; F. glaucescens; F. herrerae [32]; Cassia granidis [60]; Cassia abbreviata [61] | |
46 | Flavan-3-ol | Catechin [d-Catechol] * | C15H14O6 | 34.4 | 291 | 207; 123 | 123 | C. edulis [32]; Camellia kucha [33]; Vaccinium macrocarpon [54]; Actinidia [62] | ||
47 | Flavan-3-ol | (epi)catechin | C15H14O6 | 18.6 | 291 | 273; 117 | 255; 145 | Dracocephalum [5]; Andean blueberry [30]; C. edulis [32]; Camellia kucha [33] | ||
48 | Flavan-3-ol | Gallocatechin [+(−)Gallocatechin] | C15H14O7 | 8.3 | 307 | 289 | 259 | Dracocephalum [5]; G. linguiforme [32]; Rhodiola rosea [63] | ||
49 | Flavan-3-ol | Catechin 3-O-gallate * | C22H18O10 | 7.2 | 443 | 273; 205 | 263; 211; 171; 143 | Camellia kucha [33]; Rhododendron [64]; Terminalia arjuna [65] | ||
50 | Flavan-3-ol | Epigallocatechin-3-gallate * | C22H18O11 | 6.3 | 459 | 290; 207 | 207; 123 | F. glaucescens [32]; Camellia kucha [33]; Clidemia rubra [66] | ||
51 | Flavanone | Naringenin [Naringetol; Naringenine] | C15H12O5 | 8.4 | 273 | 153; 256 | 125 | D. palmatum [1]; Dracocephalum [5]; Andean blueberry [30]; Mexican lupine species [37]; Rapeseed petals [53] | ||
52 | Flavanone | Eriodictyol [3′,4′,5,7-tetrahydroxy-flavanone] | C15H12O6 | 20.5 | 289 | 163; 271 | 145 | 117 | D. palmatum [1]; Dracocephalum [5]; Andean blueberry [30]; Mentha [44] | |
53 | Isoflavanone | Ferreirin * | C16H14O6 | 27.0 | 303 | 177; 285 | 163 | 135 | Mentha [44] | |
54 | Trihydroxyflavanone | Homoeriodictyol * | C16H14O6 | 27.1 | 303 | 285; 177 | 163 | 145 | Mentha [26] | |
55 | Flavanone | Prunin [Naringenin-7-O-glucoside] | C21H22O10 | 22.7 | 433 | 271; 151 | 269; 151 | D. palmatum [1]; Dracocephalum [5]; Rapeseed petals [53] | ||
56 | Flavanone | Eriodictyol-7-O-glucoside [Pyracanthoside; Miscanthoside] | C21H22O11 | 6.3 | 449 | 285; 151 | 243; 151 | D. palmatum [1]; Dracocephalum [5]; Mentha [44] | ||
57 | Flavanone | Eriodictyol-7-O-glucuronide * | C21H20O12 | 23.3 | 463 | 285; 151 | 285; 243; 151 | Thymus vulgaris [67] | ||
58 | Hydroxycinnamic acid | p-Coumaric acid [4-Hydroxycinnamic acid; P-Hydroxycinnamic acid; 4-Coumarate] * | C9H8O3 | 16.7 | 165 | 147 | 119 | F. pottsii [32]; Rhus coriaria [28]; Andean blueberry [30]; Rapeseed petals [53]; Vaccinium macrocarpon [54] | ||
59 | Hydroxycinnamic acid | 3,4-Dihydroxyhydrocinnamic acid* | C9H10O4 | 33.6 | 183 | 137 | Eucalyptus Globulus [68] | |||
60 | Phenolic acid | 2,3,4,5-Tetrahydroxybenzoic acid [2-Hydroxygallussaure; 3,4,5-Trihydroxysalicylic acid] * | C7H6O6 | 5.9 | 187 | 144 | PubChem | |||
61 | Phenolic acid | Salvianic acid A [Danshensu] * | C9H10O5 | 15.3 | 197 | 179; 135 | 135 | Huolisu Oral Liquid [22]; Hedyotis diffusa [69] | ||
62 | Hydroxybenzoic acid | Ellagic acid [Benzoaric acid; Elagostasine; Lagistase; Eleagic acid] | C14H6O8 | 5.5 | 301 | 284 | 221 | 112 | Dracocephalum [5]; Rhus coriaria [28]; Eucalyptus Globulus [68] | |
63 | Phenolic acid | Protocatechuic acid-O-hexoside * | C13H16O9 | 16.1 | 315 | 153; 123 | 123 | Rhus coriaria [28]; Euphorbia hirta [56]; Eucalyptus Globulus [68] | ||
64 | Phenolic acid | Caffeic acid-4-O-beta-d-hexoside [Caffeoyl-O-hexoside] | C15H18O9 | 6.7 | 341 | 179; 119 | 143; 131 | Dracocephalum [5]; pear [45]; Cherimoya, papaya [49]; Sasa veitchii [70] | ||
65 | Phenolic acid | Chlorogenic acid [3-O-Caffeoylquinic acid] | C16H18O9 | 17.9 | 355 | 179; 338; 227 | 127 | D. palmatum [1]; Vaccinium macrocarpon [29,54]; Andean blueberry [30]; Rhus coriaria [28]; Camellia kucha [33]; Lonicera japonica [36]; Bougainvillea [46]; Rapeseed petals [53] | ||
66 | Phenolic acid | Isochlorogenic acid * | C16H18O9 | 29.5 | 355 | 323; 269; 165 | 295; 208; 133 | 295; 249; 221 | Actinidia [62] | |
67 | Phenolic acid | Rosmarinic acid | C18H16O8 | 24.5 | 359 | 161 | 133 | D. palmatum [1]; Mentha [26]; Dracocephalum [5]; Salvia miltiorrhiza [71] | ||
68 | Phenolic acid | Caffeic acid derivative | C16H18O9Na | 6.8 | 377 | 341; 215 | 179 | Dracocephalum [5]; Bougainvillea [46] | ||
69 | Phenolic acid | 1/3/4/5-p-Coumaroylquinic acid * + C2H2O | C18H20O9 | 7.3 | 381 | 321; 275; 233 | 260; 218; 143 | Actinidia [62] | ||
70 | Phenolic acid | 8,8′-Aryl-Diferulic acid * | C20H18O8 | 36.9 | 385 | 193; 285 | 193; 161 | millet grains [57] | ||
71 | Phenolic acid | Caffeic acid hexoside dimer * | C31H40O17 | 6.9 | 683 | 341 | 179; 161 | 143 | Strawberry, Lemon, Cherimoya, Passion fruit [49] | |
72 | Phenolic acid | Salvianolic acid B [Danfensuan B] * | C36H30O16 | 26.3 | 717 | 519; 321 | 321; 279 | 279; 185 | Huolisu Oral Liquid [22]; Mentha [26]; Bougainvillea [46]; Salvia miltiorrhiza [71] | |
73 | Phenylpropanoic acid | Sagerinic acid | C36H32O16 | 25.7 | 719 | 359 | 161; 197 | 133 | D. palmatum [1]; Huolisu Oral Liquid [22]; Rosmarinus officinalis [24]; Mentha [26]; Salvia miltiorrhiza [71] | |
74 | Phenolic acid | Clerodendranoic acid H * | C36H32O16 | 26.1 | 719 | 359 | 161 | Lepechinia [72] | ||
75 | Lignan | Phillygenin [Sylvatesmin; Phyllygenol; Forsythigenol] * | C21H24O6 | 16.7 | 371 | 163; 325 | 119 | Lignans [73] | ||
76 | Lignan | Medioresinol * | C21H24O7 | 20.8 | 387 | 207; 163; 119 | 163 | Rosmarinus officinalis [24]; Lignans [73]; Bituminaria [74] | ||
77 | Dihydrochalcone | Phloretin [Dihydronaringenin; Phloretol] * | C15H14O5 | 7.6 | 275 | 255; 229; 131 | 237; 209; 164 | G. linguiforme [32]; Rosa rugosa [40]; Punica granatum [75] | ||
78 | Hydroxycoumarin | Umbelliferone [Skimmetin; Hydragin] * | C9H6O3 | 26.2 | 163 | 145; 135; 117 | 117 | Sanguisorba officinalis [31]; F. glaucescens [32]; Zostera marina [50]; Actinidia [62] | ||
79 | Coumarin | Fraxetin [7,8-Dihydroxy-6-methoxycoumarin] * | C10H8O5 | 20.5 | 209 | 191; 149 | 149 | 147 | Jatropha [41]; Embelia [56]; Actinidia [62] | |
80 | Hydroxycoumarin | Umbelliferone hexoside * | C15H16O8 | 7.1 | 325 | 307; 288; 271; 253; 241 | 127; 118 | G. linguiforme [32] | ||
81 | Coumarin glycoside | Fraxin [Fraxetin-8-O-glucoside] * | C16H18O10 | 7.3 | 371 | 209 | Rosa davurica [40]; Actinidia [62] | |||
82 | Anthocyanidin | Petunidin | C16H13O7+ | 35.6 | 318 | 166; 300 | 121 | Dracocephalum [1]; A. cordifolia; C. edulis [32] | ||
83 | Anthocyanidin | Pelargonidin-3-O-glucoside (callistephin) | C21H21O10 | 25.8 | 433 | 271 | 153; 225 | 171 | Dracocephalum [1]; Triticum aestivum [76]; Rubus ulmifolius [77] | |
84 | Anthocyanidin | Cyanidin-3-O-glucoside [Cyanidin 3-O-beta-d-Glucoside; Kuromarin] | C21H21O11+ | 7.5 | 449 | 287 | 153 | Dracocephalum [1]; Triticum aestivum [76]; Malpighia emarginata [78] | ||
85 | Anthocyanidin | Cyanidin 3,5-O-diglucoside * | C27H31O16 | 16.1 | 611 | 287; 449 | 287; 241; 213; 175; 149 | 213; 185; 172; 157; 145 | Rapeseed petals [53]; Muscadine pomace [79]; Berberis microphylla [80] | |
86 | Anthocyanidin | Peonidin-3,5-diglucoside [Peonin; Peonidin 3-Glucoside-5-Glucoside] * | C28H33O16 | 44.1 | 625 | 463; 374; 301 | 445; 373 | Triticum aestivum [76]; Muscadine pomace [79] | ||
