Phytochemical Profiling, Isolation, and Pharmacological Applications of Bioactive Compounds from Insects of the Family Blattidae Together with Related Drug Development
Abstract
:1. Introduction
2. Phytochemical Profiling
2.1. Amino Acids, Peptides, and Proteins
2.2. Polysaccharides
2.3. Nucleosides
2.4. Polyols
2.5. Isocoumarins
2.6. Alkaloids
2.7. Flavonoids
2.8. Others
3. Isolation of Bioactive Compounds
3.1. Crude Extraction Conditions
3.2. Separation Conditions
3.2.1. Salting-Out and Ultrafiltration
3.2.2. Conventional Column Chromatography
3.2.3. Preparative Liquid Chromatography
3.3. Activity-Guided Separation
4. Identification and Analysis Methods
4.1. Spectral Features
4.2. Nuclear Magnetic Resonance
4.3. Chromatography–Mass Spectrometry
4.4. Gel Electrophoresis
5. Pharmacological Effects and Structure–Activity Relationship
5.1. Antitumor Effect
5.2. Antifibrosis Effect
5.3. Wound-Healing Effect
5.4. Anti-Inflammatory Effect
5.5. Antibacterial Effect
5.6. Others
6. Key Issues in Basic Study and Drug Development
6.1. Pharmacodynamic Components Research
6.2. Clinical Assessment and Mechanism Research
6.3. Quality Control Research
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Kim, I.W.; Choi, R.Y.; Lee, J.H.; Seo, M.; Lee, H.J.; Kim, M.A.; Kim, S.H.; Kim, I.; Hwang, J.S. Anticancer activity of Periplanetasin-5, an antimicrobial peptide from the cockroach Periplaneta americana. J. Microbiol. Biotechnol. 2021, 31, 1343–1349. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Li, X.; Che, J.; Fan, H.; Liu, Q.; Xia, H. The inhibitory effect of Periplaneta americana L. on hepatocellular carcinoma: Explore the anti-hepatocellular carcinoma active site and its mechanism of action. J. Ethnopharmacol. 2022, 291, 114884. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Sun, Z.; Shi, B.; Zhang, X. Periplaneta Americana extract Inhibits proliferation and motility of human breast cancer cells through MAPK/ERK signaling pathway and promotes cell apoptosis. Curr. Top. Nutraceutical Res. 2020, 19, 194–198. [Google Scholar] [CrossRef]
- Liao, Q.; Pang, L.; Li, J.J.; Zhang, C.; Li, J.X.; Zhang, X.; Mao, T.; Wu, D.T.; Ma, X.Y.; Geng, F.N.; et al. Characterization and diabetic wound healing benefits of protein-polysaccharide complexes isolated from an animal ethno-medicine Periplaneta americana L. Int. J. Biol. Macromol. 2022, 195, 466–474. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Han, G.; Luo, Z.; Li, B.; Liu, W.; Shen, C. Effects of Periplaneta americana extracts on the growth and proliferation of cutaneous interstitial cells in cutaneous-wound healing. Front. Pharmacol. 2022, 13, 920855. [Google Scholar] [CrossRef]
- Li, M.; Wu, H.; Wang, S.; Wu, S.; Han, J.; Han, Y. Development of microparticles for oral administration of Periplaneta americana extract to treat ulcerative colitis. Drug. Deliv. 2022, 29, 2723–2733. [Google Scholar] [CrossRef]
- Chen, S.; Wei, X.; Sui, Z.; Guo, M.; Geng, J.; Xiao, J.; Huang, D. Preparation of antioxidant and antibacterial chitosan film from Periplaneta americana. Insects 2021, 12, 53. [Google Scholar] [CrossRef]
- Li, Y.; Cai, J.; Du, C.; Lin, Y.; Li, S.; Ma, A.; Qin, Y. Bioinformatic analysis and antiviral effect of Periplaneta americana defensins. Virus Res. 2022, 308, 198627. [Google Scholar] [CrossRef]
- Fu, W.; Zhao, Y.; Xie, J.; Yang, Y.; Xiao, P. Identification of anti–hepatic fibrosis components in Periplaneta americana based on spectrum–effect relationship and chemical component separation. Biomed. Chromatogr. 2022, 36, e5286. [Google Scholar] [CrossRef]
- Yang, Z.; Xie, J.; Huang, F.; Yang, Y.; Zhang, X.; Yue, B. GC–MS analysis of chemical constituents and determination of the total antioxidant capacity of adult powder of Periplaneta americana. Entomol. Res. 2022, 52, 68–76. [Google Scholar] [CrossRef]
- Pai, H.-H.; Ko, Y.C.; Chen, E.R. Cockroaches (Periplaneta americana and Blattella germanica) as potential mechanical disseminators of Entamoeba histolytica. Acta Trop. 2003, 87, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; He, M.; Li, Z.Q.; Zhang, Y.N.; He, P. Identification and tissue expression profile of genes from three chemoreceptor families in an urban pest, Periplaneta americana. Sci. Rep. 2016, 6, 27495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Liu, Y.X.; Jiang, G.F. De novo Assembly and Characterization of the Testis Transcriptome and Development of EST-SSR Markers in the Cockroach Periplaneta americana. Sci. Rep. 2015, 5, 11144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, X.; Wang, S.; Luo, C.; Liu, X. Experimental study on anti-inflammation and decreasing pain effects of extracts of Periplaneta Americana. Mod. Appl. Sci. 2009, 2, 12. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.J.; Yao, S.; Guo, X.; Yue, B.S.; Ma, X.Y.; Li, J. Bioactivity-Guided Screening of Wound-Healing Active Constituents from American Cockroach (Periplaneta americana). Molecules 2018, 23, 101. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.; Zhang, Y.; Xu, J.; Li, Y.; Yuan, Q.; Zhou, C. Periplaneta Americana extract inhibits osteoclastic differentiation in vitro. Cell Proliferat. 2022, e13341. [Google Scholar] [CrossRef]
