Methods of the Dehydration Process and Its Effect on the Physicochemical Properties of Stingless Bee Honey: A Review
Abstract
:1. Introduction
2. Physicochemical Properties of Dehydrated Stingless Bee Honey
2.1. Moisture Content
2.2. Water Activity
2.3. Hydroxymethylfurfural
2.4. pH
2.5. Free Acidity
2.6. Ash
2.7. Electrical Conductivity
2.8. Diastase
2.9. Total Soluble Solids
2.10. Total Reducing Sugar
2.11. Total Phenolic Content
2.12. Total Flavonoid Content
2.13. Individual Phenolic Compounds
2.14. The Optimal Setting for Each Method of Dehydration
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ranneh, Y.; Ali, F.; Zarei, M.; Akim, A.M.; Hamid, H.A.; Khazaai, H. Malaysian Stingless Bee and Tualang Honeys: A Comparative Characterization of Total Antioxidant Capacity and Phenolic Profile Using Liquid Chromatography-Mass Spectrometry. LWT 2018, 89, 13–21. [Google Scholar] [CrossRef]
- Biluca, F.C.; da Silva, B.; Caon, T.; Mohr, E.T.B.; Vieira, G.N.; Gonzaga, L.V.; Vitali, L.; Micke, G.; Fett, R.; Dalmarco, E.M.; et al. Investigation of Phenolic Compounds, Antioxidant and Anti-Inflammatory Activities in Stingless Bee Honey (Meliponinae). Food Res. Int. 2020, 129, 108756. [Google Scholar] [CrossRef]
- Souza, B.; Roubik, D.; Barth, O.; Heard, T.; Enríquez, E.; Carvalho, C.; Villas-bôas, J.; Marchini, L.; Locatelli, J.; Persano-oddo, L.; et al. Composition of Stingless Bee Honey: Setting Quality Standards. Interciencia 2006, 31, 867–875. [Google Scholar]
- Kek, S.P.; Chin, N.L.; Yusof, Y.A.; Tan, S.W.; Chua, L.S. Classification of Entomological Origin of Honey Based on Its Physicochemical and Antioxidant Properties. Int. J. Food Prop. 2018, 20, S2723–S2738. [Google Scholar] [CrossRef]
- Zuluaga-Domínguez, C.; Díaz-Moreno, A.; Fuenmayor, C.; Quicazán, M. An Electronic Nose and Physicochemical Analysis to Differentiate Colombian Stingless Bee Pot-Honey. In Pot-Honey: A Legacy of Stingless Bees; Springer: New York, NY, USA, 2013; pp. 417–427. ISBN 9781461449591. [Google Scholar] [CrossRef]
- Kamal, D.A.M.; Ibrahim, S.F.; Kamal, H.; Kashim, M.I.A.M.; Mokhtar, M.H. Physicochemical and Medicinal Properties of Tualang, Gelam and Kelulut Honeys: A Comprehensive Review. Nutrients 2021, 13, 197. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.R.; Sousa, A.; Taveira, M. Characterization of Portuguese Honey from Castelo Branco Region According to Their Pollen Spectrum, Physicochemical Characteristics and Mineral Contents. J. Food Sci. Technol. 2017, 54, 2551–2561. [Google Scholar] [CrossRef] [PubMed]
- Keng, C.B.; Haron, H.; Abdul Talib, R.; Subramaniam, P. Physical Properties, Antioxidant Content and Anti-Oxidative Activities of Malaysian Stingless Kelulut (Trigona Spp.) Honey. J. Agric. Sci. 2017, 9, 32. [Google Scholar] [CrossRef] [Green Version]
- Nordin, A.; Sainik, N.Q.A.V.; Chowdhury, S.R.; Saim, A.B.; Idrus, R.B.H. Physicochemical Properties of Stingless Bee Honey from around the Globe: A Comprehensive Review. J. Food Compos. Anal. 2018, 73, 91–102. [Google Scholar] [CrossRef]
- Zarei, M.; Fazlara, A.; Tulabifard, N. Effect of Thermal Treatment on Physicochemical and Antioxidant Properties of Honey. Heliyon 2019, 5, e01894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tosi, E.; Ciappini, M.; Ré, E.; Lucero, H. Honey Thermal Treatment Effects on Hydroxymethylfurfural Content. Food Chem. 2002, 77, 71–74. [Google Scholar] [CrossRef]
- Capuano, E.; Fogliano, V. Acrylamide and 5-Hydroxymethylfurfural (HMF): A Review on Metabolism, Toxicity, Occurrence in Food and Mitigation Strategies. LWT Food Sci. Technol. 2011, 44, 793–810. [Google Scholar] [CrossRef]
- Michener, C.D. The Meliponini. In Pot-Honey: A Legacy of Stingless Bees; Springer: New York, NY, USA, 2013; pp. 3–17. ISBN 9781461449591. [Google Scholar] [CrossRef]