87 | Anthocyanidin | Cyanidin-3-O-rutinoside-5-O-glucoside * | C33H41O20 | 21.1 | 757 | 287; 449; 595 | 287; 213; 137 | 185 | Camellia kucha [33] | |
88 | Anthocyanidin | Delphinidin 3-O-rutinoside-5-O-glucoside * | C33H41O21 | 20.5 | 773 | 303; 465; 611 | 257; 303; 229; 165 | 257; 229; 201; 116 | Berberis microphylla [80]; Iris dichotoma [81]; Solanium nigrum [82] | |
89 | Anthocyanidin | Malonyl-shisonin * | C39H39O21+ | 23.0 | 843 | 595; 535; 491; 287 | 287; 259; 213; 147 | 213; 185 | Perilla frutescens [83,84] | |
OTHERS | ||||||||||
90 | Benzenediol | Catechol derivative * | C6H6O3 | 5.9 | 127 | 124; 118 | Embelia [55] | |||
91 | Amino acid | Phenylalanine [L-Phenylalanine] * | C9H11NO2 | 8.7 | 166 | 120 | G. linguiforme [32]; Camellia kucha [33]; Lonicera japonica [36]; Rapeseed petals [53]; Potato leaves [85] | |||
92 | Amino acid | Tyrosine [(2S)-2-Amino-3-(4-Hydroxyphnyl)Propanoic acid] * | C9H11NO3 | 8.1 | 182 | 165; 150 | 113 | Euphorbia hirta [56]; Hylocereus polyrhizus [86] | ||
93 | Monobasic carboxylic acid | Hydroxyphenyllactic acid * | C9H10O4 | 17.6 | 181 | 163; 135 | 119 | Mentha [87] | ||
94 | Amino acid | L-Tryptophan [Tryptophan; (S)-Tryptophan] | C11H12N2O2 | 9.2 | 205 | 188 | 144 | 118 | Dracocephalum [1]; Camellia kucha [33]; Rosa acicularis [40]; Rapeseed petals [53] | |
95 | Omega-5 fatty acid | Myristoleic acid [Cis-9-Tetradecanoic acid] | C14H26O2 | 20.5 | 227 | 209 | 139 | Dracocephalum [1]; F. glaucescens [32] | ||
96 | Xanthone | Mangiferitin [Norathyriol; 1,3,6,7-Tetrahydroxyxanthone] * | C13H8O6 | 9.7 | 261 | 193; 135 | 179; 124 | 111 | Rhus coriaria [28] | |
97 | Ribonucleoside composite of adenine (purine) | Adenosine | C10H13N5O4 | 9.2 | 268 | 136; 258 | Dracocephalum [1]; Lonicera japonica [36] | |||
98 | Omega 3-fatty acid | Stearidonic acid [6,9,12,15-Octadecatetraenoic acid; Moroctic acid] * | C18H28O2 | 17.9 | 277 | 177; 247 | 175 | Rhus coriaria [28]; G. linguiforme [32]; Jatropha [41]; Salviae miltiorrhiza [88] | ||
99 | Omega 3-fatty acid | Linolenic acid [Alpha-Linolenic acid; Linolenate] * | C18H30O2 | 10.9 | 279 | 219; 259 | 159 | Jatropha [41]; Salviae miltiorrhiza [88] | ||
100 | Fatty amide | Linoleic acid amide * | C18H33NO | 8.2 | 280 | 262; 244 | 244; 234; 216; 196; 172 | 196; 168; 151 | Propolis [25]; Rhus coriaria [28] | |
101 | Fatty amide | Oleamide * | C18H35NO | 7.1 | 282 | 263; 246; 192 | 245; 228; 217; 197; 170 | Propolis [25] | ||
102 | Alkaloid | Mesembrenol | C17H23NO3 | 35.6 | 290 | 242; 122 | 184; 149 | Dracocephalum [1]; Sceletium [89] | ||
103 | Diterpenoid naphthoquinone | Tanshinone IIA [Tanshinone B] * | C19H18O3 | 8.1 | 295 | 277; 259; 193; 149 | 259; 241; 199; 149 | 241; 147 | Huolisu Oral Liquid [22] | |
104 | Unsaturated hydroxy fatty acid | Hydroxyoctadecatrienoic acid* | C18H30O3 | 44.9 | 293 | 275; 235; 185; 172 | 231; 205; 177 | 231; 163 | Jatropha [41] | |
105 | Polyunsaturated fatty acid | Alpha-Kamlolenic Acid [18-Hydroxy-9Z,11E,13E-Octadecatrienoic Acid] * | C18H30O3 | 43.9 | 293 | 275; 231; 171 | 231; 177 | 231 | G. linguiforme; F. glaucescens; F. pottsii [32] | |
106 | Essential fatty acid | Hydroxyoctadecadienoic acid * | C18H32O3 | 46.5 | 295 | 277; 251; 195; 171; 152 | 233; 179; 155 | A. cordifolia; F. glaucescens; F. herrerae [32]; Jatropha [41] | ||
107 | Pterocarpans | 3-Hydroxy-9,10-dimethoxypterocarpan | C17H16O5 | 28.9 | 301 | 286; 257; 229; 177; 153 | 163; 149 | 145 | Astragali radix [19,20,21]; Huolisu Oral Liquid [22] | |
108 | p-hydroxyphenacyl-β-d-glucopyranoside * | C14H18O8 | 31.1 | 313 | 161; 213 | 133; 161 | 133 | Rhodiola crenulata [18,90] | ||
109 | Long-chain fatty acid | Hydroxy eicosenoic acid * | C20H38O3 | 42.8 | 327 | 295; 268; 181; 125 | 268 | 237; 135 | A. cordifolia; F. pottsii [32] | |
110 | Amino acid | Fructose-phenylalanine * | C15H21NO7 | 8.1 | 328 | 310; 292 | 292; 264; 244; 216; 198; 178 | 244; 216; 198; 171; 156 | Potato leaves [85] | |
111 | Oxylipins | 9,10-Dihydroxy-8-oxooctadec-12-enoic acid [oxo-DHODE; oxo-Dihydroxy-octadecenoic acid] | C18H32O5 | 8.1 | 327 | 229 | 209 | 183 | Dracocephalum [1]; Phyllostachys nigra [70]; Bituminaria [74] | |
112 | Oxylipins | 13- Trihydroxy-Octadecenoic acid [THODE] | C18H34O5 | 34.1 | 329 | 229; 293; 211; 171 | 211; 229; 155 | 183; 211 | Dracocephalum [1]; Sasa veitchii [70]; Bituminaria [74] | |
113 | Unsaturated omega-3 fatty acid | Trihydroxy eicosatetraenoic acid * | C20H32O5 | 40.5 | 353 | 261; 293; 243; 207 | 243; 201; 159; 132 | 162 | F. glaucescens [32] | |
114 | Tetrasyclic diterpenoid | Komaroviquinone | C21H28O5 | 1.9 | 361 | 343; 302 | 310; 269; 218; 161 | 282 | D. komarovii [91] | |
115 | Sterol | Stigmasterol [Stigmasterin; Beta-Stigmasterol] | C29H48O | 3.5 | 413 | 395; 301; 237; 189 | 189 | Dracocephalum [1]; A. cordifolia; F. pottsii [32]; Hedyotis diffusa [69] | ||
116 | Anabolic steroid; Androgen; Androgen ester | Vebonol | C30H44O3 | 25.2 | 453 | 435; 336; 226 | 336 | 209 | Dracocephalum [1]; Rhus coriaria [28]; Hylocereus polyrhizus [86] | |
117 | Triterpenic acid | Betulonic acid [Betunolic acid; Liquidambaric acid] * | C30H46O3 | 47.8 | 455 | 436; 353; 313; 249 | 393; 336; 319; 282 | 154 | Rhus coriaria [28]; Rosa rugosa [40] | |
118 | Triterpenic acid | 1-Hydroxy-3-oxours-12-en-28-oic acid * | C30H46O4 | 41.0 | 471 | 453; 425; 407; 389 | 365; 335; 283; 205 | 177; 121 | Pear [45] | |
119 | Triterpenic acid | Pomolic acid * | C30H48O4 | 45.8 | 473 | 454; 371; 302; 144 | Sanguisorba officinalis [31]; Pear [45]; Malus domestica [92] | |||
120 | Triterpenic acid | Tormentic acid [Jacarandic acid; Tomentic acid] * | C30H48O5 | 42.2 | 487 | 470; 423; 372 | 403; 377 | Sanguisorba officinalis [31]; Pear [45]; Actinidia [62] | ||
121 | Monoterpene glycoside | Rhodioloside C [(2E,4R)-4-hydroxy-3,7-dimethyl-2,6-octadienyl β-d-glucopyranosyl(1-3)-β-d-glucopyranoside] * | C22H38O12 | 30.7 | 493 | 447; 329; 285 | 309; 285 | 294; 187 | Rhodiola rosea [15,16,17]; Rhodiola crenulata [18] | |
122 | Carotenoid | (all-E)-lutein 3′-O-myristate * | C40H54O | 0.6 | 551 | 533; 509; 429; 385; 355 | 133 | Carotenoids [93]; Rosa rugosa [94] | ||
123 | Carotenoid | Cryptoxanthin [Beta-cryptoxanthin] | C40H56O | 5.3 | 553 | 535; 325; 223 | 517 | Dracocephalum [1]; Carotenoids [93]; Sarsaparilla [95] | ||
124 | Carotenoid | Zeaxanthin [All-Trans-Zeaxanthin; Anchovyxanthin] * | C40H56O2 | 3.6 | 569 | 553; 534; 471; 359 | 534; 486; 326; 262 | 516; 473; 308; 262 | Sarsaparilla [95]; Carotenoids [96] | |
125 | Product of Chlorophylle breakdown | Pheophorbide a * | C35H34N4O6 | 0.3 | 607 | 547; 503; 461 | 461; 433 | 433 | Chlorophyll derivatives [97] | |
126 | Cycloartanol | Cyclopassifloic acid glucoside * | C37H62O12 | 40.4 | 699 | 537 | 375; 331; 259; 185 | Passiflora incarnata [47] | ||
127 | Carotenoid | Carotenoid * | C41H59O10 | 2.8 | 712 | 695; 605; 543; 474; 456 | 412; 369; 200; 143 | Carotenoids [98] | ||
128 | Carotenoid | (all-E)-beta-cryptoxanthin laurate [Beta-Cryptoxanthin-Laurate] * | C52H78O2 | 29.5 | 735 | 323; 521; 277 | 295; 163 | 249; 173; 134 | Carotenoids [93]; Sarsaparilla [95]; Carica papaya [99] |
