Aluminosilicate-Supported Catalysts for the Synthesis of Cyclic Carbonates by Reaction of CO2 with the Corresponding Epoxides
Abstract
:1. Introduction
2. Results and Discussion
2.1. Materials Characterization
2.2. Catalytic Results
2.2.1. CO2 Addition to Glycidol
2.2.2. CO2 Addition to Epichlorohydrin
Entry | Catalyst | Anion | mcat (mg) | T (°C) | Run 1 | X (%) 2 | S (%) 2 | TON 3 | TOF 4 |
---|---|---|---|---|---|---|---|---|---|
1a | Imi/1Al_SBA-15 | Cl− | 300 | 125 | 1st | 63 | >95 | ||
1b | Imi/1Al_SBA-15 | Cl− | 300 | 125 | 2nd | 51 | >95 | ||
1c | Imi/1Al_SBA-15 | Cl− | 300 | 125 | 3rd | 42 | >95 | ||
1d | Imi/1Al_SBA-15 | Cl− | 300 | 125 | 4th | 43 | >95 | 1073 | 358 |
2a | Imi/5Al_SBA-15 | Cl− | 300 | 125 | 1st | 78 | >95 | ||
2b | Imi/5Al_SBA-15 | Cl− | 300 | 125 | 2nd | 57 | >95 | ||
2c | Imi/5Al_SBA-15 | Cl− | 300 | 125 | 3rd | 57 | >95 | 1061 | 354 |
3 | XS-Sn-imi [55] | Cl− | 500 | 125 | 1st | 53 | >95 | 233 | 78 |
4a | Imi/5Al_SBA-15 | Cl− | 300 | 100 | 1st | 24 | >95 | ||
4b | Imi/5Al_SBA-15 | Cl− | 300 | 100 | 2nd | 20 | >95 | ||
4c | Imi/5Al_SBA-15 | Cl− | 300 | 100 | 3rd | 18 | >95 | 297 | 99 |
5 | XS-Sn-imi [55] | Cl− | 500 | 100 | 1st | 40 | >95 | 185 | 62 |
6 | bV-Imi-NT-2 [60] | Br− | 100 | 100 | 1st | 9 | >95 | 115 | 38 |
7 | Imidazolium Cross-linked POSS [61] | I− | 40 | 100 | 1st | 49 | >99 | 1371 | 86 |
8 | ZnTCPP⊂(Br-)Etim-UiO-66 [62] | Br− | 43 | 140 | 1st | 87 | n.d. | 91 | 6.5 |
9 | F-IRMOF-3-4d [63] | I− | 300 | 140 | 1st | 80 | n.d. | 561 | 374 |
10 | Al-iPOP-2 [64] | Br− | 3.5 | 40 | 1st | >99 | >99 | 566 | 94 |
11 | Ti-SBA-15@ILClCH2COO (0.5) [43] | ClCH2COO− | 300 | 110 | 1st | 100 | 99 | 450 | 150 |
2.2.3. CO2 Addition to Styrene Oxide
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- North, M.; Pasquale, R.; Young, C. Synthesis of cyclic carbonates from epoxides and CO2. Green Chem. 2010, 12, 1514–1539. [Google Scholar] [CrossRef]
- Aresta, M. Carbon Dioxide as Chemical Feedstock; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2010. [Google Scholar]
- Guo, L.; Lamb, K.J.; North, K. Recent developments in organocatalysed transformations of epoxides and carbon dioxide into cyclic carbonates. Green Chem. 2021, 23, 77–118. [Google Scholar] [CrossRef]
- Styring, P.; Quadrelli, E.A.; Armstrong, K. Carbon Dioxide Utilisation: Closing the Carbon Cycle; Elsevier: Amsterdam, The Netherland, 2014. [Google Scholar]
- Kim, H.S.; Bae, J.Y.; Lee, J.S.; Kwon, O.-S.; Jelliarko, P.; Lee, S.D.; Lee, S.H. Phosphine-bound zinc halide complexes for the coupling reaction of ethylene oxide and carbon dioxide. J. Catal. 2005, 232, 80–84. [Google Scholar] [CrossRef]
- Sun, J.; Wang, L.; Zhang, S.; Li, Z.; Zhang, X.; Dai, W.; Mori, R. ZnCl2/phosphonium halide: An efficient Lewis acid/base catalyst for the synthesis of cyclic carbonate. J. Mol. Catal. A Chem. 2006, 256, 295–300. [Google Scholar] [CrossRef]