- Shamsudin, S.; Selamat, J.; Sanny, M.; Abd Razak, S.B.; Jambari, N.N.; Mian, Z.; Khatib, A. Influence of Origins and Bee Species on Physicochemical, Antioxidant Properties and Botanical Discrimination of Stingless Bee Honey. Int. J. Food Prop. 2019, 22, 238–263. [Google Scholar] [CrossRef] [Green Version]
- Braghini, F.; Biluca, F.C.; Gonzaga, L.V.; Vitali, L.; Costa, A.C.O.; Fett, R. Effect Thermal Processing in the Honey of Tetragonisca Angustula: Profile Physicochemical, Individual Phenolic Compounds and Antioxidant Capacity. J. Apic. Res. 2021, 60, 290–296. [Google Scholar] [CrossRef]
- Braghini, F.; Biluca, F.C.; Gonzaga, L.V.; Kracik, A.S.; Vieira, C.R.W.; Vitali, L.; Micke, G.A.; Costa, A.C.O.; Fett, R. Impact of Short-Term Thermal Treatment on Stingless Bee Honey (Meliponinae): Quality, Phenolic Compounds and Antioxidant Capacity. J. Food Process. Preserv. 2019, 43, e13954. [Google Scholar] [CrossRef]
- Yap, S.K.; Chin, N.L.; Yusof, Y.A.; Chong, K.Y. Quality Characteristics of Dehydrated Raw Kelulut Honey. Int. J. Food Prop. 2019, 22, 556–571. [Google Scholar] [CrossRef] [Green Version]
- Yegge, M.A.; Fauzi, N.A.M.; Talip, B.A.; Jaafar, M.B.; Othman, M.B.; Yaacob, M.; Ilyas, M.A.; Ngajikin, N.H. Reduction in Moisture Content of Dehumidified and Microwave-Heated Stingless Bee (Kelulut) Honey and Its Quality. Mater. Today Proc. 2019, 42, 75–79. [Google Scholar] [CrossRef]
- Ghazali, N.S.M.; Yusof, Y.A.; Mohd Ghazali, H.; Chin, N.L.; Othman, S.H.; Manaf, Y.N.; Chang, L.S.; Mohd Baroyi, S.A.H. Effect of Surface Area of Clay Pots on Physicochemical and Microbiological Properties of Stingless Bee (Geniotrigona thoracica) Honey. Food Biosci. 2021, 40, 100839. [Google Scholar] [CrossRef]
- Baroyi, S.A.H.M.; Yusof, Y.A.; Ghazali, H.M.; Chin, N.L.; Othman, S.H.; Chang, L.S.; Ghazali, N.S.M. A Novel Method Based on Passive Diffusion That Reduces the Moisture Content of Stingless Bee (Heterotrigona Itama) Honey. J. Food Process. Eng. 2019, 42, e13221. [Google Scholar] [CrossRef]
- Chen, Y.H.; Chuah, W.C.; Chye, F.Y. Effect of Drying on Physicochemical and Functional Properties of Stingless Bee Honey. J. Food Process. Preserv. 2021, 45, e15328. [Google Scholar] [CrossRef]
- Chong, K.Y.; Chin, N.L.; Yusof, Y.A. Thermosonication and Optimization of Stingless Bee Honey Processing. Food Sci. Technol. Int. 2017, 23, 608–622. [Google Scholar] [CrossRef]
- Sulaiman, N.H.I.; Sarbon, N.M. Physicochemical, Antioxidant and Antimicrobial Properties of Selected Malaysian Honey as Treated at Different Temperature: A Comparative Study. J. Apic. Res. 2022, 61, 567–575. [Google Scholar] [CrossRef]
- Syariffuddeen, M.A.A.; Azman, H.; Yahya, S. Evaluation of Performance and Characteristic of Stingless Bee Honey Using MARDI’s Dehydrator. In Proceedings of the Konvensyen Kebangsaan Kejuruteraan Pertanian Dan Makanan 2019, Putrajaya, Malaysia, 21 March 2019. [Google Scholar]
- Moniruzzaman, M.; Khalil, M.I.; Sulaiman, S.A.; Gan, S.H. Physicochemical and Antioxidant Properties of Malaysian Honeys Produced by Apis Cerana, Apis Dorsata and Apis Mellifera. BMC Complement. Altern. Med. 2013, 13, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chirife, J.; Zamora, M.C.; Motto, A. The Correlation between Water Activity and % Moisture in Honey: Fundamental Aspects and Application to Argentine Honeys. J. Food Eng. 2006, 72, 287–292. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, R.; Hebbar, H.U.; Rastogi, N.K. Processing of Honey: A Review. Int. J. Food Prop. 2007, 10, 127–143. [Google Scholar] [CrossRef]
- Neil, H.M. Measuring Moisture Content & Water Activity—IFT.Org; Food Technology Magazine: Chicago, IL, USA, 2009. [Google Scholar]
- Food and Drug Administration. Water Activity (Aw) in Foods | FDA; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2014.