Appendix B
No | Class of Compounds | Identified Compounds | Stems | Inflorescences | Leaves |
---|---|---|---|---|---|
1 | Flavone | Formononetin [Biochanin B; Formononetol] * | |||
2 | Flavone | Apigenin [5,7-Dixydroxy-2-(40Hydroxyphenyl)-4H-Chromen-4-One] | |||
3 | Flavone | Acacetin [Linarigenin; Buddleoflavonol] | |||
4 | Flavone | Calycosin [3′-Hydroxyformononetin] * | |||
5 | Flavone | Genkwanin [Gengkwanin; Puddumetin; Apigenin 7-Methyl Ether] | |||
6 | Flavone | Luteolin | |||
7 | Flavone | Diosmetin [Luteolin 4′-Methyl Ether; Salinigricoflavonol] | |||
8 | Flavone | Chrysoeriol [Chryseriol] | |||
9 | Flavone | Cirsimaritin [Scrophulein] * | |||
10 | Flavone | Dihydroxy-dimethoxy(iso)flavone * | |||
11 | Flavone | 5,7-Dimethoxyluteolin * | |||
12 | Flavone | Myricetin * | |||
13 | Flavone | Isothymusin | |||
14 | Flavone | Cirsiliol * | |||
15 | Flavone | Dimethoxy-trihydroxy(iso)flavone * | |||
16 | Flavone | Nevadensin | |||
17 | Flavone | Gardenin B [Demethyltangeretin] * | |||
18 | Flavone | 5-Hydroxy-6,7,8,3′,4′-pentamethoxyflavone * | |||
19 | Flavone | Apigenin O-hexoside | |||
20 | Flavone | Apigenin-7-O-glucoside [Apigetrin; Cosmosiin] | |||
21 | Flavone | Apigenin 7-O-glucuronide | |||
22 | Flavone | Acacetin 7-O-glucoside [Tilianin] | |||
23 | Flavone | Luteolin 7-O-glucoside [Cynaroside; Luteoloside] | |||
24 | Flavone | Acacetin 7-O-beta-d-glucuronide | |||
25 | Flavone | 6,4′-Dimethoxyisoflavone-7-O-glucoside * | |||
26 | Flavone | Diosmetin-7-O-beta-glucoside | |||
27 | Flavone | Apigenin-O-rhamnoside * | |||
28 | Flavone | Chrysoeriol-7-O-glucuronide * | |||
29 | Flavone | Acacetin 7-beta-O-(6″-acetyl)-glucoside | |||
30 | Isoflavone | Apigenin 7-O-beta-d-(6″-O-malonyl)-glucoside | |||
31 | Flavone | Acacetin 7-O-beta-d-(6″-O-malonylated)-glucoside | |||
32 | Flavone | Chrysoeriol O-hexoside C-hexoside * | |||
33 | Flavonol | Kaempferol | |||
34 | Flavonol | Quercetin | |||
35 | Flavonol | Dihydroquercetin (Taxifolin; Taxifoliol) | |||
36 | Flavonol | Isorhamnetin [Isorhamnetol; Quercetin 3′-Methyl ether; 3-Methylquercetin] * | |||
37 | Flavonoid | 3,5-Diacetyltambulin * | |||
38 | Flavonol | Astragalin [Kaempferol 3-O-glucoside; Kaempferol-3-Beta-Monoglucoside; Astragaline] | |||
39 | Flavonol | Quercitrin [Quercetin 3-O-rhamnoside; Quercetrin] * | |||
40 | Flavonol | Kaempferol-3-O-glucuronide | |||
41 | Flavonol | Taxifolin-3-O-hexoside [Dihydroquercetin-3-O-hexoside] * | |||
42 | Flavonol | Kaempferol 3-O-rutinoside | |||
43 | Flavonol | Kaempferol-3,7-Di-O-glucoside * | |||
44 | Flavonol | Kaempferol dihexoside rhamnoside * | |||
45 | Flavan-3-ol | (epi)Afzelechin * | |||
46 | Flavan-3-ol | Catechin [D-Catechol] * | |||
47 | Flavan-3-ol | (epi)catechin | |||
48 | Flavan-3-ol | Gallocatechin [+(−)Gallocatechin] | |||
49 | Flavan-3-ol | Catechin 3-O-gallate * | |||
50 | Flavan-3-ol | Epigallocatechin-3-gallate * | |||
51 | Flavanone | Naringenin [Naringetol; Naringenine] | |||
52 | Flavanone | Eriodictyol [3′,4′,5,7-tetrahydroxy-flavanone] | |||
53 | Isoflavanone | Ferreirin * | |||
54 | Trihydroxyflavanone | Homoeriodictyol * | |||
55 | Flavanone | Prunin [Naringenin-7-O-glucoside] | |||
56 | Flavanone | Eriodictyol-7-O-glucoside [Pyracanthoside; Miscanthoside] | |||
57 | Flavanone | Eriodictyol-7-O-glucuronide * | |||
58 | Hydroxycinnamic acid | p-Coumaric acid [4-Hydroxycinnamic acid; P-Hydroxycinnamic acid; 4-Coumarate] * | |||
59 | Hydroxycinnamic acid | 3,4-Dihydroxyhydrocinnamic acid * | |||
60 | Phenolic acid | 2,3,4,5-Tetrahydroxybenzoic acid [2-Hydroxygallussaure; 3,4,5-Trihydroxysalicylic acid] * | |||
61 | Phenolic acid | Salvianic acid A [Danshensu] * | |||
62 | Hydroxybenzoic acid | Ellagic acid [Benzoaric acid; Elagostasine; Lagistase; Eleagic acid] | |||
63 | Phenolic acid | Protocatechuic acid-O-hexoside * | |||
64 | Phenolic acid | Caffeic acid-4-O-beta-d-hexoside [Caffeoyl-O-hexoside] | |||
65 | Phenolic acid | Chlorogenic acid [3-O-Caffeoylquinic acid] | |||
66 | Phenolic acid | Isochlorogenic acid * | |||
67 | Phenolic acid | Rosmarinic acid | |||
68 | Phenolic acid | Caffeic acid derivative | |||
69 | Phenolic acid | 1/3/4/5-p-Coumaroylquinic acid * + C2H2O | |||
70 | Phenolic acid | 8,8′-Aryl-Diferulic acid * | |||
71 | Phenolic acid | Caffeic acid hexoside dimer * | |||
72 | Phenolic acid | Salvianolic acid B [Danfensuan B] * | |||
73 | Phenylpropanoic acid | Sagerinic acid | |||
74 | Phenolic acid | Clerodendranoic acid H * | |||
75 | Lignan | Phillygenin [Sylvatesmin; Phyllygenol; Forsythigenol] * | |||
76 | Lignan | Medioresinol * | |||
77 | Dihydrochalcone | Phloretin [Dihydronaringenin; Phloretol] * | |||
78 | Hydroxycoumarin | Umbelliferone [Skimmetin; Hydragin] * | |||
79 | Coumarin | Fraxetin [7,8-Dihydroxy-6-methoxycoumarin] * | |||
80 | Hydroxycoumarin | Umbelliferone hexoside * | |||
81 | Coumarin glycoside | Fraxin [Fraxetin-8-O-glucoside] * | |||
82 | Anthocyanidin | Petunidin | |||
83 | Anthocyanidin | Pelargonidin-3-O-glucoside (callistephin) | |||
84 | Anthocyanidin | Cyanidin-3-O-glucoside [Cyanidin 3-O-beta-d-Glucoside; Kuromarin] | |||
85 | Anthocyanidin | Cyanidin 3,5-O-diglucoside * | |||
86 | Anthocyanidin | Peonidin-3,5-diglucoside [Peonin; Peonidin 3-Glucoside-5-Glucoside] * | |||
87 | Anthocyanidin | Cyanidin-3-O-rutinoside-5-O-glucoside * | |||
88 | Anthocyanidin | Delphinidin 3-O-rutinoside-5-O-glucoside * | |||
89 | Anthocyanidin | Malonyl-shisonin * | |||
TOTAL | 22 | 73 | 33 |
References
- Olennikov, D.N.; Chirikova, N.K.; Kim, E.; Kim, S.W.; Zulfugarov, I.S. New glycosides of eriodictyol from Dracocephalum palmatum. Chem. Nat. Compd. 2018, 54, 860–863. [Google Scholar] [CrossRef]
- Toshmatov, Z.O.; Li, J.; Eshbakova, K.A.; Tang, D.; Xin, X.L.; Aisa, H.A. New monoterpene glucosides from Dracocephalum komarovi and their anti-inflammatory activity. Phytochem. Lett. 2019, 33, 102–105. [Google Scholar] [CrossRef]
- Zhang, H.R.; Xu, L.T.; Liu, X.Q.; Fan, J.J.; Wang, X.N.; Shen, T.; Wang, S.Q.; Ren, D.M. Dracomolphesin A–E, five 3,4-seco-phenylpropanoids with Nrf2 inducing activity from Dracocephalum moldavica. Chin. Chem. Lett. 2020, 31, 1259–1262. [Google Scholar] [CrossRef]
- Zhang, H.R.; Wang, S.Q.; Liu, Q.Y.; Zheng, H.; Liu, X.Q.; Wang, X.N.; Shen, T.; Ren, D.M. Dracomolphin A–E, new lignans from Dracocephalum moldavica. Fitoterapia 2021, 150, 104841. [Google Scholar] [CrossRef] [PubMed]
- Okhlopkova, Z.M.; Razgonova, M.P.; Pikula, K.S.; Zakharenko, A.M.; Piekoszewski, W.; Manakov, Y.A.; Ercisli, S.; Golokhvast, K.S. Dracocephalum palmatum S. and Dracocephalum ruyschiana L. originating from Yakutia: A high-resolution mass spectrometric approach for the comprehensive characterization of phenolic compounds. Appl. Sci. 2022, 12, 1766. [Google Scholar] [CrossRef]
- Khodaei, M.; Amanzadeh, Y.; Faramarzi, M.A.; Pirali-Hamedani, M.; Adhami, H.R. Cholinesterase Inhibitory, Anti-oxidant and Anti-tyrosinase Activities of Three Iranian Species of Dracocephalum. Res. J. Pharmacogn. 2019, 6, 25–31. [Google Scholar]