- Barbarini, A.; Maggi, R.; Mazzacani, A.; Mori, G.; Sartori, G.; Sartorio, R. Cycloaddition of CO2 to epoxides over both homogeneous and silica-supported guanidine catalysts. Tetrahedron Lett. 2003, 44, 2931–2934. [Google Scholar] [CrossRef]
- Jiang, J.-L.; Hua, R. Efficient DMF-Catalyzed Coupling of Epoxides with CO2 under Solvent-Free Conditions to Afford Cyclic Carbonates. Synth. Commun. 2006, 36, 3141–3148. [Google Scholar] [CrossRef]
- Paddock, R.L.; Hiyama, Y.; McKay, J.M.; Nguyen, S.B.T. Co(III) porphyrin/DMAP: An efficient catalyst system for the synthesis of cyclic carbonates from CO2 and epoxides. Tetrahedron Lett. 2004, 45, 2023–2026. [Google Scholar] [CrossRef]
- Srivastava, R.; Bennur, T.H.; Srinivas, D. Factors affecting activation and utilization of carbon dioxide in cyclic carbonates synthesis over Cu and Mn peraza macrocyclic complexes. J. Mol. Catal. A Chem. 2005, 226, 199–205. [Google Scholar] [CrossRef]
- Bu, Z.; Qin, G.; Cao, S. A ruthenium complex exhibiting high catalytic efficiency for the formation of propylene carbonate from carbon dioxide. J. Mol. Catal. A Chem. 2007, 277, 35–39. [Google Scholar] [CrossRef]
- Calo, V.; Nacci, A.; Monopoli, A.; Fanizzi, A. Cyclic carbonate formation from carbon dioxide and oxiranes in tetrabutylammonium halides as solvents and catalysts. Org. Lett. 2002, 4, 2561–2563. [Google Scholar] [CrossRef]
- Sun, J.; Fujita, S.-I.; Arai, M. Development in the green synthesis of cyclic carbonate from carbon dioxide using ionic liquids. J. Organomet. Chem. 2005, 690, 3490–3497. [Google Scholar] [CrossRef]
- Zhou, Y.; Hu, S.; Ma, X.; Liang, S.; Jiang, T.; Han, B. Synthesis of cyclic carbonates from carbon dioxide and epoxides over betaine-based catalysts. J. Mol. Catal. A Chem. 2008, 284, 52–57. [Google Scholar] [CrossRef]
- Sun, J.; Ren, J.; Zhang, S.; Cheng, W. Water as an efficient medium for the synthesis of cyclic carbonate. Tetrahedron Lett. 2009, 50, 423–426. [Google Scholar] [CrossRef]
- Jutz, F.; Andanson, J.M.; Baiker, A. Ionic liquids and dense carbon dioxide: A beneficial biphasic system for catalysis. Chem. Rev. 2011, 111, 322–353. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-Q.; Cheng, W.-G.; Sun, J.; Shi, T.-Y.; Zhang, X.-P.; Zhang, S.-J. Efficient fixation of CO2 into organic carbonates catalyzed by 2-hydroxymethyl-functionalized ionic liquids. RSC Adv. 2014, 4, 2360–2367. [Google Scholar] [CrossRef]
- Dai, W.-L.; Luo, S.-L.; Yin, S.-F.; Au, C.-T. The direct transformation of carbon dioxide to organic carbonates over heterogeneous catalysts. Appl. Catal. A Gen. 2009, 366, 2–12. [Google Scholar] [CrossRef]
- Wong, W.L.; Chan, P.H.; Zhou, Z.Y.; Lee, K.H.; Cheung, K.C.; Wong, K.Y. A robust ionic liquid as reaction medium and efficient organocatalyst for carbon dioxide fixation. ChemSusChem 2008, 1, 67–70. [Google Scholar] [CrossRef]