- Yan, Y.M.; Xiang, B.; Zhu, H.J.; Qi, J.J.; Hou, B.; Geng, F.N.; Cheng, Y.X. N-containing compounds from Periplaneta americana and their activities against wound healing. J. Asian Nat. Prod. Res. 2019, 21, 93–102. [Google Scholar] [CrossRef]
- Bai, H.F.; Li, Y.P.; Qin, F.Y.; Yan, Y.M.; Wang, S.M.; Zhang, H.X.; Cheng, Y.X. Periplanetols A-F, phenolic compounds from Periplaneta americana with potent COX-2 inhibitory activity. Fitoterapia 2020, 143, 104589. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, A.; Tu, P.; Hu, Z. Anti-tumor effects of the American cockroach, Periplaneta americana. Chin. Med. 2017, 12, 26. [Google Scholar] [CrossRef]
- Finke, M.D. Complete nutrient content of four species of feeder insects. Zoo Biol. 2013, 32, 27–36. [Google Scholar] [CrossRef]
- Lee, H.; Hwang, J.S.; Lee, D.G. Periplanetasin-4, a novel antimicrobial peptide from the cockroach, inhibits communications between mitochondria and vacuoles. Biochem. J 2019, 476, 1267–1284. [Google Scholar] [CrossRef] [PubMed]
- Predel, R.; Gade, G. Peptidomics of neurohemal organs from species of the cockroach family Blattidae: How do neuropeptides of closely related species differ? Peptides 2005, 26, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.Y.; Liu, X.; Xia, C.L.; Chen, K.X.; Shun-Zhen, H.E.; Liu, G.M. Research advance on chemical constituents and anti-tumor effects of Periplaneta americana L. Med. Plant 2012, 3, 95–97. [Google Scholar]
- Yang, M.; Qiu, X.L.; Xie, X.L.; Lai, J.; Chen, S.W. Preparation of Kangfuxin colon targeting micro-pellets. China J. Chin. Mater. Med. 2007, 32, 1529–1532. [Google Scholar]
- Zhang, D.; Sun, Y.H.; Li, M.; Sun, Q.; Liu, M.H. Periplaneta americana polypeptide extracts on tumor growth and immune function in tumor-bearing mice. Chin. J. New Drugs 2015, 24, 681–686. [Google Scholar]
- Wang, X.L.; Xiang, B.; Li, Y.M.; Geng, F.N.; Yan, Y.M.; Cheng, Y.X. Water soluble compounds from Periplaneta americana and their angiogenesis activity. Nat. Prod. Res. Dev. 2017, 29, 2004–2009. [Google Scholar]
- Yao, Y.; Xia, L.Z. Soluble protein analysis of three ordinary species of cockroaches in Anhui province. Acta Med. 2001, 36, 114–115. [Google Scholar]
- Basseri, H.R.; Dadi-Khoeni, A.; Bakhtiari, R.; Abolhassani, M.; Hajihosseini-Baghdadabadi, R. Isolation and purification of an antibacterial protein from immune induced haemolymph of American cockroach, Periplaneta americana. Iran. J. Arthropod-Borne Dis. 2016, 10, 519–527. [Google Scholar]
- Lee, H.; Hwang, J.S.; Lee, D.G. Periplanetasin-2 Enhances the Antibacterial Properties of Vancomycin or Chloramphenicol in Escherichia coli. J. Microbiol. Biotechnol. 2021, 31, 189–196. [Google Scholar] [CrossRef]
- Kim, I.W.; Lee, J.H.; Subramaniyam, S.; Yun, E.Y.; Kim, I.; Park, J.; Hwang, J.S. De Novo Transcriptome Analysis and Detection of Antimicrobial Peptides of the American Cockroach Periplaneta americana (Linnaeus). PLoS ONE 2016, 11, e0155304. [Google Scholar] [CrossRef] [Green Version]
- Mosaheb, M.; Khan, N.A.; Siddiqui, R. Cockroaches, locusts, and envenomating arthropods: A promising source of antimicrobials. Iran. J. Basic Med. Sci. 2018, 21, 873–877. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Zhang, X.; Wu, J.; Zhao, J. Modifications of polysaccharide-based biomaterials under structure-property relationship for biomedical applications. Carbohydr. Polym. 2021, 266, 118097. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.; Chen, L.; Yang, L.; Ji, X. An insight into anti-inflammatory effects of natural polysaccharides. Int. J. Biol. Macromol. 2020, 153, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Mohan, K.; Ganesan, A.R.; Muralisankar, T.; Jayakumar, R.; Sathishkumar, P.; Uthayakumar, V.; Chandirasekar, R.; Revathi, N. Recent insights into the extraction, characterization, and bioactivities of chitin and chitosan from insects. Trends Food Sci. Technol. 2020, 105, 17–42. [Google Scholar] [CrossRef]
- Li, G.M. Study on Extraction of Eupolyphaga Sinensis Polysaccharide with Anti-Tumor Effect; Jilin University: Jilin, China, 2017. [Google Scholar]
- Kim, M.W.; Song, Y.S.; Seo, D.J.; Han, Y.S.; Jung, W.J. Extraction of Chitin and Chitosan from the Exoskeleton of the Cockroach (Periplaneta americana L.). J. Chitin Chitosan 2017, 22, 76–81. [Google Scholar] [CrossRef]
- Basseri, H.; Bakhtiyari, R.; Hashemi, S.J.; Baniardelani, M.; Shahraki, H.; Hosainpour, L. Antibacterial/antifungal activity of extracted chitosan from American cockroach (Dictyoptera: Blattidae) and German cockroach (Blattodea: Blattellidae). J. Med. Entomol. 2019, 56, 1208–1214. [Google Scholar] [CrossRef]