- Kim, J.; Kim, J.N.; Park, I.; Sivtseva, S.; Okhlopkova, Z.; Zulfugarov, I.S.; Kim, S.-W. Dracocephalum palmatum Stephan extract induces caspase- and mitochondria-dependent apoptosis via Myc inhibition in diffuse large B cell lymphoma. Oncol. Rep. 2020, 44, 2746–2756. [Google Scholar] [CrossRef]
- Lee, S.-E.; Okhlopkova, Z.; Lim, C.; Cho, S. Dracocephalum palmatum Stephan extract induces apoptosis in human prostate cancer cells via the caspase-8-mediated extrinsic pathway. Chin. J. Nat. Med. 2020, 18, 793–800. [Google Scholar] [CrossRef]
- Song, E.S.; Choi, J.Y.; Gwon, H.E.; Lee, K.Y.; Choi, S.G.; Islam, M.A.; Chun, J.Y.; Hwang, J.N. Phytochemical profile and antioxidant activity of Dracocephalum moldavica L. seed extracts using different extraction methods. Food Chem. 2021, 350, 128531. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sun, J.; Jin, L.; Huang, Y.; Wang, M.; Jin, M.; Diao, S.; Zhou, W.; Li, G. Four new terpenoids and other metabolites with potential anti-complementary activities from the aerial parts of Dracocephalum moldavica (Lamiaceae). Nat. Prod. Res. 2022, 22, 1–9. [Google Scholar] [CrossRef]
- Wu, C.; Liu, H.; Rong, X.; Liu, J.; Ding, W.; Cheng, X.; Xing, J.; Wang, C. Phytochemical Composition Profile and Space–Time Accumulation of Secondary Metabolites for Dracocephalum Moldavica Linn. via UPLC–Q/TOF–MS and HPLC–DAD Method. Biomed. Chromatogr. 2020, 34, e4865. [Google Scholar] [CrossRef] [PubMed]
- Simea, Ș.; Ielciu, I.; Hanganu, D.; Niculae, M.; Pall, E.; Burtescu, R.F.; Olah, N.-K.; Cenariu, M.; Oniga, I.; Benedec, D.; et al. Evaluation of the Cytotoxic, Antioxidative, and Antimicrobial Effects of Dracocephalum moldavica L. Cultivars. Molecules 2023, 28, 1604. [Google Scholar] [CrossRef] [PubMed]
- Red Book of the Republic of Sakha (Yakutia). V. 1: Rare and Endangered Species of Plants and Fungi; Danilova, N.S., Ed.; Publishing House “Reart”: Moscow, Russia, 2017; 412p. (In Russian) [Google Scholar]
- Razgonova, M.P.; Okhlopkova, Z.M.; Rozhina, Z.G.; Egorova, P.S.; Ercisli, S.; Golokhvast, K.S. Comparison of Wild and Introduced Dracocephalum jacutense P.: Significant Differences of Multicomponent Composition. Horticulturae 2022, 8, 1211. [Google Scholar] [CrossRef]
- Troshchenko, A.T.; Kutikova, G.A. Rhodioloside from Rhodiola rosea and R. quadrifida I. Chem. Nat. Compd. 1967, 3, 244–249. [Google Scholar] [CrossRef]
- Saratikov, A.S.; Krasnov, E.A.; Chnikina, L.A.; Duvidson, L.M.; Sotova, M.I.; Marina, T.F.; Nechoda, M.F.; Axenova, R.A.; Tscherdinzeff, S.G. Rhodiolosid, a new glycoside from Rhodiola rosea and its pharmacological properties. Pharmazie 1968, 23, 392–395. [Google Scholar]
- van Diermen, D.; Marston, A.; Bravo, J.; Reist, M.; Carrupt, P.A.; Hostettmann, K. Monoamine oxidase inhibition by Rhodiola rosea L. roots. J. Ethnopharmacol. 2009, 122, 397–401. [Google Scholar] [CrossRef]
- Han, F.; Li, Y.; Ma, L.; Liu, T.; Wu, Y.; Xu, R.; Song, A.; Yin, R. A rapid and sensitive UHPLC-FT-ICR MS/MS method for identification of chemical constituents in Rhodiola crenulata extract, rat plasma and rat brain after oral administration. Talanta 2016, 160, 183–193. [Google Scholar] [CrossRef]
- Huang, X.; Liu, Y.; Song, F.; Liu, Z.; Liu, S. Studies on principal components and antioxidant activity of different Radix astragali samples using high-performance liquid chromatography/electrospray ionization multiple-stage tandem mass spectrometry. Talanta 2009, 78, 1090–1101. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, X.-J.; Xu, W.; Huang, J.; Zhu, D.; Qui, X.-H. Rapid Characterization and Identification of Flavonoids in Radix astragali by Ultra-High-Pressure Liquid Chromatography Coupled with Linear Ion Trap-Orbitrap Mass Spectrometry. J. Chromatogr. Sci. 2015, 53, 945–952. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhao, S.; Li, F.; Zhang, B.; Qu, Y.; Sun, T.; Luo, T.; Li, D. Investigation of Antioxidant interactions between Radix Astragali and Cimicifuga foetida and Identification of Synergistic Antioxidant Compounds. PLoS ONE 2014, 9, e87221. [Google Scholar] [CrossRef]
- Yin, Y.; Zhang, K.; Wei, L.; Chen, D.; Chen, Q.; Jiao, M.; Li, X.; Huang, J.; Gong, Z.; Kang, N.; et al. The Molecular Mechanism of Antioxidation of Huolisu Oral Liquid Based on Serum Analysis and Network Analysis. Front. Pharma. 2021, 12, 710976. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Huang, S.; Chen, Q.; Hu, Z.; Li, Z.; Zheng, P.; Liu, X.; Li, S.; Zhang, S.; Chen, J. Chemical characterisation and quantification of the major constituents in the Chinese herbal formula Jian-Pi-Yi-Shen pill by UPLC-Q-TOF-MS/MS and HPLC-QQQ-MS/MS. Phytochem. Anal. 2020, 31, 915–929. [Google Scholar] [CrossRef]
- Mena, P.; Cirlini, M.; Tassotti, M.; Herrlinger, K.A.; Dall’Asta, C.; Del Rio, D. Phytochemical Profiling of Flavonoids, Phenolic Acids, Terpenoids, and Volatile Fraction of a Rosemary (Rosmarinus officinalis L.) Extract. Molecules 2016, 21, 1576. [Google Scholar] [CrossRef]
- Belmehdi, O.; Bouyahya, A.; Jeko, J.; Cziaky, Z.; Zengin, G.; Sotkó, G.; El Baaboua, A.; Senhaji, N.S.; Abrini, J. Synergistic interaction between propolis extract, essential oils, and antibiotics against Staphylococcus epidermidis and methicillin resistant Staphylococcus aureus. Int. J. Second Metab. 2021, 8, 195–213. [Google Scholar] [CrossRef]
- Xu, L.L.; Xu, J.J.; Zhong, K.R.; Shang, Z.P.; Wang, F.; Wang, R.F.; Liu, B. Analysis of non-volatile chemical constituents of Menthae Haplocalycis herba by ultra-high performance liquid chromatography—High resolution mass spectrometry. Molecules 2017, 22, 1756. [Google Scholar] [CrossRef]
- Martinez-Vazquez, M.; Estrada-Reyes, R.; Martinez-Laurrabaquio, A.; Lopez-Rubalcava, C.; Heinze, G. Neuropharmacological study of Dracocephalum moldavica L. (Lamiaceae) in mice: Sedative effect and chemical analysis of an aqueous extract. J. Ethnopharmacol. 2012, 141, 908–917. [Google Scholar] [CrossRef] [PubMed]
- Abu-Reidah, I.M.; Ali-Shtayeh, M.S.; Jamous, R.M.; Arraes-Roman, D.; Segura-Carretero, A. HPLC–DAD–ESI-MS/MS screening of bioactive components from Rhus coriaria L. (Sumac) fruits. Food Chem. 2015, 166, 179–191. [Google Scholar] [CrossRef]
- Rafsanjany, N.; Senker, J.; Brandt, S.; Dobrindt, U.; Hensel, A. In Vivo Consumption of Cranberry Exerts ex Vivo Antiadhesive Activity against FimH-Dominated Uropathogenic Escherichia coli: A Combined in Vivo, ex Vivo, and in Vitro Study of an Extract from Vaccinium macrocarpon. J. Agric. Food Chem. 2015, 63, 8804–8818. [Google Scholar] [CrossRef]
- Aita, S.E.; Capriotti, A.L.; Cavaliere, C.; Cerrato, A.; Giannelli Moneta, B.; Montone, C.M.; Piovesana, S.; Lagana, A. Andean Blueberry of the Genus Disterigma: A High-Resolution Mass Spectrometric Approach for the Comprehensive Characterization of Phenolic Compounds. Separations 2021, 8, 58. [Google Scholar] [CrossRef]