- Kawanami, H.; Sasaki, A.; Matsui, K.; Ikushima, Y. A rapid and effective synthesis of propylene carbonate using a supercritical CO2-ionic liquid system. Chem. Commun. 2003, 896–897. [Google Scholar] [CrossRef]
- Bobbink, F.D.; Dyson, P.J. Synthesis of carbonates and related compounds incorporating CO2 using ionic liquid-type catalysts: State-of-the-art and beyond. J. Catal. 2016, 343, 52–61. [Google Scholar] [CrossRef]
- North, M.; Pasquale, R. Mechanism of cyclic carbonate synthesis from epoxides and CO2. Angew. Chem. Int. Ed. 2009, 48, 2946–2948. [Google Scholar] [CrossRef]
- Pescarmona, P.P.; Taherimehr, M. Challenges in the catalytic synthesis of cyclic and polymeric carbonates from epoxides and CO2. Catal. Sci. Technol. 2012, 2, 2169–2187. [Google Scholar] [CrossRef]
- Buaki-Sogo, M.; Garcia, H.; Aprile, C. Imidazolium-based silica microreactors for the efficient conversion of carbon dioxide. Catal. Sci. Technol. 2015, 5, 1222–1230. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, Z.; Jiang, T.; He, J.; Han, B.; Wu, T.; Ding, K. CO2 cycloaddition reactions catalyzed by an ionic liquid grafted onto a highly cross-linked polymer matrix. Angew. Chem. Int. Ed. 2007, 46, 7255–7258. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.-L.; Chen, L.; Yin, S.-F.; Li, W.-H.; Zhang, Y.-Y.; Luo, S.-L.; Au, C.-T. High-Efficiency Synthesis of Cyclic Carbonates from Epoxides and CO2 over Hydroxyl Ionic Liquid Catalyst Grafted onto Cross-Linked Polymer. Catal. Lett. 2010, 137, 74–80. [Google Scholar] [CrossRef]
- Watile, R.A.; Deshmukh, K.M.; Dhake, K.P.; Bhanage, B.M. Efficient synthesis of cyclic carbonate from carbon dioxide using polymer anchored diol functionalized ionic liquids as a highly active heterogeneous catalyst. Catal. Sci. Technol. 2012, 2, 1051–1055. [Google Scholar] [CrossRef]
- Shi, T.-Y.; Wang, J.-Q.; Sun, J.; Wang, M.-H.; Cheng, W.-G.; Zhang, S.-J. Efficient fixation of CO2 into cyclic carbonates catalyzed by hydroxyl-functionalized poly(ionic liquids). RSC Adv. 2013, 3, 3726–3732. [Google Scholar] [CrossRef]
- Sun, J.; Wang, J.; Cheng, W.; Zhang, J.; Li, X.; Zhang, S.; She, Y. Chitosan functionalized ionic liquid as a recyclable biopolymer-supported catalyst for cycloaddition of CO2. Green Chem. 2012, 14, 654–660. [Google Scholar] [CrossRef]
- Roshan, K.R.; Mathai, G.; Kim, J.; Tharun, J.; Park, G.-A.; Park, D.-W. A biopolymer mediated efficient synthesis of cyclic carbonates from epoxides and carbon dioxide. Green Chem. 2012, 14, 2933–2940. [Google Scholar] [CrossRef]
- Xiao, L.-F.; Li, F.-W.; Peng, J.-J.; Xia, C.-G. Immobilized ionic liquid/zinc chloride: Heterogeneous catalyst for synthesis of cyclic carbonates from carbon dioxide and epoxides. J. Mol. Catal. A Chem. 2006, 253, 265–269. [Google Scholar] [CrossRef]