- Kaya, M.; Sargin, I.; Sabeckis, I.; Noreikaite, D.; Erdonmez, D.; Salaberria, A.M.; Labidi, J.; Baublys, V.; Tubelyte, V. Biological, mechanical, optical and physicochemical properties of natural chitin films obtained from the dorsal pronotum and the wing of cockroach. Carbohydr. Polym. 2017, 163, 162–169. [Google Scholar] [CrossRef]
- Kamal, M.; Adly, E.; Alharbi, S.A.; Khaled, A.S.; Rady, M.H.; Ibrahim, N.A. Exploring Simplified Methods for Insect Chitin Extraction and Application as a Potential Alternative Bioethanol Resource. Insects 2020, 11, 788. [Google Scholar] [CrossRef]
- Xiao, P.Y.; Yang, Y.S.; Li, L.X.; Liu, G.M. Determination of polysaccharide content in Periplaneta americana. Lishizhen Med. Mater. Med. Res. 2011, 22, 2077–2079. [Google Scholar]
- dos Santos, A.V.; Onofre, G.R.; Oliveira, D.M.; Machado, E.A.; Allodi, S.; Silva, L.C. Heparan sulfate is the main sulfated glycosaminoglycan species in internal organs of the male cockroach, Periplaneta americana. Micron 2006, 37, 41–46. [Google Scholar] [CrossRef]
- Sun, L.; Feng, Y.; He, Z.; Chen, Z.Y.; Chen, X.M. Study on extraction, analysis of water-soluble polysaccharide from cockroaches and its immunologic activities. For. Res. 2009, 22, 256–261. [Google Scholar]
- Yamamoto, S.; Wang, M.F.; Adjei, A.A.; Ameho, C.K. Role of nucleosides and nucleotides in the immune system, gut reparation after injury, and brain function. Nutrition 1997, 13, 372–374. [Google Scholar] [CrossRef] [PubMed]
- Li, S.P.; Li, P.; Lai, C.M.; Gong, Y.X.; Kan, K.K.; Dong, T.T.; Tsim, K.W.; Wang, Y.T. Simultaneous determination of ergosterol, nucleosides and their bases from natural and cultured Cordyceps by pressurised liquid extraction and high-performance liquid chromatography. J. Chromatogr. A 2004, 1036, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, C.Y.; Cao, G.C.; Wang, Y.D.; Wang, J.H.; Shi, L. Comparative reasearch on the content of water-soluble active substances before and after fermentation of Periplaneta americana. Chem. Ind. Times 2017, 31, 1–3. [Google Scholar]
- Wu, H.M.; Xu, F.; Liu, L.M.; Wang, X.P.; Yang, M. Investigation of UPLC fingerprint for Kangfuxin liquid. Chin. J. Exp. Tradit. Med. 2013, 19, 59–62. [Google Scholar]
- Chen, X.H.; Ran, X.Z.; Sun, R.S.; Shi, C.M.; Su, Y.; Guo, C.H.; Cheng, T.M. Protective effect of an extract from Periplaneta americana on hematopoiesis in irradiated rats. Int. J. Radiat. Biol. 2009, 85, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Xiao, P.Y.; Yang, Y.S.; Li, S.N. Determination of mannitol in Periplaneta americana from different field breeding. Chin. J. Mod. Appl. Pharm. 2012, 29, 156–158. [Google Scholar]
- Luo, S.L.; Huang, X.J.; Wang, Y.; Jiang, R.W.; Wang, L.; Bai, L.L.; Peng, Q.L.; Song, C.L.; Zhang, D.M.; Ye, W.C. Isocoumarins from American cockroach (Periplaneta americana) and their cytotoxic activities. Fitoterapia 2014, 95, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Che, Y.; Liu, X.; Liu, C.; Meng, D.; Pang, X.; He, M.; Liu, G.; Zhang, C.; Yang, D.; et al. The Regulating Effect of CII-3 and Its Active Components from Periplaneta americana on M1/M2 Macrophage Polarization. Molecules 2022, 27, 4416. [Google Scholar] [CrossRef]
- Yang, Y.X.; Luo, Q.; Hou, B.; Yan, Y.M.; Wang, Y.H.; Tang, J.J.; Dong, X.P.; Ma, X.Y.; Yang, T.H.; Zuo, Z.L.; et al. Periplanosides A-C: New insect-derived dihydroisocoumarin glucosides from Periplaneta americana stimulating collagen production in human dermal fibroblasts. J. Asian Nat. Prod. Res. 2015, 17, 988–995. [Google Scholar] [CrossRef]
- Cushnie, T.P.; Cushnie, B.; Lamb, A.J. Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int. J. Antimicrob. Agents 2014, 44, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.X.; Luo, S.L.; Wang, Y.; Wang, L.; Zhang, X.Q.; Ye, W.C. Chemical constituents from Periplaneta americana. J. Jinan Univ., Med. Ed. 2015, 36, 294–301. [Google Scholar]
- Wu, Y.; Piao, H.R. progress towards the development of DHQO derivatives and related analogues with inotropic effects. Mini-Rev. Med. Chem. 2013, 13, 1801–1811. [Google Scholar] [CrossRef]
- Ge, H.X.; Wang, L.C. Pharmacological activities and structure-activity relationship of 2(1h)-quinolinone compounds. Prog. Pharm. Sci. 2005, 29, 309–316. [Google Scholar]
- Moreira, M.D.; Picanco, M.C.; Barbosa, L.C.; Guedes, R.N.; Barros, E.C.; Campos, M.R. Compounds from Ageratum conyzoides: Isolation, structural elucidation and insecticidal activity. Pest Manag. Sci. 2007, 63, 615–621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, W.P.; Jiang, Y.L.; Li, P.F.; Li, W.Y.; Gao, T. Insect nature products from Periplaneta americana, blattidae and their chemotaxonomic significance. J. Henan Univ. Sci. Technol., Nat. Sci. 2012, 33, 101–104. [Google Scholar]
- Ali, S.M.; Siddiqui, R.; Ong, S.K.; Shah, M.R.; Anwar, A.; Heard, P.J.; Khan, N.A. Identification and characterization of antibacterial compound(s) of cockroaches (Periplaneta americana). Appl. Microbiol. Biotechnol. 2017, 101, 253–286. [Google Scholar] [CrossRef] [Green Version]