- Kim, S.; Oh, S.; Noh, H.B.; Ji, S.; Lee, S.H.; Koo, J.M.; Choi, C.W.; Jhun, H.P. In Vitro Antioxidant and Anti-Propionibacterium acnes Activities of Cold Water, Hot Water, and Methanol Extracts, and Their Respective Ethyl Acetate Fractions, from Sanguisorba officinalis L. Roots. Molecules 2018, 23, 3001. [Google Scholar] [CrossRef]
- Hamed, A.R.; El-Hawary, S.S.; Ibrahim, R.M.; Abdelmohsen, U.R.; El-Halawany, A.M. Identification of Chemopreventive Components from Halophytes Belonging to Aizoaceae and Cactaceae Through LC/MS—Bioassay Guided Approach. J. Chrom. Sci. 2021, 59, 618–626. [Google Scholar] [CrossRef]
- Qin, D.; Wang, Q.; Li, H.; Jiang, X.; Fang, K.; Wang, Q.; Li, B.; Pan, C.; Wu, H. Identification of key metabolites based on non-targeted metabolomics and chemometrics analyses provides insights into bitterness in Kucha [Camellia kucha (Chang et Wang) Chang]. Food Res. Int. 2020, 138 Pt B, 109789. [Google Scholar] [CrossRef]
- Pharmacopoeia of the Eurasian Economic Union, Approved by Decision of the Board of Eurasian Economic Commission No. 100 dated 11 August 2020. Available online: http://www.eurasiancommission.org/ru/act/texnreg/deptexreg/LSMI/Documents/Фармакoпея%20Сoюза%2011%2008.pdf (accessed on 15 July 2021).
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.; Mohamed, A.; Sahena, F.; Jahurul, M.; Ghafoor, K.; Norulaini, N.; Omar, A. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Cai, Z.; Wang, C.; Zou, L.; Liu, X.; Chen, J.; Tan, M.; Mei, Y.; Wei, L. Comparison of Multiple Bioactive Constituents in the Flower and the Caulis of Lonicera japonica Based on UFLC-QTRAP-MS/MS Combined with Multivariate Statistical Analysis. Molecules 2019, 24, 1936. [Google Scholar] [CrossRef]
- Wojakowska, A.; Piasecka, A.; Garcia-Lopez, P.M.; Zamora-Natera, F.; Krajewski, P.; Marczak, L.; Kachlicki, P.; Stobiecki, M. Structural analysis and profiling of phenolic secondary metabolites of Mexican lupine species using LC–MS techniques. Phytochem 2013, 92, 71–86. [Google Scholar] [CrossRef]
- Pandey, R.; Kumar, B. HPLC–QTOF–MS/MS-based rapid screening of phenolics and triterpenic acids in leaf extracts of Ocimum species and their interspecies variation. J. Liq. Chromatogr. Relat. Tech. 2016, 39, 225–238. [Google Scholar] [CrossRef]
- Fanthoni, A.; Saepudin, E.; Cahyana, A.H.; Rahayu, D.U.C.; Haib, J. Identification of Nonvolatile Compounds in Clove (Syzygium aromaticum) from Manado. In Proceedings of the International Symposium on Current Progress in Mathematics and Sciences 2016 (ISCPMS 2016), Depok City, Indonesia, 1–2 November 2016; Volume 1862, pp. 030079-1–030079-10. [Google Scholar]
- Razgonova, M.P.; Bazhenova, B.B.; Zabalueva, Y.Y.; Burkhanova, A.G.; Zakharenko, A.M.; Kupriyanov, A.N.; Sabitov, A.S.; Ercisli, S.; Golokhvast, K.S. Rosa davurica Pall., Rosa rugosa Thumb., and Rosa acicularis Lindl. originating from Far Eastern Russia: Screening of 146 Chemical Constituents in Tree Species of the Genus Rosa. Appl. Sci. 2022, 12, 9401. [Google Scholar] [CrossRef]
- Zengin, G.; Mahomoodally, M.F.; Sinan, K.I.; Ak, G.; Etienne, O.K.; Sharmeen, J.B.; Brunetti, L.; Leone, S.; Di Simone, S.C.; Recinella, L.; et al. Chemical composition and biological properties of two Jatropha species: Different parts and different extraction methods. Antioxidants 2021, 10, 792. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Jain, S.K. Simultaneous Quantification of Five Bioactive Flavonoids in High Altitude Plant Actinocarya tibetica by LC-ESI-MS/MS. J. AOAC Int. 2015, 98, 907–912. [Google Scholar] [CrossRef]
- Mateos-Martin, M.L.; Fuguet, E.; Jimenez-Ardon, A.; Herrero-Uribe, L.; Tamayo-Castillo, G.; Torres, J.L. Identification of polyphenols from antiviral Chamaecrista nictitans extract using high-resolution LC–ESI–MS/MS. Anal. Bioanal. Chem. 2014, 406, 5501–5506. [Google Scholar] [CrossRef]
- Li, X.; Tian, T. Phytochemical Characterization of Mentha spicata L. Under Differential Dried-Conditions and Associated Nephrotoxicity Screening of Main Compound with Organ-on-a-Chip. Front. Pharmacol. 2018, 9, 1067. [Google Scholar] [CrossRef]
- Sun, L.; Tao, S.; Zhang, S. Characterization and Quantification of Polyphenols and Triterpenoids in Thinned Young Fruits of Ten Pear Varieties by UPLC-Q TRAP-MS/MS. Molecules 2019, 24, 159. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, M.A.; Abbas, F.A.; Refaat, S.; El-Shafae, A.M.; Fikry, E. UPLC-ESI-MS/MS Profile of The Ethyl Acetate Fraction of Aerial Parts of Bougainvillea ‘Scarlett O’Hara’ Cultivated in Egypt. Egypt. J. Chem. 2021, 64, 22. [Google Scholar] [CrossRef]
- Ozarowski, M.; Piasecka, A.; Paszel-Jaworska, A.; de Siqueira, A.; Chaves, D.; Romaniuk, A.; Rybczynska, M.; Gryszczynska, A.; Sawikowska, A.; Kachlicki, P.; et al. Comparison of bioactive compounds content in leaf extracts of Passiflora incarnata, P. caerulea and P. alata and in vitro cytotoxic potential on leukemia cell lines. Braz. J. Pharmacol. 2018, 28, 179–191. [Google Scholar] [CrossRef]
- Pandey, B.P.; Pradhan, S.P.; Adhikari, K. LC-ESI-QTOF-MS for the Profiling of the Metabolites and in Vitro Enzymes Inhibition Activity of Bryophyllum pinnatum and Oxalis corniculata Collected from Ramechhap District of Nepal. Chem. Biodivers. 2020, 17, e2000155. [Google Scholar]
- Spinola, V.; Pinto, J.; Castilho, P.C. Identification and quantification of phenolic compounds of selected fruits from Madeira Island by HPLC-DAD-ESI-MSn and screening for their antioxidant activity. Food Chem. 2015, 173, 14–30. [Google Scholar] [CrossRef]
- Razgonova, M.P.; Tekutyeva, L.A.; Podvolotskaya, A.B.; Stepochkina, V.D.; Zakharenko, A.M.; Golokhvast, K.S. Zostera marina L. Supercritical CO2-Extraction and Mass Spectrometric Characterization of Chemical Constituents Recovered from Seagrass. Separations 2022, 9, 182. [Google Scholar] [CrossRef]
- Cavaliere, C.; Foglia, P.; Pastorini, E.; Samperi, R.; Laganà, A. Identification and mass spectrometric characterization of glycosylated flavonoids in Triticum durum plants by high-performance liquid chromatography with tandem mass spectrometry. Rapid Commun. Mass Spectrom. Int. J. Devoted Rapid Dissem. Up—Minute Res. Mass Spectrom. 2005, 19, 3143–3158. [Google Scholar] [CrossRef] [PubMed]
- Wojakowska, A.; Perkowski, J.; Góral, T.; Stobiecki, M. Structural characterization of flavonoid glycosides from leaves of wheat (Triticum aestivum L.) using LC/MS/MS profiling of the target compounds. J. Mass Spectrom. 2013, 48, 329–339. [Google Scholar] [CrossRef]
- Yin, N.-W.; Wang, S.-X.; Jia, L.-D.; Zhu, M.-C.; Yang, J.; Zhou, B.-J.; Yin, J.-M.; Lu, K.; Wang, R.; Li, J.-N.; et al. Identification and Characterization of Major Constituents in Different-Colored Rapeseed Petals by UPLC−HESI-MS/MS. J. Agric. Food Chem. 2019, 67, 11053–11065. [Google Scholar] [CrossRef]
- Abeywickrama, G.; Debnath, S.C.; Ambigaipalan, P.; Shahidi, F. Phenolics of selected cranberry genotypes (Vaccinium macrocarpon Ait.) and their antioxidant efficacy. J. Agr. Food Chem. 2016, 64, 9342–9351. [Google Scholar] [CrossRef]