- Dai, W.-L.; Chen, L.; Yin, S.-F.; Luo, S.-L.; Au, C.-T. 3-(2-Hydroxyl-Ethyl)-1-Propylimidazolium Bromide Immobilized on SBA-15 as Efficient Catalyst for the Synthesis of Cyclic Carbonates via the Coupling of Carbon Dioxide with Epoxides. Catal. Lett. 2010, 135, 295–304. [Google Scholar] [CrossRef]
- Srivastava, R.; Srinivas, D.; Ratnasamy, P. CO2 activation and synthesis of cyclic carbonates and alkyl/aryl carbamates over adenine-modified Ti-SBA-15 solid catalysts. J. Catal. 2005, 233, 1–15. [Google Scholar] [CrossRef]
- Srivastava, R.; Srinivas, D.; Ratnasamy, P. Sites for CO2 activation over amine-functionalized mesoporous Ti(Al)-SBA-15 catalysts. Micropor. Mesopor. Mater. 2006, 90, 314–326. [Google Scholar] [CrossRef]
- Srinivas, D.; Ratnasamy, P. Spectroscopic and catalytic properties of SBA-15 molecular sieves functionalized with acidic and basic moieties. Micropor. Mesopor. Mater. 2007, 105, 170–180. [Google Scholar] [CrossRef]
- Baleizão, C.; Gigante, B.; Sabater, M.J.; Garcia, H.; Corma, A. On the activity of chiral chromium salen complexes covalently bound to solid silicates for the enantioselective epoxide ring opening. App. Catal. A Gen. 2002, 228, 279–288. [Google Scholar] [CrossRef]
- Alvaro, M.; Baleizao, C.; Das, D.; Carbonell, E.; García, H. CO2 fixation using recoverable chromium salen catalysts: Use of ionic liquids as cosolvent or high-surface-area silicates as supports. J. Catal. 2004, 228, 254–258. [Google Scholar] [CrossRef]
- Ramin, M.; Jutz, F.; Grunwaldt, J.-D.; Baiker, A. Solventless synthesis of propylene carbonate catalysed by chromium–salen complexes: Bridging homogeneous and heterogeneous catalysis. J. Mol. Catal. A Chem. 2005, 242, 32–39. [Google Scholar] [CrossRef]
- Bhanage, B.M.; Fujita, S.-I.; Ikushima, Y.; Arai, M. Synthesis of dimethyl carbonate and glycols from carbon dioxide, epoxides, and methanol using heterogeneous basic metal oxide catalysts with high activity and selectivity. Appl. Catal. A Gen. 2001, 219, 259–266. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Ebitani, K.; Yoshida, T.; Yoshida, H.; Kaneda, K. Mg-Al Mixed Oxides as Highly Active Acid-Base Catalysts for Cycloaddition of Carbon Dioxide to Epoxides. J. Am. Chem. Soc. 1999, 121, 4526–4527. [Google Scholar] [CrossRef]
- Doskocil, E.J. Ion-exchanged ETS-10 catalysts for the cycloaddition of carbon dioxide to propylene oxide. Micropor. Mesopor. Mater. 2004, 76, 177–183. [Google Scholar] [CrossRef]
- Doskocil, E.J. Effect of water and alkali modifications on ETS-10 for the cycloaddition of CO2 to propylene oxide. J. Phys. Chem. B 2005, 109, 2315–2320. [Google Scholar] [CrossRef]
- Hu, Y.L.; Wang, H.B.; Chen, Z.W.; Li, X.G. Titanium Incorporated Mesoporous Silica Immobilized Functional Ionic Liquid as an Efficient Reusable Catalyst for Cycloaddition of Carbon Dioxide to Epoxides. ChemistrySelect 2018, 3, 5087–5091. [Google Scholar] [CrossRef]