- Yousuf, B.; Sun, Y.; Wu, S. Lipid and lipid-containing composite edible coatings and films. Food Rev. Int. 2021, 1, 1–24. [Google Scholar] [CrossRef]
- Jantzen da Silva Lucas, A.; Menegon de Oliveira, L.; da Rocha, M.; Prentice, C. Edible insects: An alternative of nutritional, functional and bioactive compounds. Food Chem. 2020, 311, 126022. [Google Scholar] [CrossRef]
- Meng, S.N.; Xiao, X.Q.; Wang, S.P.; Luo, C.; Liu, X.Q. Liposoluble chemical constituents of Periplaneta americana by GC-MS. Cent. South Pharm. 2008, 6, 23–25. [Google Scholar]
- Yu, X.; Xu, L.; Chen, S.W.; Sun, Q.; Zhang, D. Analysis of the SFE-CO2 extracts from Periplaneta americana by GC-MS. Med. Plant 2014, 5, 40–42. [Google Scholar]
- Luo, J.R.; Xiao, H.; Zhang, C.G.; Qian, J.F. Analysis on oil components in two kinds of medicinal Blattaria by GC-MS. Chin. J. Exp. Tradit. Med. 2017, 23, 55–58. [Google Scholar]
- Nojima, S.; Schal, C.; Webster, F.X.; Santangelo, R.G.; Roelofs, W.L. Identification of the sex pheromone of the German cockroach, Blattella germanica. Science 2005, 307, 1104–1106. [Google Scholar] [CrossRef] [PubMed]
- Ji, B.Z.; Liu, S.W.; Tian, L.; Guo, T.B.; Gao, J. Advances in studies on juvenile hormone biosynthesis. Chin. Sci. Bull. 2007, 19, 90–96. [Google Scholar]
- Takahashi, S.; Watanabe, K.; Saito, S.; Nomura, Y. Isolation and biological activity of the sex pheromone of the smoky brown cockroach, Periplaneta fuliginosa SERVILLE (Dictyoptera: Blattidae). Appl. Entomol. Zool. 1995, 30, 357–360. [Google Scholar] [CrossRef] [Green Version]
- Bhatti, H.N.; Khera, R.A. Biological transformations of steroidal compounds: A review. Steroids 2012, 77, 1267–1290. [Google Scholar] [CrossRef]
- Apichart, S.; Aroon, J.; Bongkoch, T.; Sumaitt, P. Ecdysteroids from a Zoanthus sp. J. Nat. Prod. 2002, 65, 1194–1197. [Google Scholar] [CrossRef]
- Duff, S.B.; Shuzo, O. Selective depletion of dopamine, octopamine, and 5-hydroxytryptamine in the nervous tissue of the cockroach (Periplaneta americana). J. Neurochem. 1988, 51, 535–541. [Google Scholar] [CrossRef]
- Gole, J.W.D.; Orr, G.L.; Downer, R.G.H. Pharmacology of octopamine-, dopamine-, and 5-hydroxytryptamine-stimulated cyclic amp accumulation in the corpus cardiacum of the american cockroach, Periplaneta americana L. Arch. Insect Biochem. Physiol. 1987, 5, 119–128. [Google Scholar] [CrossRef]
- Véronique, S. Initial and bulk extraction of natural products isolation. Methods Mol. Biol. 2012, 864, 27–41. [Google Scholar] [CrossRef]
- Bankova, V.; Trusheva, B.; Popova, M. Propolis extraction methods: A review. J. Apic. Res. 2021, 60, 734–743. [Google Scholar] [CrossRef]
- Bao, S.J. Study on the Preparation Technique and the Antitumor Activity of Periplaneta americana Polypeptidea; Southwest Medical University: Luzhou, China, 2017. [Google Scholar]
- Geng, Q.Y.; Liu, J.A.; Fan, L.L.; Tian, J.Z. Research progress in processing, extraction and pharmacological activity of Periplaneta americana. Food Drug 2019, 21, 166–168. [Google Scholar]
- Thangam Sudha, V.; Arora, N.; Sridhara, S.; Gaur, S.N.; Singh, B.P. Biopotency and identification of allergenic proteins in Periplaneta americana extract for clinical applications. Biologicals 2007, 35, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Ge, G.F.; Yu, C.H.; Yu, B.; Shen, Z.H.; Zhang, D.L.; Wu, Q.F. Antitumor effects and chemical compositions of Eupolyphaga sinensis Walker ethanol extract. J. Ethnopharmacol. 2012, 141, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.L.; Abbott, A.P.; Ryder, K.S. Deep eutectic solvents (DESs) and their applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, G.; Row, K.H. Utilization of deep eutectic solvents in dispersive liquid-liquid micro-extraction. Trends Analyt. Chem. 2019, 120, 115651. [Google Scholar] [CrossRef]
- Yi, L.; Lakemond, C.M.; Sagis, L.M.; Eisner-Schadler, V.; van Huis, A.; van Boekel, M.A. Extraction and characterisation of protein fractions from five insect species. Food Chem. 2013, 141, 3341–3348. [Google Scholar] [CrossRef]
- Ma, J.; Liu, J.; Shen, Y.; Fan, Z.; Yue, B.; Zhang, X. Population genetic structure and intraspecific genetic distance of Periplaneta americana (Blattodea: Blattidae) based on mitochondrial and nuclear DNA markers. Ecol. Evol. 2019, 9, 12928–12939. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.H.; Peng, F.; Gao, P.F. Separation of antitumor active polypeptides from Periplaneta americana by ultra filtration technology. J. Anhui Agric. Sci. 2012, 3, 59–61. [Google Scholar]
- Grotheer, P.; Valles, S.; Simonne, A.; Kim, J.M.; Marshall, M.R. Polyphenol Oxidase Inhibitor(s) from German Cockroach (Blattella Germanica) Extract. J. Food Biochem. 2012, 36, 292–300. [Google Scholar] [CrossRef]