- Vijayan, K.P.R.; Raghu, A.V. Tentative characterization of phenolic compounds in three species of the genus Embelia by liquid chromatography coupled with mass spectrometry analysis. Spectrosc. Lett. 2019, 52, 653–670. [Google Scholar] [CrossRef]
- Mekam, P.N.; Martini, S.; Nguefack, J.; Tagliazucchi, D.; Stefani, E. Phenolic compounds profile of water and ethanol extracts of Euphorbia hirta L. leaves showing antioxidant and antifungal properties. South Afr. J. Bot. 2019, 127, 319–332. [Google Scholar] [CrossRef]
- Chandrasekara, A.; Shahidi, F. Determination of antioxidant activity in free and hydrolyzed fractions of millet grains and characterization of their phenolic profiles by HPLC-DAD-ESI-MSn. J. Funct. Foods 2011, 3, 144–158. [Google Scholar] [CrossRef]
- Le Gall, G.; DuPont, M.S.; Davis, A.L.; Collins, G.J.; Verhoeyen, M.E.; Colquhoun, I.J. Characterization and Content of Flavonoid Glycosides in Genetically Modified Tomato (Lycopersicum esculentum) Fruits. Roots. Agric. Food Chem. 2003, 51, 2438–2446. [Google Scholar] [CrossRef]
- Aabideen, Z.U.; Mumtaz, M.W.; Akhtar, M.T.; Mukhtar, H.; Raza, S.A.; Touqeer, T.; Saari, N. Anti-Obesity Attributes; UHPLC-QTOF-MS/MS-Based Metabolite Profiling and Molecular Docking Insights of Taraxacum officinale. Molecules 2020, 25, 4935. [Google Scholar] [CrossRef]
- Marcia Fuentes, J.A.; Lopez-Salas, L.; Borras-Linares, I.; Navarro-Alarcon, M.; Segura-Carretero, A.; Lozano-Sanchez, J. Development of an Innovative Pressurized Liquid Extraction Procedure by Response Surface Methodology to Recover Bioactive Compounds from Carao Tree Seeds. Foods 2021, 10, 398. [Google Scholar] [CrossRef]
- Sobeh, M.; Mahmoud, M.F.; Abdelfattah, M.A.O.; Cheng, H.; El-Shazly, A.M.; Wink, M. A proanthocyanidin-rich extract from Cassia abbreviata exhibits antioxidant and hepatoprotective activities in vivo. J. Ethnopharmacol. 2018, 213, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Cai, X.; Li, G.; He, X.; Yu, X.; Wang, C.; Xiao, Q.; Xiang, Z. Chemical constituents of radix Actinidia chinensis planch by UPLC–QTOF–MS. Biomedical Chromatography. Biomed. Chromatogr. 2021, 35, e5103. [Google Scholar] [CrossRef]
- Zakharenko, A.M.; Razgonova, M.P.; Pikula, K.S.; Golokhvast, K.S. Simultaneous determination of 78 compounds of Rhodiola rosea extract using supercritical CO2-extraction and HPLC-ESI-MS/MS spectrometry. HINDAWY. Biochem. Res. Int. 2021, 2021, 9957490. [Google Scholar] [CrossRef]
- Jaiswal, R.; Jayasinghe, L.; Kuhnert, N. Identification and characterization of proanthocyanidins of 16 members of the Rhododendron genus (Ericaceae) by tandem LC–MS. J. Mass Spectrom. 2012, 47, 502–515. [Google Scholar] [CrossRef]
- Singh, A.; Bajpai, V.; Kumar, S.; Sharma, K.R.; Kumar, B. Profiling of Gallic and Ellagic Acid Derivatives in Different Plant Parts of Terminalia arjuna by HPLC-ESI-QTOF-MS/MS. Nat. Prod. Com. 2016, 11, 239–244. [Google Scholar] [CrossRef]
- Gordon, A.; Schadow, B.; Quijano, K.E.; Marx, F. Chemical characterization and antioxidant capacity of berries from Clidemia rubra (Aubl.) Mart. (Melastomataceae). Food Res. Int. 2011, 44, 2120–2127. [Google Scholar] [CrossRef]
- Justesen, U. Negative atmospheric pressure chemical ionisation low-energy collision activation mass spectrometry for the characterisation of flavonoids in extracts of fresh herbs. J. Chromatogr. A 2000, 902, 369–379. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Lei, Q.; Zang, N.; Zhang, H. A Strategy Based on GC-MS/MS, UPLC-MS/MS and Virtual Molecular Docking for Analysis and Prediction of Bioactive Compounds in Eucalyptus Globulus Leaves. Int. J. Mol. Sci. 2019, 20, 3875. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhu, P.; Liu, B.; Wei, L.; Xu, Y. Simultaneous determination of fourteen compounds of Hedyotis diffusa Willd extract in rats by UHPLC-MS/MS method: Application to pharmacokinetics and tissue distribution study. J. Pharmaceut. Biomed. Analys. 2018, 159, 490–512. [Google Scholar] [CrossRef]
- Van Hoyweghen, L.; De Bosscher, K.; Haegeman, G.; Deforce, D.; Heyerick, A. In Vitro Inhibition of the Transcription Factor NF-kB and Cyclooxygenase by Bamboo Extracts. Phytother. Res. 2014, 28, 224–230. [Google Scholar] [CrossRef]
- Jiang, R.-W.; Lau, K.-M.; Hon, P.-M.; Mak, T.C.W.; Woo, K.-S.; Fung, K.-P. Chemistry and Biological Activities of Caffeic Acid Derivatives from Salvia miltiorrhiza. Curr. Med. Chem. 2005, 12, 237–246. [Google Scholar]
- Serrano, C.A.; Villena, G.K.; Rodriguez, E.F. Phytochemical profile and rosmarinic acid purification from two Peruvian Lepechinia Willd. species (Salviinae, Mentheae, Lamiaceae). Sci. Rep. 2021, 11, 7260. [Google Scholar] [CrossRef]
- Eklund, P.C.; Backman, M.J.; Kronberg, L.A.; Smeds, A.I.; Sjoholm, R.E. Identification of lignans by liquid chromatography-electrospray ionization ion-trap mass spectrometry. J. Mass Spectr. 2008, 43, 97–107. [Google Scholar] [CrossRef]
- Llorent-Martinez, E.J.; Spinola, V.; Gouveia, S.; Castilho, P.C. HPLC-ESI-MSn characterization of phenolic compounds, terpenoid saponins, and other minor compounds in Bituminaria bituminosa. Industr. Crops Prod. 2015, 69, 80–90. [Google Scholar] [CrossRef]
- Mena, P.; Calani, L.; Dall’Asta, C.; Galaverna, G.; Garcia-Viguera, C.; Bruni, R.; Crozier, A.; Del Rio, D. Rapid and Comprehensive Evaluation of (Poly)phenolic Compounds in Pomegranate (Punica granatum L.) Juice by UHPLC-MSn. Molecules 2012, 17, 14821–14840. [Google Scholar] [CrossRef]
- Garg, M.; Chawla, M.; Chunduri, V.; Kumar, R.; Sharma, S.; Sharma, N.K.; Kaur, N.; Kumar, A.; Mundey, J.K.; Saini, M.K.; et al. Transfer of grain colors to elite wheat cultivars and their characterization. J. Cereal Sci. 2016, 71, 138–144. [Google Scholar] [CrossRef]
- Da Silva, L.P.; Pereira, E.; Pires, T.C.S.P.; Alves, M.J.; Pereira, O.R.; Barros, L.; Ferreira, I.C.F.R. Rubus ulmifolius Schott fruits: A detailed study of its nutritional, chemical and bioactive properties. Food Res. Int. 2019, 119, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Vera de Rosso, V.; Hillebrand, S.; Cuevas Montilla, E.; Bobbio, F.O.; Winterhalter, P.; Mercadante, A.Z. Determination of anthocyanins from acerola (Malpighia emarginata DC.) and ac-ai (Euterpe oleracea Mart.) by HPLC–PDA–MS/MS. J. Food Composit. Analys. 2008, 21, 291–299. [Google Scholar] [CrossRef]
- Anari, Z.; Mai, C.; Sengupta, A.; Howard, L.; Brownmiller, C.; Wickramasinghe, R. Combined Osmotic and Membrane Distillation for Concentration of Anthocyanin from Muscadine Pomace. J. Food Sci. 2019, 84, 2199–2208. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, A.; Hermosín-Gutiérrez, I.; Vergara, C.; von Baer, D.; Zapata, M.; Hitschfeld, A.; Obando, L.; Mardones, C. Anthocyanin profiles in south Patagonian wild berries by HPLC-DAD-ESI-MS/MS. Food Res. Int. 2013, 51, 706–713. [Google Scholar] [CrossRef]