- Borade, R.B.; Clearfield, A. Synthesis of aluminum rich MCM-41. Catal. Lett. 1995, 31, 267–272. [Google Scholar] [CrossRef]
- Kloetstra, K.R.; Zandbergen, H.W.; van Bekkum, H. MCM-41 type materials with low Si/Al ratios. Catal. Lett. 1995, 33, 157–163. [Google Scholar] [CrossRef]
- Chen, J.; Chen, T.; Guan, N.; Wang, J. Dealumination process of zeolite omega monitored by 27Al 3QMAS NMR spectroscopy. Catal. Today 2004, 93–95, 627–630. [Google Scholar] [CrossRef]
- Li, S.; Zheng, A.; Su, Y.; Fang, H.; Shen, W.; Yu, Z.; Chen, L.; Deng, F. Extra-framework aluminium species in hydrated faujasite zeolite as investigated by two-dimensional solid-state NMR spectroscopy and theoretical calculations. Phys. Chem. Chem. Phys. 2010, 12, 3895–3903. [Google Scholar] [CrossRef] [PubMed]
- Meloni, D.; Perra, D.; Monaci, R.; Cutrufello, M.G.; Rombi, E.; Ferino, I. Transesterification of Jatropha curcas oil and soybean oil on Al-SBA-15 catalysts. Appl. Catal. B Environ. 2016, 184, 163–173. [Google Scholar] [CrossRef]
- Colón, G.; Ferino, I.; Rombi, E.; Selli, E.; Forni, L.; Magnoux, P.; Guisnet, M. Liquid-phase alkylation of naphthalene by isopropanol over zeolites. Part 1: HY zeolites. Appl. Catal. A Gen. 1998, 168, 81–92. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G.H.; Chmelka, B.F.; Stucky, G.D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, 548–552. [Google Scholar] [CrossRef] [Green Version]
- Rombi, E.; Cutrufello, M.G.; Cannas, C.; Occhiuzzi, M.; Onida, B.; Ferino, I. Gold-assisted E′ centres formation on the silica surface of Au/SBA-15 catalysts for low temperature CO oxidation. Phys. Chem. Chem. Phys. 2012, 14, 6889–6897. [Google Scholar] [CrossRef]
- Varghese, S.; Cutrufello, M.G.; Rombi, E.; Monaci, R.; Cannas, C.; Ferino, I. Mesoporous hard-templated Me–Co [Me = Cu, Fe] spinel oxides for water gas shift reaction. J. Porous Mater. 2014, 21, 539–549. [Google Scholar] [CrossRef]
- Atzori, L.; Cutrufello, M.G.; Meloni, D.; Monaci, R.; Cannas, C.; Gazzoli, D.; Sini, M.F.; Deiana, P.; Rombi, E. CO2 methanation on hard-templated NiO-CeO2 mixed oxides. Int. J. Hydrogen Energy 2017, 42, 20689–20702. [Google Scholar] [CrossRef]
- Comès, A.; Collard, X.; Fusaro, L.; Atzori, L.; Cutrufello, M.G.; Aprile, C. Bi-functional heterogeneous catalysts for carbon dioxide conversion: Enhanced performances at low temperature. RSC Adv. 2018, 8, 25342–25350. [Google Scholar] [CrossRef] [Green Version]
- Comès, A.; Poncelet, R.; Pescarmona, P.P.; Aprile, C. Imidazolium-based titanosilicate nanospheres as active catalysts in carbon dioxide conversion: Towards a cascade reaction from alkenes to cyclic carbonates. J. CO2 Util. 2021, 48, 101529. [Google Scholar] [CrossRef]