- White, J.W. The Role of Hmf and Diastase Assays in Honey Quality Evaluation. Bee World 1994, 75, 104–117. [Google Scholar] [CrossRef]
- Ismail, N.I.; Rafiq, M.; Kadir, A.; Mohamed, M. Effects of Sugar Adulterants on the Physicochemical Properties of Natural Honey. J. Tomogr. Syst. Sens. Appl. 2019, 2, 59–64. [Google Scholar]
- Biluca, F.C.; Della Betta, F.; De Oliveira, G.P.; Pereira, L.M.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. 5-HMF and Carbohydrates Content in Stingless Bee Honey by CE before and after Thermal Treatment. Food Chem. 2014, 159, 244–249. [Google Scholar] [CrossRef] [Green Version]
- Jalil, M.A.A.; Kasmuri, A.R.; Hadi, H. Stingless Bee Honey, the Natural Wound Healer: A Review. Skin Pharmacol. Physiol. 2017, 30, 66–75. [Google Scholar] [CrossRef]
- Yap, S.K.; Chin, N.L. Identification of Distinctive Properties of Common Malaysian Honeys. Mater. Today Proc. 2021, 42, 115–118. [Google Scholar] [CrossRef]
- Da Silva, P.M.; Gauche, C.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Honey: Chemical Composition, Stability and Authenticity. Food Chem. 2016, 196, 309–323. [Google Scholar] [CrossRef]
- Tornuk, F.; Karaman, S.; Ozturk, I.; Toker, O.S.; Tastemur, B.; Sagdic, O.; Dogan, M.; Kayacier, A. Quality Characterization of Artisanal and Retail Turkish Blossom Honeys: Determination of Physicochemical, Microbiological, Bioactive Properties and Aroma Profile. Ind. Crops Prod. 2013, 46, 124–131. [Google Scholar] [CrossRef]
- Solayman, M.; Islam, M.A.; Paul, S.; Ali, Y.; Khalil, M.I.; Alam, N.; Gan, S.H. Physicochemical Properties, Minerals, Trace Elements, and Heavy Metals in Honey of Different Origins: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 219–233. [Google Scholar] [CrossRef] [PubMed]
- Zivkov Balos, M.; Popov, N.; Vidaković, S.; Ljubojević Pelić, D.; Pelić, M.; Mihaljev, Ž.; Jakšić, S. Electrical Conductivity and Acidity of Honey. Arch. Vet. Med. 2018, 11, 91–101. [Google Scholar] [CrossRef]
- Tosi, E.; Martinet, R.; Ortega, M.; Lucero, H.; Ré, E. Honey Diastase Activity Modified by Heating. Food Chem. 2008, 106, 883–887. [Google Scholar] [CrossRef]
- Biluca, F.C.; Braghini, F.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Physicochemical Profiles, Minerals and Bioactive Compounds of Stingless Bee Honey (Meliponinae). J. Food Compos. Anal. 2016, 50, 61–69. [Google Scholar] [CrossRef]
- Habib, H.M.; Al Meqbali, F.T.; Kamal, H.; Souka, U.D.; Ibrahim, W.H. Physicochemical and Biochemical Properties of Honeys from Arid Regions. Food Chem. 2014, 153, 35–43. [Google Scholar] [CrossRef]
- Chua, L.S.; Rahaman, N.L.A.; Adnan, N.A.; Eddie Tan, T.T. Antioxidant Activity of Three Honey Samples in Relation with Their Biochemical Components. J. Anal. Methods Chem. 2013, 2013, 313798. [Google Scholar] [CrossRef]
- Saric, G.; Marković, K.; Vukičević, D.; Lež, E.; Hruškar, M.; Vahčić, N. Changes of Antioxidant Activity in Honey after Heat Treatment. Czech J. Food Sci. 2013, 31, 601–606. [Google Scholar] [CrossRef] [Green Version]
- Song, K.-M.; Jeon, Y.-W.; Jung, S.-K.; Kim, Y.-E.; Kim, Y.-H.; Lee, N.H. Strategy for Bioconversion of Flavonoid Glycosides into Their Aglycone Using Glycoside Hydrolase. New Biotechnol. 2016, 33, S103. [Google Scholar] [CrossRef]