- Xu, W.; Luo, I.; Vergara, G.; Yu, F.; Jia, Q.; Zeng, Y.; Bi, X.; Lei, J. Characterization of anthocyanins in the hybrid progenies derived from Iris dichotoma and I. domestica by HPLC-DAD-ESI/MS analysis. Phytochem 2018, 150, 60–74. [Google Scholar] [CrossRef]
- Chhon, S.; Jeon, J.; Kim, J.; Park, S.Y. Accumulation of Anthocyanins through Overexpression of AtPAP1 in Solanum nigrum Lin. (Black Nightshade). Biomolecules 2020, 10, 277. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, M.; Nakajima, J.; Yamanashi, M.; Sugiyama, M.; Makita, Y.; Springob, K.; Awazuhara, M.; Saito, K. Metabolomics and differential gene expression in anthocyanin chemo-varietal forms of Perilla frutescens. Phytochem 2003, 62, 987–995. [Google Scholar] [CrossRef]
- He, Y.-K.; Yao, Y.-Y.; Chang, Y.-N. Characterization of Anthocyanins in Perilla frutescens var. acuta Extract by Advanced UPLC-ESI-IT-TOF-MSn Method and Their Anticancer Bioactivity. Molecules 2015, 20, 9155–9169. [Google Scholar] [CrossRef]
- Rodriguez-Perez, C.; Gomez-Caravaca, A.M.; Guerra-Hernandez, E.; Cerretani, L.; Garcia-Villanova, B.; Verardo, V. Comprehensive metabolite profiling of Solanum tuberosum L. (potato) leaves T by HPLC-ESI-QTOF-MS. Food Res. Int. 2018, 112, 390–399. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, J.; He, Y.; Shi, M.; Han, X.; Li, W.; Zhang, X.; Wen, X. Metabolic Profiling of Pitaya (Hylocereus polyrhizus) during Fruit Development and Maturation. Molecules 2019, 24, 1114. [Google Scholar] [CrossRef]
- Cirlini, M.; Mena, P.; Tassotti, M.; Herrlinger, K.A.; Nieman, K.M.; Dall’Asta, C.; Del Rio, D. Phenolic and volatile composition of a dry spearmint (Mentha spicata L.) extract. Molecules 2016, 21, 1007. [Google Scholar] [CrossRef]
- Yang, S.T.; Wu, X.; Rui, W.; Guo, J.; Feng, Y.F. UPLC/Q-TOF-MS analysis for identification of hydrophilic phenolics and lipophilic diterpenoids from Radix Salviae Miltiorrhizae. Acta Chromatogr. 2015, 27, 711–728. [Google Scholar] [CrossRef]
- Patnala, S.; Kanfer, I. Medicinal use of Sceletium: Characterization of Phytochemical Components of Sceletium Plant Species using HPLC with UV and Electrospray Ionization—Tandem Mass Spectroscopy. J. Pharm. Pharm. Sci. 2015, 18, 414–423. [Google Scholar] [CrossRef]
- Chen, D.; Fan, J.; Wang, P.; Zhu, L.; Jin, Y.; Peng, Y.; Du, S. Isolation, identification and antioxidative capacity of water-soluble phenylpropanoid compounds from Rhodiola crenulata. Food Chem. 2012, 134, 2126–2133. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, N.; Kiuchi, F.; Ito, M.; Honda, G.; Takeda, Y.; Khodzhimatov, O.K.; Ashurmetov, O.A. New Icetexane and 20-Norabietane Diterpenes with Trypanocidal Activity from Dracocephalum komarovi. J. Nat. Prod. 2003, 66, 128–131. [Google Scholar] [CrossRef]
- Sut, S.; Zengin, G.; Maggi, F.; Malagoli, M.; Dall’Acqua, S. Triterpene Acid and Phenolics from Ancient Apples of Friuli Venezia Giulia as Nutraceutical Ingredients: LC-MS Study and In Vitro Activities. Molecules 2019, 24, 1109. [Google Scholar] [CrossRef]
- Mercadante, A.Z.; Rodrigues, D.B.; Petry, F.C.; Barros Mariutti, L.R. Carotenoid esters in foods—A review and practical directions on analysis and occurrence. Food Res. Int. 2017, 99, 830–850. [Google Scholar] [CrossRef] [PubMed]
- Al-Yafeai, A.; Malarski, A.; Bohm, V. Characterization of carotenoids and vitamin E in R. rugosa and R. canina: Comparative analysis. Food Chem. 2018, 242, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Pelayo, R.; Homero-Mendez, D. Identification and Quantitative Analysis of Carotenoids and Their Esters from Sarsaparilla (Smilax aspera L.) Berries. J. Chromatogr. A 2012, 60, 8225–8232. [Google Scholar] [CrossRef] [PubMed]
- Zoccali, M.; Giuffrida, D.; Salafia, F.; Giofre, S.V.; Mondello, L. Carotenoids and apocarotenoids determination in intact human blood samples by online supercritical fluid extraction-supercritical fluid chromatography-tandem mass spectrometry. J. Pharmaceut. Biomed. Analys. 2018, 1032, 40–47. [Google Scholar] [CrossRef]
- van Breemen, R.B.; Canjura, F.L.; Schwartz, S.J. Identification of Chlorophyll Derivatives by Mass Spectrometry. J. Agric. Food Chem. 1991, 39, 1452–1456. [Google Scholar] [CrossRef]
- Murador, D.C.; Salafia, F.; Zoccali, M.; Martins, P.L.G.; Ferreira, A.; Dugo, P.; Mondello, L.; de Rosso, V.V.; Giuffrida, D. Green Extraction Approaches for Carotenoids and Esters: Characterization of Native Composition from Orange Peel. Antioxidants 2019, 8, 613. [Google Scholar] [CrossRef]
- Lara-Abia, S.; Lobo-Rodrigo, G.; Welti-Chanes, J.; Pilar Cano, M. Carotenoid and Carotenoid Ester Profile and Their Deposition in Plastids in Fruits of New Papaya (Carica papaya L.) Varieties from the Canary Islands. Foods 2021, 10, 434. [Google Scholar] [CrossRef] [PubMed]
No | Class of Compound | Identified Polyphenol | Formula |
---|---|---|---|
1 | Flavone | Formononetin [Biochanin B; Formononetol] * | C16H12O4 |
2 | Flavone | Apigenin [5,7-Dixydroxy-2-(40Hydroxyphenyl)-4H-Chromen-4-One] | C15H10O5 |
3 | Flavone | Acacetin [Linarigenin; Buddleoflavonol] | C16H12O5 |
4 | Flavone | Calycosin [3′-Hydroxyformononetin] * | C16H12O5 |
5 | Flavone | Genkwanin [Gengkwanin; Puddumetin; Apigenin 7-Methyl Ether] | C16H12O5 |
6 | Flavone | Luteolin | C15H10O6 |
7 | Flavone | Diosmetin [Luteolin 4′-Methyl Ether; Salinigricoflavonol] | C16H12O6 |
8 | Flavone | Chrysoeriol [Chryseriol] | C16H12O6 |
9 | Flavone | Cirsimaritin * | C17H14O6 |
10 | Flavone | Dihydroxy-dimethoxy(iso)flavone * | C17H14O6 |
11 | Flavone | 5,7-Dimethoxyluteolin * | C17H14O6 |
12 | Flavone | Myricetin * | C15H10O8 |
13 | Flavone | Isothymusin | C17H14O7 |
14 | Flavone | Cirsiliol * | C17H14O7 |
15 | Flavone | Dimethoxy-trihydroxy(iso)flavone * | C17H14O7 |
16 | Flavone | Nevadensin | C18H16O7 |
17 | Flavone | Gardenin B [Demethyltangeretin] * | C19H18O7 |
18 | Flavone | 5-Hydroxy-6,7,8,3′,4′-pentamethoxyflavone * | C20H20O8 |
19 | Flavone | Apigenin O-hexoside | C21H20O10 |
20 | Flavone | Apigenin-7-O-glucoside [Apigetrin; Cosmosiin] | C21H20O10 |
21 | Flavone | Apigenin 7-O-glucuronide | C21H18O11 |
22 | Flavone | Acacetin 7-O-glucoside [Tilianin] | C22H22O10 |
23 | Flavone | Luteolin 7-O-glucoside [Cynaroside; Luteoloside] | C21H20O11 |
24 | Flavone | Acacetin 7-O-β-d-glucuronide | C22H20O11 |
25 | Flavone | 6,4′-Dimethoxyisoflavone-7-O-glucoside * | C23H24O10 |
26 | Flavone | Diosmetin-7-O-β-glucoside | C22H22O11 |
27 | Flavone | Apigenin-O-rhamnoside * | C22H22O11 |
28 | Flavone | Chrysoeriol-7-O-glucuronide * | C22H20O12 |
29 | Flavone | Acacetin 7-β-O-(6″-acetyl)-glucoside | C24H24O11 |
30 | Isoflavone | Apigenin 7-O-β - d-(6″-O-malonyl)-glucoside | C24H22O13 |
31 | Flavone | Acacetin 7-O-β-d-(6″-O-malonylated)-glucoside | C25H24O13 |
32 | Flavone | Chrysoeriol O-hexoside C-hexoside * | C28H32O16 |
33 | Flavonol | Kaempferol | C15H10O6 |
34 | Flavonol | Quercetin | C15H10O7 |
35 | Flavonol | Dihydroquercetin (Taxifolin; Taxifoliol) | C15H12O7 |
36 | Flavonol | Isorhamnetin * | C16H12O7 |