- Imperor-Clerc, M.; Bazin, D.; Appay, M.-D.; Beaunier, P.; Davidson, A. Crystallization of β-MnO2 Nanowires in the Pores of SBA-15 Silicas: In Situ Investigation Using Synchrotron Radiation. Chem. Mater. 2004, 16, 1813–1821. [Google Scholar] [CrossRef]
- Mureddu, M.; Ferino, I.; Rombi, E.; Cutrufello, M.G.; Deiana, P.; Ardu, A.; Musinu, A.; Piccaluga, G.; Cannas, C. ZnO/SBA-15 composites for mid-temperature removal of H2S: Synthesis, performance and regeneration studies. Fuel 2012, 102, 691–700. [Google Scholar] [CrossRef]
- Comès, A.; Fiorilli, S.; Aprile, C. Multifunctional heterogeneous catalysts highly performing in the conversion of carbon dioxide: Mechanistic insights. J. CO2 Util. 2020, 37, 213–221. [Google Scholar] [CrossRef]
- Buaki-Sogó, M.; Vivian, A.; Bivona, L.A.; García, H.; Gruttadauria, M.; Aprile, C. Imidazolium functionalized carbon nanotubes for the synthesis of cyclic carbonates: Reducing the gap between homogeneous and heterogeneous catalysis. Catal. Sci. Technol. 2016, 6, 8418–8427. [Google Scholar] [CrossRef]
- Calabrese, C.; Fusaro, L.; Liotta, L.F.; Giacalone, F.; Comès, A.; Campisciano, V.; Aprile, C.; Gruttadauria, M. Efficient Conversion of Carbon Dioxide by Imidazolium-Based Cross-Linked Nanostructures Containing Polyhedral Oligomeric Silsesquioxane (POSS) Building Blocks. ChemPlusChem 2019, 84, 1536–1543. [Google Scholar] [CrossRef]
- Liang, J.; Xie, Y.-Q.; Wu, Q.; Wang, X.-Y.; Liu, T.-T.; Li, H.-F.; Huang, Y.-B.; Cao, R. Zinc Porphyrin/Imidazolium Integrated Multivariate Zirconium Metal-Organic Frameworks for Transformation of CO2 into Cyclic Carbonates. Inorg. Chem. 2018, 57, 2584–2593. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, Y.; Yang, X.; Zhao, L.; Wang, G. Functionalized IRMOF-3 as efficient heterogeneous catalyst for the synthesis of cyclic carbonates. J. Mol. Catal. A Chem. 2012, 361–362, 12–16. [Google Scholar] [CrossRef]
- Chen, Y.; Luo, R.; Xu, Q.; Jiang, J.; Zhou, X.; Ji, H. Charged Metalloporphyrin Polymers for Cooperative Synthesis of Cyclic Carbonates from CO2 under Ambient Conditions. ChemSusChem 2017, 10, 2534–2541. [Google Scholar] [CrossRef] [PubMed]
- Agrigento, P.; Al-Amsyar, S.M.; Sorée, B.; Taherimehr, M.; Gruttadauria, M.; Aprile, C.; Pescarmona, P.P. Synthesis and high-throughput testing of multilayered supported ionic liquid catalysts for the conversion of CO2 and epoxides into cyclic carbonates. Catal. Sci. Technol. 2014, 4, 1598–1607. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.; Chen, R.-P.; Wang, X.-Y.; Liu, T.-T.; Wang, X.-S.; Huang, Y.-B.; Cao, R. Postsynthetic ionization of an imidazole-containing metal-organic framework for the cycloaddition of carbon dioxide and epoxides. Chem. Sci. 2017, 8, 1570–1575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ungureanu, A.; Dragoi, B.; Hulea, V.; Cacciaguerra, T.; Meloni, D.; Solinas, V.; Dumitriu, E. Effect of aluminium incorporation by the “pH-adjusting” method on the structural, acidic and catalytic properties of mesoporous SBA-15. Micropor. Mesopor. Mater. 2012, 163, 51–64. [Google Scholar] [CrossRef]