- Wang, T.; He, F.; Chen, G. Improving Bioaccessibility and Bioavailability of Phenolic Compounds in Cereal Grains through Processing Technologies: A Concise Review. J. Funct. Foods 2014, 7, 101–111. [Google Scholar] [CrossRef]
- Riehle, P.; Vollmer, M.; Rohn, S. Phenolic Compounds in Cistus Incanus Herbal Infusions—Antioxidant Capacity and Thermal Stability during the Brewing Process. Food Res. Int. 2013, 53, 891–899. [Google Scholar] [CrossRef]
Method of Dehydration | SLBH Species | T (°C)/ PL | Time | Moisture Content (%) | Water Reduction (%) | Author | ||
---|---|---|---|---|---|---|---|---|
Raw | Dehydrated | |||||||
Thermal treatment | Tetragonisca angustula | 52 °C | 470 min | 23.9 | 21.6 * | 9.6 | [15] | |
T. angustula | 55 °C | 170 min | 23.9 | 22.7 * | 5.0 | |||
T. angustula | 57 °C | 60 min | 23.9 | 23.3 * | 2.5 | |||
T. angustula | 60 °C | 22 min | 23.9 | 23.3 * | 2.5 | |||
T. angustula | 66 °C | 8 min | 23.9 | 23.3 * | 2.5 | |||
T. angustula | 66 °C | 3 min | 23.9 | 23.4 | 2.1 | |||
T. angustula | 68 °C | 1 min | 23.9 | 23.4 | 2.1 | |||
T. angustula | 71 °C | 24 s | 23.9 | 23.5 | 1.7 | |||
Melipona bicolor | 90 °C | 15–60 s | 30.8 | 29.5 * | 4.2 | [16] | ||
M. bicolor | 95 °C | 15–60 s | 30.8 | 29.5–29.6 * | 3.9–4.2 | |||
- | 45–90 °C | 30–120 min | 30.93 | 28.8 | 6.9 | [22] | ||
Thermosonication | - | 45–90 °C | 30–120 min | 31.06 | 25.9 | 16.6 | ||
Vacuum | Drying (5% moisture) | Heterotrigona itama | 40–60 °C | - | 31.9 | 5 | 84.3 | [21] |
Drying (11% moisture) | H. itama | 40–60 °C | - | 31.9 | 11 | 65.5 | ||
Evaporation (11% moisture) | H. itama | 40–60 °C | - | 31.9 | 11 | 65.5 | ||
Freeze-drying (5% moisture) | H. itama | −54 °C | 24 h | 31.9 | 5 | 84.3 | ||
Microwave heating | H. itama | 20 PL | 15–60 s | 31.47 | 25.24–26.46 | 16–20 | [18] | |
H. itama | 60 PL | 25–60 s | 31.47 | 15.04–20.3 * | 35–52 | |||
H. itama | 100 PL | 5–15 s | 31.47 | 22.29–24.32 * | 23–29 | |||
Dehumidification | H. itama | 35 °C | 1–2 days | 31.47 | 17.21–17.48 * | 44–45 | ||
Food dehydrator | H. itama | 40 °C | 36 h | 40 | <8 | >80 | [17] | |
H. itama | 55 °C | 18 h | 40 | <8 | >80 | |||
H. itama | 55 °C | 36 h | 40 | 0 | 100 | |||
H. itama | 70 °C | 18 h | 40 | <8 | >80 | |||
H. itama | 70 °C | 36 h | 40 | 0 | 100 | |||
MARDI dehydrator | H. itama | 30 °C | 8 h | 29 | 19 | 35 | [24] | |
Glass bottle storage | Geniotrigona thoracica | 25 °C | 1–10 days | 26.21 | 25–26 | 0.8–4.62 | [19] | |
Clay pot storage | Small surface area | G. thoracica | 25 °C | 1–10 days | 26.21 | 24.32 * | 7.21 | |
Large surface area | G. thoracica | 25 °C | 1–10 days | 26.21 | 23.35 * | 10.9 | ||
H. itama | 25 °C | 1–21 days | 25.82 | 18.13–25.13 * | 2.7–29.8 | [20] | ||
H. itama | 35 °C | 1–3 days | 25.82 | 19.56–23.68 * | 8.3–24.2 |
Method of Dehydration | SLBH Species | T (°C) | Time | Water Activity | Water Activity Reduction (%) | Author | ||
---|---|---|---|---|---|---|---|---|
Raw | Dehydrated | |||||||
Thermal treatment | - | 45–80 | 30–100 min | 0.795 | <0.767 | <3.5 | [22] | |
- | 90 | 120 min | 0.795 | 0.767 | 3.5 | |||