- Liao, F.; Zhu, W.; Zhou, J.; Tan, T.L.; Wang, H.; Zhang, D. Optimization in purification technique of polypeptides from Periplaneta americana with macroporous adsorption resin. Chin. Tradit. Herb. Drugs 2016, 47, 3420–3425. [Google Scholar]
- Wang, K.; Feng, Y.; Sun, L.; He, Z.; Chen, Z.Y. Isolation of ethyl acetate extract from Periplaneta americana and its antimicrobial activity. For. Res. 2013, 26, 163–166. [Google Scholar]
- Zhang, X.X. Toothpaste Compounds Were Isolated by Extraction from Periplaneta americana; Yunnan University of Chinese Medicine: Kunming, China, 2016. [Google Scholar]
- Wu, H.M. Pharmacological Re-evaluation of Kangfuxin Liquid; Chengdu University of Traditional Chinese Medicine: Chengdu, China, 2013. [Google Scholar]
- Liu, Z.; Yuan, K.; Zhang, R.; Ren, X.; Liu, X.; Zhao, S.; Wang, D. Cloning and purification of the first termicin-like peptide from the cockroach Eupolyphaga sinensis. J. Venom. Anim. Toxins Incl. Trop. Dis. 2016, 22, 5. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Wu, X.; Wu, B. Isolation and identification of two novel attractant compounds from Chinese cockroach (Eupolyphaga sinensis Walker) by combination of HSCCC, NMR and CD techniques. Molecules 2013, 18, 11299–11310. [Google Scholar] [CrossRef]
- Yaylayan, V.; Jocelyn Paré, J.R.; Matni, G.; Bélanger, J. MAP: Microwave-assisted extraction of cockroaches. Nat. Prod. Lett. 2002, 16, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Li, L.J.; Xu, X.H.; Yuan, T.J.; Hou, J.; Yu, C.L.; Peng, L.H. Periplaneta Americana L. as a novel therapeutics accelerates wound repair and regeneration. Biomed. Pharmacother. 2019, 114, 108858. [Google Scholar] [CrossRef]
- Lv, L.J.; Ren, K.; Na, M.H. Bioassay-guided separation of effective components from Gentianella acuta and their protective effect on oxidative damage in PC12 cells induced by H2O2. Chin. Tradit. Herb. Drugs 2017, 48, 1957–1963. [Google Scholar] [CrossRef]
- Moore, S.; Stein, W.H. A modified ninhydrin reagent for the photometric determination of amino acids and related compounds. J. Biol. Chem. 1954, 211, 907–913. [Google Scholar] [CrossRef] [PubMed]
- Reinmuth-Selzle, K.; Tchipilov, T.; Backes, A.T.; Tscheuschner, G.; Tang, K.; Ziegler, K.; Lucas, K.; Poschl, U.; Frohlich-Nowoisky, J.; Weller, M.G. Determination of the protein content of complex samples by aromatic amino acid analysis, liquid chromatography-UV absorbance, and colorimetry. Anal. Bioanal. Chem. 2022, 414, 4457–4470. [Google Scholar] [CrossRef]
- Sapan, C.V.; Lundblad, R.L. Review of methods for determination of total protein and peptide concentration in biological samples. Proteom. Clin. Appl. 2015, 9, 268–276. [Google Scholar] [CrossRef]
- Ren, A.N.; Lu, Y.; Zou, Y.F.; Shen, H. Separation, purification and preliminary structure analysis of acidic polysaccharides from safflower. Eur. Food Res. Technol. 2013, 237, 449–455. [Google Scholar] [CrossRef]
- Ju, W.Y.; Li, B.C. Isolation and structural identification of flavonoids from Aralia continentalis. Sci. Technol. Food Ind. 2012, 33, 81–83. [Google Scholar]
- Betz, O.; Maurer, A.; Verheyden, A.N.; Schmitt, C.; Kowalik, T.; Braun, J.; Grunwald, I.; Hartwig, A.; Neuenfeldt, M. First protein and peptide characterization of the tarsal adhesive secretions in the desert locust, Schistocerca gregaria, and the Madagascar hissing cockroach, Gromphadorhina portentosa. Insect Mol. Biol. 2016, 25, 541–549. [Google Scholar] [CrossRef]
- Zhao, G.; Kan, J.; Li, Z.; Chen, Z. Structural features and immunological activity of a polysaccharide from Dioscorea opposita Thunb roots. Carbohydr. Polym. 2005, 61, 125–131. [Google Scholar] [CrossRef]
- Chatterjea, J.N.; Bhakta, C.; Mukherjee, S.K. On the synthesis of some chlorinated isocoumarins. ChemInform 1982, 13, 12. [Google Scholar] [CrossRef]
- Hu, Y.F.; Jin, C.W. NMR studies of protein solution structures and dynamics. Chin. J. Magn. Reson. 2009, 26, 151–172. [Google Scholar]
- Sattler, M.; Schleucher, J.; Griesinger, C. Heteronuclear multidimensional NMR experiments for the structure determination of proteins in solution employing pulsed field gradients. Prog. Nucl. Magn. Reson. Spectrosc. 1999, 34, 93–158. [Google Scholar] [CrossRef]
- Wang, K.; Li, W.; Rui, X.; Chen, X.; Jiang, M.; Dong, M. Characterization of a novel exopolysaccharide with antitumor activity from Lactobacillus plantarum 70810. Int. J. Biol. Macromol. 2014, 63, 133–139. [Google Scholar] [CrossRef]
- Xie, X.; Shen, W.; Zhou, Y.; Ma, L.; Xu, D.; Ding, J.; He, L.; Shen, B.; Zhou, C. Characterization of a polysaccharide from Eupolyphaga sinensis walker and its effective antitumor activity via lymphocyte activation. Int. J. Biol. Macromol. 2020, 162, 31–42. [Google Scholar] [CrossRef]
- Wei, J.; Zhou, X.; Dong, M.; Yang, L.; Zhao, C.; Lu, R.; Bao, G.; Hu, F. Metabolites and novel compounds with anti-microbial or antiaging activities from Cordyceps fumosorosea. AMB Express 2022, 12, 40. [Google Scholar] [CrossRef]