Sample | Al/(Al + Si) (mol%) 1 | Alframework (mol%) 2 | Imidazolium Content (mmol/g) 3 | MgO Content (mmol/g) 1 | SBET (m2/g) | Vp (cm3/g) |
---|---|---|---|---|---|---|
1Al_SBA-15 | 1.13 | 17 | - | - | 554 | 0.96 |
5Al_SBA-15 | 4.02 | 25 | - | - | 409 | 0.94 |
MgO/1Al_SBA-15 | 1.11 | - | - | 4.05 | 235 | 0.60 |
MgO/5Al_SBA-15 | 3.94 | - | - | 4.14 | 240 | 0.61 |
Imi/1Al_SBA-15 | - | - | 0.55 | - | 349 | 0.81 |
Imi/5Al_SBA-15 | - | - | 0.75 | - | 282 | 0.70 |
Entry | Catalyst | X (%) 1 | S (%) 1 |
---|---|---|---|
1 | MgO/1Al_SBA-15 | 23 | >95 |
2 | MgO/5Al_SBA-15 | 32 | >95 |
3 | Imi/1Al_SBA-15 | 86 | >95 |
4 | Imi/5Al_SBA-15 | 89 | >95 |
Entry | Catalyst | Anion | mcat (mg) | T (°C) | Run 1 | X (%) 2 | S (%) 2 | TON 3 | TOF 4 |
---|---|---|---|---|---|---|---|---|---|
1a | Imi/5Al_SBA-15 | Cl− | 300 | 125 | 1st | 18 | >95 | ||
1b | Imi/5Al_SBA-15 | Cl− | 300 | 125 | 2nd | 17 | >95 | 162 | 54 |
2 | XS-Sn-imi [55] | Cl− | 500 | 125 | 1st | 32 | >95 | 96 | 32 |
3 | Ti-SiO2-E-imi [56] | Cl− | 500 | 125 | 1st | 42 | >95 | 127 | 42 |
4 | Sn-A-imi(II)-Cl [59] | Cl− | 500 | 125 | 1st | 22 | >95 | 108 | 36 |
5 | ZnTCPP⊂(Br-)Etim-UiO-66 [62] | Br− | 43 | 140 | 1st | 53 | n.d. | 56 | 4.0 |
6 | F-IRMOF-3-4d [63] | I− | 170 | 140 | 1st | 84 | n.d. | 589 | 118 |
7 | SiO2-p-xylene-I [65] | I− | 100 | 125 | 1st | 37 | >99 | 88 | 29 |
8 | (I-)Meim-UiO-66 [66] | I− | 50 | 120 | 1st | 46 | 71 | 63 | 2.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atzori, L.; Comès, A.; Fusaro, L.; Aprile, C.; Cutrufello, M.G. Aluminosilicate-Supported Catalysts for the Synthesis of Cyclic Carbonates by Reaction of CO2 with the Corresponding Epoxides. Molecules 2022, 27, 8883. https://doi.org/10.3390/molecules27248883
Atzori L, Comès A, Fusaro L, Aprile C, Cutrufello MG. Aluminosilicate-Supported Catalysts for the Synthesis of Cyclic Carbonates by Reaction of CO2 with the Corresponding Epoxides. Molecules. 2022; 27(24):8883. https://doi.org/10.3390/molecules27248883
Chicago/Turabian StyleAtzori, Luciano, Adrien Comès, Luca Fusaro, Carmela Aprile, and Maria Giorgia Cutrufello. 2022. "Aluminosilicate-Supported Catalysts for the Synthesis of Cyclic Carbonates by Reaction of CO2 with the Corresponding Epoxides" Molecules 27, no. 24: 8883. https://doi.org/10.3390/molecules27248883
APA StyleAtzori, L., Comès, A., Fusaro, L., Aprile, C., & Cutrufello, M. G. (2022). Aluminosilicate-Supported Catalysts for the Synthesis of Cyclic Carbonates by Reaction of CO2 with the Corresponding Epoxides. Molecules, 27(24), 8883. https://doi.org/10.3390/molecules27248883