Thermosonication | - | 45–80 | 30–100 min | 0.807 | <0.743 | <7.9 | ||
- | 90 | 120 min | 0.807 | 0.743 | 7.9 | |||
Vacuum | Drying (5% moisture) | Heterotrigona itama | 40–60 | - | 0.79 | 0.28–0.29 * | 63.3–64.6 | [21] |
Drying (11% moisture) | H. itama | 40–60 | - | 0.79 | 0.45–0.48 * | 39.2–43 | ||
Evaporation (11% moisture) | H. itama | 40–60 | - | 0.79 | 0.47–0.5 * | 36.7–40.5 | ||
Freeze-drying (5% moisture) | H. itama | −54 | 24 h | 0.79 | 0.3 * | 62 | ||
Food dehydrator | H. itama | 40 | 36 h | 0.788 | <0.6 | >23.9 | [17] | |
H. itama | 55 | 18 h | 0.788 | <0.6 | >23.9 | |||
H. itama | 70 | 12 h | 0.788 | <0.6 | >23.9 | |||
Glass bottle storage | Geniotrigona thoracica | 25 | 1–10 days | 0.8 | 0.782–0.785 | 1.9–2.25 | [19] | |
Clay pot storage | Small surface area | G. thoracica | 25 | 1–10 days | 0.8 | 0.679–0.774 * | 3.3–15.1 | |
Large surface area | G. thoracica | 25 | 1–10 days | 0.8 | 0.632–0.737 * | 7.9–21 | ||
H. itama | 25 | 1 day | 0.79 | 0.79 | - | [20] | ||
H. itama | 25 | 7–21 days | 0.79 | 0.63–0.7 * | 11.4–20.3 | |||
H. itama | 35 | 1–3 days | 0.79 | 0.7–0.76 * | 3.8–11.4 |
Method of Dehydration | SLBH Species | T (°C) | Time | HMF (mg/kg) | Author | |
---|---|---|---|---|---|---|
Raw | Dehydrated | |||||
Thermal treatment | Tetragonisca angustula | 52 | 470 min | <LOQ | <LOQ | [15] |
T. angustula | 55 | 170 min | <LOQ | <LOQ | ||
T. angustula | 57 | 60 min | <LOQ | <LOQ | ||
T. angustula | 60 | 22 min | <LOQ | <LOQ | ||
T. angustula | 66 | 8 min | <LOQ | <LOQ | ||
T. angustula | 66 | 3 min | <LOQ | <LOQ | ||
T. angustula | 68 | 1 min | <LOQ | <LOQ | ||
T. angustula | 71 | 24 s | <LOQ | <LOQ | ||
Melipona bicolor | 90 | 15–60 s | <LOQ | <LOQ | [16] | |
M. bicolor | 95 | 15–60 s | <LOQ | <LOQ | ||
- | 75–95 | 20–60 s | <LOQ | <LOQ | [32] | |
- | 75 | 15 min | <LOQ | <LOQ | ||
- | 75 | 24 h | <LOQ | 238.18 | ||
- | 45–67.5 | 30–75 min | 0 | 0 | ||
- | 67.5–90 | 100–120 min | 0 | ↑ up to 42.40 * | [22] | |
Thermosonication | - | 45–67.5 | 30–75 min | 0 | 0 | |
- | 67.5–90 | 100–120 min | 0 | ↑ up to 62.46 * | ||
Vacuum drying (5% moisture) | Heterotrigona itama | 40 | - | 0 | 9.3 * | [21] |
H. itama | 50 | - | 0 | 10.71 * | ||
H. itama | 60 | - | 0 | 12.18 * | ||
Freeze-drying (5% moisture) | H. itama | −54 | - | 0 | 9.29 * | |
Food dehydrator | H. itama | 40 | 18–36 h | 0 | 0 | [17] |
H. itama | 55 | 18 h | 0 | <5.81 | ||
H. itama | 55 | 36 h | 0 | 5.81 | ||
H. itama | 70 | 18 h | 0 | <50 | ||
H. itama | 70 | 36 h | 0 | 83.19 | ||
MARDI dehydrator | H. itama | 30 | 8 h | 2.27 | 2.39 | [24] |
Method of Dehydration | SLBH Species | T (°C)/ PL | Time | pH | Alteration (%) | Author | ||
---|---|---|---|---|---|---|---|---|
Raw | Dehydrated | |||||||
Thermal treatment | Tetragonisca angulusta | 52 °C | 470 min | 5.18 | 4.93 * | ↓ 4.8 | [15] | |
T. angulusta | 55 °C | 170 min | 5.18 | 5 * | ↓ 3.5 | |||
T. angulusta | 57 °C | 60 min | 5.18 | 5.04 | Not sig. | |||
T. angulusta | 60 °C | 22 min | 5.18 | 5.01 * | ↓ 3.3 | |||
T. angulusta | 66 °C | 8 min | 5.18 | 5.08 | Not sig. | |||
T. angulusta | 66 °C | 3 min | 5.18 | 5.01 * | ↓ 3.3 | |||
T. angulusta | 68 °C | 1 min | 5.18 | 5.03 | Not sig. | |||