- Mishra, M.; Tiwari, S.; Gomes, A.V. Protein purification and analysis: Next generation Western blotting techniques. Expert Rev. Proteom. 2017, 14, 1037–1053. [Google Scholar] [CrossRef] [PubMed]
- Musmand, J.J.; Horner, W.E.; Lopez, M.; Lehrer, S.B. Identification of important allergens in German cockroach extracts by sodium dodecylsulfate–polyacrylamide gel electrophoresis and Western blot analysis. J. Allergy Clin. Immunol. 1995, 95, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Liao, Q.; Hu, Y.; Shen, Y.; Geng, F.; Chen, L. The Role of Periplaneta americana (Blattodea: Blattidae) in Modern Versus Traditional Chinese Medicine. J. Med. Entomol. 2019, 56, 1522–1526. [Google Scholar] [CrossRef] [PubMed]
- El Masri, R.; Seffouh, A.; Lortat-Jacob, H.; Vives, R.R. The "in and out" of glucosamine 6-O-sulfation: The 6th sense of heparan sulfate. Glycoconj. J. 2017, 34, 285–298. [Google Scholar] [CrossRef] [PubMed]
- Cole, C.L.; Rushton, G.; Jayson, G.C.; Avizienyte, E. Ovarian cancer cell heparan sulfate 6-O-sulfotransferases regulate an angiogenic program induced by heparin-binding epidermal growth factor (EGF)-like growth factor/EGF receptor signaling. J. Biol. Chem. 2014, 289, 10488–10501. [Google Scholar] [CrossRef] [Green Version]
- Goel, A.; Prasad, A.K.; Parmar, V.S.; Ghosh, B.; Saini, N. 7,8-Dihydroxy-4-methylcoumarin induces apoptosis of human lung adenocarcinoma cells by ROS-independent mitochondrial pathway through partial inhibition of ERK/MAPK signaling. FEBS Lett. 2007, 581, 2447–2454. [Google Scholar] [CrossRef] [Green Version]
- Goel, A.; Prasad, A.K.; Parmar, V.S.; Ghosh, B.; Saini, N. Apoptogenic effect of 7,8-diacetoxy-4-methylcoumarin and 7,8-diacetoxy-4-methylthiocoumarin in human lung adenocarcinoma cell line: Role of NF-kappaB, Akt, ROS and MAP kinase pathway. Chem. Biol. Interact. 2009, 179, 363–374. [Google Scholar] [CrossRef]
- Kaur, R.; Chahal, K.K.; Urvashi. Isolation, chemical transformation, and antifungal potential of sesquiterpene lactones from Inula Racemosa. Chem. Nat. Compd. 2020, 56, 207–212. [Google Scholar] [CrossRef]
- Vazquez, R.; Riveiro, M.E.; Vermeulen, M.; Alonso, E.; Mondillo, C.; Facorro, G.; Piehl, L.; Gomez, N.; Moglioni, A.; Fernandez, N.; et al. Structure-anti-leukemic activity relationship study of ortho-dihydroxycoumarins in U-937 cells: Key role of the delta-lactone ring in determining differentiation-inducing potency and selective pro-apoptotic action. Bioorg. Med. Chem. 2012, 20, 5537–5549. [Google Scholar] [CrossRef]
- Kupeli Akkol, E.; Genc, Y.; Karpuz, B.; Sobarzo-Sanchez, E.; Capasso, R. Coumarins and Coumarin-Related Compounds in Pharmacotherapy of Cancer. Cancers 2020, 12, 1959–1983. [Google Scholar] [CrossRef]
- Li, D.; Li, W.; Chen, Y.; Liu, L.; Ma, D.; Wang, H.; Zhang, L.; Zhao, S.; Peng, Q. Anti-fibrotic role and mechanism of Periplaneta americana extracts in CCl4-induced hepatic fibrosis in rats. Acta. Biochim. Biophys. Sin. 2018, 50, 491–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wasser, S.P. Medicinal mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl. Microbiol. Biotechnol. 2002, 60, 258–274. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Ji, J.; Di, L.; Li, J.; Hu, L.; Qiao, H.; Wang, L.; Feng, Y. Resource, chemical structure and activity of natural polysaccharides against alcoholic liver damages. Carbohydr. Polym. 2020, 241, 116355. [Google Scholar] [CrossRef] [PubMed]
- Ktari, N.; Bkhairia, I.; Nasri, M.; Ben Salah, R. Structure and biological activities of polysaccharide purified from Senegrain seed. Int. J. Biol. Macromol. 2020, 144, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Q.; Wei, B.; Wang, S.; Ke, S.; Chen, J.; Zhang, H.; Wang, H. The Antioxidant Activity of Polysaccharides Derived from Marine Organisms: An Overview. Mar. Drugs 2019, 17, 674. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.Y.; Li, H.W.; Wu, D.X.; Liu, G.M.; Peng, F.; Geng, L. A study of the anti-inflammatory effect and mechanism of CII-3 extracted from Periplaneta americana. J. Dali Univ. 2015, 14, 8–11. [Google Scholar]
- Yan, Y.; Li, Y.; Zhang, Z.; Wang, X.; Niu, Y.; Zhang, S.; Xu, W.; Ren, C. Advances of peptides for antibacterial applications. Colloids Surf. B Biointerfaces 2021, 202, 111682. [Google Scholar] [CrossRef]
- Lin, S.S.; Liu, C.X.; Wang, X.L.; Mao, J.Y. Intervention mechanisms of Xinmailong injection, a Periplaneta Americana Extract, on cardiovascular disease: A systematic review of basic researches. Evid. Based. Complement Alternat. Med. 2019, 2019, 8512405. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.G.; Zhang, C.M.; Liu, J.; Xiao, P.Y.; Yang, Y.S. Research of the effect of Periplaneta americana different extracts on scavenging free radical and anti-lipid peroxidation. Sci. Technol. Food Ind. 2016, 37, 83–85. [Google Scholar]
- Jiang, Y.X.; Wang, X.C.; Jin, C.G.; Yuan, F.; Liu, G.M.; Li, S.N. An experimental study of traditional Chinese medicine Kangfuxin inducing apoptosis in vitro of peptic carcinoma cell line BGC-823. J. Kun. Med. Coll. 2006, 1, 5–9. [Google Scholar]