37 | Flavonoid | 3,5-Diacetyltambulin * | C22H20O9 |
38 | Flavonol | Astragalin [Kaempferol 3-O-glucoside; Astragaline] | C21H20O11 |
39 | Flavonol | Quercitrin [Quercetin 3-O-rhamnoside; Quercetrin] * | C21H20O11 |
40 | Flavonol | Kaempferol-3-O-glucuronide | C21H18O12 |
41 | Flavonol | Taxifolin-3-O-hexoside [Dihydroquercetin-3-O-hexoside] * | C21H22O12 |
42 | Flavonol | Kaempferol 3-O-rutinoside | C27H30O15 |
43 | Flavonol | Kaempferol-3,7-Di-O-glucoside * | C27H30O16 |
44 | Flavonol | Kaempferol dihexoside rhamnoside * | C33H40O20 |
45 | Flavan-3-ol | (epi)Afzelechin * | C15H14O5 |
46 | Flavan-3-ol | Catechin [D-Catechol] * | C15H14O6 |
47 | Flavan-3-ol | (epi)catechin | C15H14O6 |
48 | Flavan-3-ol | Gallocatechin [+(−)Gallocatechin] | C15H14O7 |
49 | Flavan-3-ol | Catechin 3-O-gallate * | C22H18O10 |
50 | Flavan-3-ol | Epigallocatechin-3-gallate * | C22H18O11 |
51 | Flavanone | Naringenin [Naringetol; Naringenine] | C15H12O5 |
52 | Flavanone | Eriodictyol [3′,4′,5,7-tetrahydroxy-flavanone] | C15H12O6 |
53 | Isoflavanone | Ferreirin * | C16H14O6 |
54 | Trihydroxyflavanone | Homoeriodictyol * | C16H14O6 |
55 | Flavanone | Prunin [Naringenin-7-O-glucoside] | C21H22O10 |
56 | Flavanone | Eriodictyol-7-O-glucoside [Pyracanthoside; Miscanthoside] | C21H22O11 |
57 | Flavanone | Eriodictyol-7-O-glucuronide * | C21H20O12 |
58 | Hydroxycinnamic acid | p-Coumaric acid * | C9H8O3 |
59 | Hydroxycinnamic acid | 3,4-Dihydroxyhydrocinnamic acid * | C9H10O4 |
60 | Phenolic acid | 2,3,4,5-Tetrahydroxybenzoic acid * | C7H6O6 |
61 | Phenolic acid | Salvianic acid A [Danshensu] * | C9H10O5 |
62 | Hydroxybenzoic acid | Ellagic acid [Benzoaric acid; Elagostasine; Lagistase; Eleagic acid] | C14H6O8 |
63 | Phenolic acid | Protocatechuic acid-O-hexoside * | C13H16O9 |
64 | Phenolic acid | Caffeic acid-4-O-β-d-hexoside [Caffeoyl-O-hexoside] | C15H18O9 |
65 | Phenolic acid | Chlorogenic acid [3-O-Caffeoylquinic acid] | C16H18O9 |
66 | Phenolic acid | Isochlorogenic acid * | C16H18O9 |
67 | Phenolic acid | Rosmarinic acid | C18H16O8 |
68 | Phenolic acid | Caffeic acid derivative | C16H18O9Na |
69 | Phenolic acid | 1/3/4/5-p-Coumaroylquinic acid * + C2H2O | C18H20O9 |
70 | Phenolic acid | 8,8′-Aryl-Diferulic acid * | C20H18O8 |
71 | Phenolic acid | Caffeic acid hexoside dimer * | C31H40O17 |
72 | Phenolic acid | Salvianolic acid B [Danfensuan B] * | C36H30O16 |
73 | Phenylpropanoic acid | Sagerinic acid | C36H32O16 |
74 | Phenolic acid | Clerodendranoic acid H * | C36H32O16 |
75 | Lignan | Phillygenin [Sylvatesmin; Phyllygenol; Forsythigenol] * | C21H24O6 |
76 | Lignan | Medioresinol * | C21H24O7 |
77 | Dihydrochalcone | Phloretin [Dihydronaringenin; Phloretol] * | C15H14O5 |
78 | Hydroxycoumarin | Umbelliferone [Skimmetin; Hydragin] * | C9H6O3 |
79 | Coumarin | Fraxetin [7,8-Dihydroxy-6-methoxycoumarin] * | C10H8O5 |
80 | Hydroxycoumarin | Umbelliferone hexoside * | C15H16O8 |
81 | Coumarin glycoside | Fraxin [Fraxetin-8-O-glucoside] * | C16H18O10 |
82 | Anthocyanidin | Petunidin | C16H13O7+ |
83 | Anthocyanidin | Pelargonidin-3-O-glucoside (callistephin) | C21H21O10 |
84 | Anthocyanidin | Cyanidin-3-O-glucoside [Cyanidin 3-O-beta-d-Glucoside; Kuromarin] | C21H21O11+ |
85 | Anthocyanidin | Cyanidin 3,5-O-diglucoside * | C27H31O16 |
86 | Anthocyanidin | Peonidin-3,5-diglucoside [Peonin; Peonidin 3-Glucoside-5-Glucoside] * | C28H33O16 |
87 | Anthocyanidin | Cyanidin-3-O-rutinoside-5-O-glucoside * | C33H41O20 |
88 | Anthocyanidin | Delphinidin 3-O-rutinoside-5-O-glucoside * | C33H41O21 |
89 | Anthocyanidin | Malonyl-shisonin * | C39H39O21+ |
Names | Total | Elements |
---|---|---|
Inflorescences Leaves Stems | 13 | Prunin; Kaempferol-3-O-glucuronide; Naringenin; Eriodictyol; Rosmarinic acid; Caffeic acid derivative; Luteolin 7-O-glucoside; Luteolin; Acacetin; Eriodictyol-7-O-glucoside; Cirsimaritin; Kaempferol; Astragalin; |
Inflorescences Stems | 4 | Apigenin-7-O-glucoside; Apigenin; Acacetin 7-O-glucoside; Homoeriodictyol; |
Leaves Stems | 1 | Diosmetin; |
Inflorescences Leaves | 8 | Petunidin; Fraxetin; Isorhamnetin; Genkwanin; Gallocatechin; Apigenin 7-O-beta-d-(6″-O-malonyl)-glucoside; Catechin; Cyanidin-3-O-glucoside; |
Stems | 4 | Phloretin; Acacetin 7-beta-O-(6″-acetyl)-glucoside; 1/3/4/5-p-Coumaroylquinic acid; Ellagic acid; |
Inflorescences | 48 | 3,4-Dihydroxyhydrocinnamic acid; Epigallocatechin-3-gallate; Chrysoeriol-7-O-glucuronide; Delphinidin 3-O-rutinoside-5-O-glucoside; Protocatechuic acid-O-hexoside; Pelargonidin-3-O-glucoside; Eriodictyol-7-O-glucuronide; Cyanidin-3-O-rutinoside-5-O-glucoside; Quercetin; Diosmetin-7-O-beta-glucoside; Ferreirin; Quercetrin; (epi)Afzelechin; Kaempferol-3,7-Di-O-glucoside; Fraxin; Apigenin 7-O-glucuronide; 3,5-Diacetyltambulin; 2,3,4,5-Tetrahydroxybenzoic acid; Salvianic acid A; Apigenin O-hexoside; Caffeic acid hexoside dimer; Cirsiliol; Salvianolic acid B; Chlorogenic acid; (epi)catechin; Apigenin-O-rhamnoside; Acacetin 7-O-beta-d-glucuronide; Cyanidin 3,5-O-diglucoside; Umbelliferone; Medioresinol; Malonyl-shisonin; 8,8′-Aryl-Diferulic acid; Phillygenin; p-Coumaric acid; Kaempferol dihexoside rhamnoside; 6,4′-Dimethoxyisoflavone-7-O-glucoside; Sagerinic acid; Taxifolin-3-O-hexoside; Caffeic acid-4-O-beta-d-hexoside; Umbelliferone hexoside; Clerodendranoic acid H; Myricetin; Chrysoeriol O-hexoside C-hexoside; 5,7-Dimethoxyluteolin; Isochlorogenic acid; 5-Hydroxy-6,7,8,3′,4′-pentamethoxyflavone; Dihydroquercetin; Kaempferol 3-O-rutinoside; |
Leaves | 11 | Gardenin B; Nevadensin; Peonidin-3,5-diglucoside; Isothymusin; Chrysoeriol; Formononetin; Calycosin; Dihydroxy-dimethoxy(iso)flavone; Acacetin 7-O-beta-d-(6″-O-malonylated)-glucoside; Catechin 3-O-gallate; Dimethoxy-trihydroxy(iso)flavone; |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okhlopkova, Z.M.; Razgonova, M.P.; Rozhina, Z.G.; Egorova, P.S.; Golokhvast, K.S. Dracocephalum jacutense Peschkova from Yakutia: Extraction and Mass Spectrometric Characterization of 128 Chemical Compounds. Molecules 2023, 28, 4402. https://doi.org/10.3390/molecules28114402
Okhlopkova ZM, Razgonova MP, Rozhina ZG, Egorova PS, Golokhvast KS. Dracocephalum jacutense Peschkova from Yakutia: Extraction and Mass Spectrometric Characterization of 128 Chemical Compounds. Molecules. 2023; 28(11):4402. https://doi.org/10.3390/molecules28114402
Chicago/Turabian StyleOkhlopkova, Zhanna M., Mayya P. Razgonova, Zoya G. Rozhina, Polina S. Egorova, and Kirill S. Golokhvast. 2023. "Dracocephalum jacutense Peschkova from Yakutia: Extraction and Mass Spectrometric Characterization of 128 Chemical Compounds" Molecules 28, no. 11: 4402. https://doi.org/10.3390/molecules28114402
APA StyleOkhlopkova, Z. M., Razgonova, M. P., Rozhina, Z. G., Egorova, P. S., & Golokhvast, K. S. (2023). Dracocephalum jacutense Peschkova from Yakutia: Extraction and Mass Spectrometric Characterization of 128 Chemical Compounds. Molecules, 28(11), 4402. https://doi.org/10.3390/molecules28114402