T. angulusta | 71 °C | 24 s | 5.18 | 5.14 | Not sig. | |||
Melipona bicolor | 90 °C | 15–60 s | 3.25 | 3.25 | – | [16] | ||
M. bicolor | 95 °C | 15–60 s | 3.25 | 3.26 | Not sig. | |||
- | 50 °C | - | 3.81 | 3.85 | Not sig. | [23] | ||
- | 75 °C | - | 3.81 | 3.89 * | ↑ 2.1 | |||
- | 90 °C | - | 3.81 | 3.96 * | ↑ 3.9 | |||
Vacuum | Drying (5% moisture) | Heterotrigona itama | 40–60 °C | - | 3.16 | 3.36–3.41 * | ↑ 6.3–7.9 | [21] |
Drying (11% moisture) | H. itama | 40–60 °C | - | 3.16 | 3.21–3.31 * | ↑ 1.6–4.7 | ||
Evaporation (11% moisture) | H. itama | 40–60 °C | - | 3.16 | 3.2–3.29 | Not sig. | ||
Freeze-drying (5% moisture) | H. itama | −54 °C | - | 3.16 | 3.14 | Not sig. | ||
Microwave heating | H. itama | 20 PL | 15 s | 3.58 | 3.5 | Not sig. | [18] | |
H. itama | 20 PL | 30–60 s | 3.58 | 3.45–3.48 * | ↓ 2.8–3.6 | |||
H. itama | 60 PL | 25–30 s | 3.58 | 3.45 * | ↓ 3.6 | |||
H. itama | 60 PL | 60 s | 3.58 | 3.51 | Not sig. | |||
H. itama | 100 PL | 5–15 s | 3.58 | 3.46–3.47 * | ↓ 3.1–3.4 | |||
Dehumidification | H. itama | 35 °C | 1 day | 3.58 | 3.54 * | ↓ 1.1 | ||
H. itama | 35 °C | 2 days | 3.58 | 3.62 | Not sig. | |||
Glass bottle storage | Geniotrigona thoracica | 25 °C | 1–10 days | 3.11 | 3.11–3.13 | Not sig. | [19] | |
Clay pot storage | Small surface area | G. thoracica | 25 °C | 1–10 days | 3.11 | 3.12–3.16 | Not sig. | |
Large surface area | G. thoracica | 25 °C | 1–10 days | 3.11 | 3.11 | – | ||
H. itama | 25 °C | 1–7 days | 3.44 | 3.55–3.62 * | ↑ 3.2–5.2 | [20] | ||
H. itama | 25 °C | 14–21 days | 3.44 | 3.34–3.38 * | ↓ 1.7–2.9 | |||
H. itama | 35 °C | 1–3 days | 3.44 | 3.52–3.63 * | ↑ 2.3–5.5 |
Method of Dehydration | SLBH Species | T (°C) | Time | Free Acidity (meq/kg) | Alteration (%) | Author | ||
---|---|---|---|---|---|---|---|---|
Raw | Dehydrated | |||||||
Thermal treatment | Tetragonisca angulusta | 52 | 470 min | 23.2 | 23.3 | Not sig. | [15] | |
T. angulusta | 55 | 170 min | 23.2 | 21.7 | Not sig. | |||
T. angulusta | 57 | 60 min | 23.2 | 21.3 * | ↓ 8.2 | |||
T. angulusta | 60 | 22 min | 23.2 | 21.4 * | ↓ 7.8 | |||
T. angulusta | 66 | 8 min | 23.2 | 21.4 * | ↓ 7.8 | |||
T. angulusta | 66 | 3 min | 23.2 | 21.3 * | ↓ 8.2 | |||
T. angulusta | 68 | 1 min | 23.2 | 23 | Not sig. | |||
T. angulusta | 71 | 24 s | 23.2 | 21.3 * | ↓ 8.2 | |||
Melipona bicolor | 90 | 15–60 s | 32.9 | 31.4–31.5 | Not sig. | [16] | ||
M. bicolor | 95 | 15 s | 32.9 | 32.2 | Not sig. | |||
M. bicolor | 95 | 60 s | 32.9 | 33.5 | Not sig. | |||
Vacuum | Drying (5% moisture) | Heterotrigona itama | 40–60 | - | 152.5 | 112.5–117 * | ↓ 23.3–26.2 | [21] |
Drying (11% moisture) | H. itama | 40–60 | - | 152.5 | 120–132 * | ↓ 13.4–21.3 | ||
Evaporation (11% moisture) | H. itama | 40–60 | - | 152.5 | 113–123.5 * | ↓ 19–25.9 | ||
Freeze-drying (5% moisture) | H. itama | −54 | - | 152.5 | 150.5 | Not sig. | ||
Glass bottle storage | Geniotrigona thoracica | 25 | 1–10 days | 172 | 174–177 | Not sig. | [19] | |
Clay pot storage | Small surface area | G. thoracica | 25 | 1–10 days | 172 | 179–181 | Not sig. | |
Large surface area | G. thoracica | 25 | 1–10 days | 172 | 174–178 | Not sig. | ||
H. itama | 25 | 1–7 days | 85 | 88–99 * | ↑ 3.5–16.5 | [20] | ||