- Yang, Q.L.; Shi, M.L.; Liu, G.M.; Peng, F.; Liu, X.B.; Guo, M.X. Synergistic and toxicity-attenuating effects of Periplaneta americana extract CII-3 combined with cisplatin on lewis lung cancer-bearing mice. Pharmacogn. Mag. 2020, 16, 817–829. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhan, Y.; Zhang, D.; Dai, B.; Ma, W.; Qi, J.; Liu, R.; He, L. Eupolyphaga sinensis walker displays inhibition on hepatocellular carcinoma through regulating cell growth and metastasis signaling. Sci. Rep. 2014, 4, 5518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, P.; Wang, J.J.; Fang, H.M.; Cheng, Q.R.; Zhang, L.J. Compare the protection of Periplaneta americana and its different extracts on acute immune liver injury. Acta Univ. Med. Anhui. 2014, 49, 59–63. [Google Scholar]
- Zhang, X.Q.; Wu, H.B.; Peng, L.; Gong, X.M.; Li, J.; Pu, X.F.; Peng, F. Preventive effect of Ganlong capsule on chronic alcoholic hepatic injury in rats. China J. Chin. Mater. Med. 2013, 38, 2197–2201. [Google Scholar]
- Huang, Y.F.; Li, L.J.; Gao, S.Q.; Chu, Y.; Niu, J.; Geng, F.N.; Shen, Y.M.; Peng, L.H. Evidence based anti-osteoporosis effects of Periplaneta americana L on osteoblasts, osteoclasts, vascular endothelial cells and bone marrow derived mesenchymal stem cells. BMC Complement. Altern. Med. 2017, 17, 413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, X.; Sun, J.; Ye, W.; Huang, Y.; Sun, C.; Tao, Y.; Wang, T.; Cong, W.; Geng, F. Pro-apoptotic effects of Kangfuxin on human stomach cancer cells and its underlying mechanism. Oncol. Lett. 2018, 16, 931–939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, J.; Yu, J.; Tan, Y.; Chen, R.; Xu, W.; Chen, Y.; Lu, J.; Liu, Q.; Wu, J.; Gu, W.; et al. Mechanisms of Chinese Medicine Xinmailong’s protection against heart failure in pressure-overloaded mice and cultured cardiomyocytes. Sci. Rep. 2017, 7, 42843. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Zhang, L.; Wang, J.; Liu, H.; Li, H.; Zhou, H.; Wu, R.; Yang, Y.; Wen, J.; Wei, S.; et al. Clinical efficacy and safety of Xinmailong Injection for the treatment of chronic heart failure: A meta-analysis. Front. Pharmacol. 2018, 9, 810. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Gao, C.; Wu, J.; Li, J.; Wang, L.; You, Y.; Peng, T.; Zhang, K.; Cao, M.; Hong, J. Periplaneta americana extract alleviates steatohepatitis in a mouse model by modulating HMGB1-mediated inflammatory response. Front. Pharmacol. 2022, 13, 995523. [Google Scholar] [CrossRef]
- Wang, P.F.; Xu, R.C.; Li, J.W.; Hu, Y.J. The acute toxicity and the antagonism to protect liver injury of the Periplaneta americana oil Res. Pract. Chin. Med. 2015, 29, 34–36. [Google Scholar]
- Liu, P.; Yang, H.; Long, F.; Hao, H.P.; Xu, X.; Liu, Y.; Shi, X.W.; Zhang, D.D.; Zheng, H.C.; Wen, Q.Y.; et al. Bioactive equivalence of combinatorial components identified in screening of an herbal medicine. Pharm. Res. 2014, 31, 1788–1800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.B.; Jiang, X.Y.; Zhao, R.C.; Wang, D.W.; Yang, Y.S. Studies of quality control method on Periplaneta americana. J. Dali Univ. 2007, 6, 3–5. [Google Scholar]
- Xiao, P.Y.; Yang, Y.S.; Shi, G.R.; Liu, G.M. Determination of amino acids in Periplaneta americana by pre-column derivatization HPLC. Lishizhen Med. Mater. Med. Res. 2012, 23, 525–526. [Google Scholar]
- Jiang, Y.; David, B.; Tu, P.; Barbin, Y. Recent analytical approaches in quality control of traditional Chinese medicines—A review. Anal. Chim. Acta. 2010, 657, 9–18. [Google Scholar] [CrossRef] [PubMed]
Name of AAs | Mass Fraction/% | Name of AAs | Mass Fraction/% |
---|---|---|---|
Aspartic acid # | 3.67 | Phenylalanine *# | 1.73 |
Threonine * | 1.82 | Lysine *# | 2.59 |
Serine | 1.80 | Histidine | 1.16 |
Glutamic acid # | 5.08 | Arginine # | 2.26 |
Glycine # | 2.84 | Proline | 2.64 |
Alanine | 3.35 | T | 43.14 |
Cystine | 2.55 | E | 15.26 |
Valine * | 3.38 | N | 27.88 |
Methionine *# | 0.71 | F | 8.75 |
Isoleucine *# | 1.84 | E/N | 54.73 |
Leucine *# | 3.19 | E/T | 35.37 |
Tyrosine | 2.53 | F/T | 20.28 |
Methods | Solvents/Material | Conditions | Target Components | Pros and Cons | References |
---|---|---|---|---|---|
Percolation | 90% ethanol | Defatted powders; 10 equivalents of 90% ethanol at 1 mL/20 s by three times | Peptides | [73] | |
Refluxing | 75% ethanol | Dry powders; 15 equivalents of 75% ethanol for 1 h by two times | Active components with antitumor activity | [73] | |
Ultrasonic assistance | 90% ethanol | Defatted powders; 10 equivalents of 90% ethanol; sonicated for 20 min by three times (power: 240 W) | Peptides and amino acids | [73] | |
Salting-out | Ammonium sulfate solution | Staged salting out with different saturation of 0~35%, 35~70%, 70~100% | Proteins | [79] | |