H. itama | 25 | 14–21 days | 85 | 82–83 * | ↓ 2.4–3.5 | |||
H. itama | 35 | 1–3 days | 85 | 89–94 | Not sig. |
Method of Dehydration | SLBH Species | T (°C) | Duration (days) | Ash (g/100 g) | Alteration (%) | Author | ||
---|---|---|---|---|---|---|---|---|
Raw | Dehydrated | |||||||
Glass bottle storage | Geniotrigona thoracica | 25 | 1–10 | 0.055 | 0.049–0.057 | Not sig. | [19] | |
Clay pot storage | Small surface area | G. thoracica | 25 | 1–7 | 0.055 | 0.051–0.073 | Not sig. | |
G. thoracica | 25 | 10 | 0.055 | 0.088 * | ↑ 60 | |||
Large surface area | G. thoracica | 25 | 1–4 | 0.055 | 0.059–0.081 | Not sig. | ||
G. thoracica | 25 | 7–10 | 0.055 | 0.091–0.092 * | ↑ 65.5–67.3 | |||
Heterotrigona itama | 25 | 1–21 | 0.11 | 0.11–0.18 | Not sig. | [20] | ||
H. itama | 35 | 1–3 | 0.11 | 0.1–0.15 | Not sig. |
Method of Dehydration | SLBH Species | T (°C) | Time | Electrical Conductivity (mS/cm) | Alteration | Author | ||
---|---|---|---|---|---|---|---|---|
Raw | Dehydrated | |||||||
Thermal treatment | Tetragonisca angustula | 52 | 470 min | 0.604 | 0.514 * | ↓ | [15] | |
T. angustula | 55 | 170 min | 0.604 | 0.545 * | ↓ | |||
T. angustula | 57 | 60 min | 0.604 | 0.53 * | ↓ | |||
T. angustula | 60 | 22 min | 0.604 | 0.525 * | ↓ | |||
T. angustula | 66 | 8 min | 0.604 | 0.517 * | ↓ | |||
T. angustula | 66 | 3 min | 0.604 | 0.563 * | ↓ | |||
T. angustula | 68 | 1 min | 0.604 | 0.56 * | ↓ | |||
T. angustula | 71 | 24 s | 0.604 | 0.531 * | ↓ | |||
Melipona bicolor | 90 | 15–60 s | 0.26 | 0.26 | - | [16] | ||
M. bicolor | 95 | 15–60 s | 0.26 | 0.25–0.26 | Not sig. | |||
Clay pot storage | H. itama | 25 | 1–21 days | 0.43 | 0.49–0.54 * | ↑ | [20] | |
H. itama | 35 | 1–3 days | 0.43 | 0.51–0.54 * | ↑ |
Method of Dehydration | SLBH Species | T (°C) | Time | Diastase a (un. Gothe) b (Diastase Number) | Alteration (%) | Author | |
---|---|---|---|---|---|---|---|
Raw | Dehydrated | ||||||
Thermal treatment | Tetragonisca angustula | 52 | 470 min | 46.1 a | 35.3 a,* | ↓ 23.4 | [15] |
T. angustula | 55 | 170 min | 46.1 a | 30.3 a,* | ↓ 34.3 | ||
T. angustula | 57 | 60 min | 46.1 a | 31.9 a,* | ↓ 30.8 | ||
T. angustula | 60 | 22 min | 46.1 a | 32.4 a,* | ↓ 29.7 | ||
T. angustula | 66 | 8 min | 46.1 a | 27.6 a,* | ↓ 40.1 | ||
T. angustula | 66 | 3 min | 46.1 a | 29.3 a,* | ↓ 36.4 | ||
T. angustula | 68 | 1 min | 46.1 a | 25.3 a,* | ↓ 45.1 | ||
T. angustula | 71 | 24 s | 46.1 a | 42.7 a,* | ↓ 7.4 | ||
Melipona bicolor | 90 | 15–60 s | <3 a | <3 a | - | [16] | |
M. bicolor | 95 | 15–60 s | <3 a | <3 a | - | ||
Food dehydrator | Heterotrigona itama | 40 | 12–84 h | 0–0.2 b | 0–0.6 b | Not sig. | [17] |
H. itama | 55 | 12–84 h | 0–0.2 b | 0–0.2 b | Not sig. | ||
H. itama | 70 | 12–84 h | 0–0.2 b | 0–0.75 b | Not sig. |
Method of Dehydration | SLBH Species | T (°C)/ PL | Time | Total Soluble Solids (°Brix) | Alteration (%) | Author | ||
---|---|---|---|---|---|---|---|---|
Raw | Dehydrated | |||||||
Thermal treatment | Tetragonisca angustula | 52 °C | 470 min | 75.5 | 77.7 * | ↑ 2.9 | [15] | |
T. angustula | 55 °C | 170 min | 75.5 | 76.5 * | ↑ 1.3 | |||
T. angustula | 57 °C | 60 min | 75.5 | 75.8 | ↑ 0.004 | |||