Ultrafiltration | Hollow fiber ultrafiltration membrane with a molecular weight cutoff of 3 kDa | Speed:4500 r/min, concentration ratio: 30%; pH:11; 30 min; dialyzed with Tris-HCl buffer solution (0.01 mol/L pH 7.60) | Small molecular peptides | Simple structure, convenient operation, low energy consumption | [81] |
Conventional Column Chromatography | HP20 resin | 2 cm × 30 cm, 30 g resin; 0.3 g/mL of extract; 2 BV/h, 2 BV; eluted with 2 BV of 70% ethanol at 2 BV/h | Peptides and amino acids | Large adsorption capacity, fast adsorption speed, high elution rate, and can be regenerated and used | [83] |
Conventional Column Chromatography | Silica gel | Chloroform extraction site; gradient elution with Vcyclohexane:Vethyl acetate = 100:0~0:100, Vethyl acetate:Vmethanol = 100:0~50:50. | Phenylpropionic acid, phenylacetic acid, esters, quinolinone | [53] | |
Conventional Column Chromatography | Silica gel | The ethyl acetate extract (400 g); gradient elution with petroleum ether, petroleum ether/ethyl acetate (15: 1, 8:1, 5:1, 3:1, 1:1), ethyl acetate, ethanol | Oleic acid-1-glyceride and linoleic acid-1-glyceride | [84] | |
Conventional Column Chromatography | Silica gel | silica gel (200–300 mesh); gradient elution with Vchloroform:Vmethanol:Vwater = 9:1:0.1~0:0:1 | 3,6-dimethyl -2,5-piperazinedione and L-hydroxyproline | [85] | |
Preparative high-performance liquid chromatography | Spherisorb C18 column | Flow rate: 1 mL/min; mobile phase: acetonitrile in water containing 0.1% trifluoroacetic acid (TFA); detector wavelength: 230 nm | Two proteins of 60 and 72 kDa | High separation efficiency and wide application range | [28] |
Activities | Active Substances | Target Object | Mechanism | References |
---|---|---|---|---|
Antitumor | Kangfuxin Liquid (IC50 = 13.99 mg/mL) | BGC-823 | To inhibit the proliferation of tumor cells and reduce the number of S-phase cells | [124] |
Antitumor | CII-3 (Extract of PA) combined with cisplatin (100 mg/kg suspension of CII-3) | Lewis lung cancer model in mice | To prevent angiogenesis near tumor cells | [125] |
Antitumor | Extract of Eupolyphaga sinensis Walker (IC50 = 0.13 mg/mL) | Human Hepatoma Cells SMMC-7721 | To prevent angiogenesis near tumor cells | [126] |
Antifibrosis | Water extract of PA (200 mg/kg) | acute immunological liver injury caused by concanavalin A (ConA) in mice | To reduce the level of MDA; increase that of SOD and GSH | [127] |
Antifibrosis | Glycosaminoglycans (120 mg/kg) | Chronic alcoholic hepatic injury in rats | To reduce the level of inflammatory factors in the body and prevent lipid peroxidation | [128] |
Wound-healing | W11-a12(Extract of PA, 10 mg/wound) | Neutrophils | To improve the spontaneous and chemotactic functions of neutrophils, enter the wound for phagocytosis, remove necrotic tissue | [47] |
Wound-healing | Kangfuxin liquid (200 μL, 5.3 mg/mL) | Granulation tissue | To promote the proliferation of granulation tissue and mediate the mucosal repair effect of epithelial cells | [90] |
Anti-inflammatory | CII-3 (Extract of PA, 200 mg/kg) | Swelling of auricle model induced by dimethyl benzene | To reduce the content of PGE2, histamine, and MDA in the inflammatory part and increase SOD activity | [120] |
Antibacterial | The antibacterial peptides (20 μL, 1.21 mg/mL) | Gram-negative and positive bacteria | To dent and perforate the outer wall of the bacteria, the substance in the bacteria leaks, and then the bacteria disintegrate | [28] |
Myocardial protection | Xinmailong injection (60 mg/kg) | Cardiovascular system | To promote Ca2+ inflow of myocardial cells and lastingly increase the positive muscle strength of the heart | [122] |
Antioxidant | Polysaccharides (IC50 = 0.311 mg/mL) | hydroxyl free radicals (·OH) | To scavenge hydroxyl radicals | [123] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, S.; Zhang, Y.; Li, J.; Yao, S. Phytochemical Profiling, Isolation, and Pharmacological Applications of Bioactive Compounds from Insects of the Family Blattidae Together with Related Drug Development. Molecules 2022, 27, 8882. https://doi.org/10.3390/molecules27248882
Liang S, Zhang Y, Li J, Yao S. Phytochemical Profiling, Isolation, and Pharmacological Applications of Bioactive Compounds from Insects of the Family Blattidae Together with Related Drug Development. Molecules. 2022; 27(24):8882. https://doi.org/10.3390/molecules27248882
Chicago/Turabian StyleLiang, Siwei, Yifan Zhang, Jing Li, and Shun Yao. 2022. "Phytochemical Profiling, Isolation, and Pharmacological Applications of Bioactive Compounds from Insects of the Family Blattidae Together with Related Drug Development" Molecules 27, no. 24: 8882. https://doi.org/10.3390/molecules27248882
APA StyleLiang, S., Zhang, Y., Li, J., & Yao, S. (2022). Phytochemical Profiling, Isolation, and Pharmacological Applications of Bioactive Compounds from Insects of the Family Blattidae Together with Related Drug Development. Molecules, 27(24), 8882. https://doi.org/10.3390/molecules27248882