T. angustula | 60 °C | 22 min | 75.5 | 75.7 | ↑ 0.3 | |||
T. angustula | 66 °C | 8 min | 75.5 | 74 * | ↓ 2.0 | |||
T. angustula | 66 °C | 3 min | 75.5 | 75.5 | - | |||
T. angustula | 68 °C | 1 min | 75.5 | 75.5 | - | |||
T. angustula | 71 °C | 24 s | 75.5 | 75.5 | - | |||
Melipona bicolor | 90 °C | 15–60 s | 68.5 | 69–69.4 | ↑ 0.7–1.3 | [16] | ||
M. bicolor | 95 °C | 15–60 s | 68.5 | 69.4 | ↑ 1.31 | |||
Microwave heating | Heterotrigona itama | 20 PL | 15–60 s | 67.9 | 72.2–73.43 | ↑ 6.3–8.1 | [18] | |
H. itama | 60 PL | 25–60 s | 67.9 | 75.4–86.93 * | ↑ 10.5–28 | |||
H. itama | 100 PL | 5–15 s | 67.9 | 72.73–76.33 * | ↑ 7.1–12.4 | |||
Dehumidification | H. itama | 35 °C | 1–2 days | 67.9 | 82.52–82.69 * | ↑ 21.5–21.8 | ||
Glass bottle storage | Geniotrigona thoracica | 25 °C | 1–4 days | 72.2 | 71.7–72.0 | ↓ 0.3–0.7 | [19] | |
G. thoracica | 25 °C | 7–10 days | 72.2 | 72.5–72.9 | ↑ 0.3–1.0 | |||
Clay pot storage | Small surface area | G. thoracica | 25 °C | 1–10 days | 72.2 | 73.3–79.3 * | ↑ 1.5–9.8 | |
Large surface area | G. thoracica | 25 °C | 1–10 days | 72.2 | 77–82.9 * | ↑ 6.6–14.8 | ||
H. itama | 25 °C | 1–21 days | 72.64 | 73.33–80.25 * | ↑ 0.9–10.5 | [20] | ||
H. itama | 35 °C | 1–3 days | 72.64 | 74.75–78.85 * | ↑ 2.9–8.5 |
Method of Dehydration | SLBH Species | T (°C) | Time | Fructose (g/100 g) | Glucose (g/100 g) | Total Reducing Sugar (g/100 g) | Author | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Raw | Dehydrated | Raw | Dehydrated | Raw | Dehydrated | ||||||
Thermal treatment | Tetragonisca angulusta | 52 | 470 min | 39.4 | 42.5 * | 20 | 23 * | 59.4 | 65.5 | [15] | |
T. angulusta | 55 | 170 min | 39.4 | 42.2 * | 20 | 23.5 * | 59.4 | 65.7 | |||
T. angulusta | 57 | 60 min | 39.4 | 39.5 | 20 | 21.9 * | 59.4 | 61.4 | |||
T. angulusta | 60 | 22 min | 39.4 | 42.9 * | 20 | 24.2 * | 59.4 | 67.1 | |||
T. angulusta | 66 | 8 min | 39.4 | 44.6 * | 20 | 25 * | 59.4 | 69.6 | |||
T. angulusta | 66 | 3 min | 39.4 | 40.6 | 20 | 21.8 * | 59.4 | 62.4 | |||
T. angulusta | 68 | 1 min | 39.4 | 43.9 * | 20 | 24.2 * | 59.4 | 68.1 | |||
T. angulusta | 71 | 24 s | 39.4 | 40.9 | 20 | 23.8 * | 59.4 | 64.7 | |||
Melipona bicolor | 90 | 15–60 s | 33.9 | 31.8–31.9 * | 22.8 | 23.3–23.7 | 56.7 | 55.1–55.6 | [16] | ||
M. bicolor | 95 | 15–60 s | 33.9 | 31.5–31.9 * | 22.8 | 23.6–23.8 | 56.7 | 55.1–55.7 | |||
Vacuum drying (5% moisture) | Heterotrigona itama | 40 | - | 10.09 | 9.37 | 14.86 | 13.68 * | 24.95 | 23.05 | [21] | |
H. itama | 50 | - | 10.09 | 9.19 | 14.86 | 14.51 | 24.95 | 23.7 | |||
H. itama | 60 | 10.09 | 9.79 | 14.86 | 15.45 | 24.95 | 25.24 | ||||
Freeze-drying (5% moisture) | H. itama | −54 | - | 10.09 | 9.94 | 14.86 | 14.1 | 24.95 | 24.04 | ||
MARDI dehydrator | H. itama | 30 | 8 h | 12.39 | 13.52 | 3.41 | 3.46 | 15.8 | 29.32 | [24] | |
Glass bottle storage | Geniotrigona thoracica | 25 | 1–10 days | 9.4–9.5 | 8.2–9 * | 11 | 10.0–11.0 * | 20.4–20.5 | 18.2–20 | [19] | |
Clay pot storage | Small surface area | G. thoracica | 25 | 1 day | 9.4–9.5 | 8.6 * | 11 | 10.0–11.0 | 20.4–20.5 | 18.6–19.6 | |
G. thoracica | 25 | 4 days | 9.4–9.5 | 8.9 * | 11 | 11.0–12.0 * | 20.4–20.5 | 19.9–20.9 | |||
G. thoracica | 25 | 7 days | 9.4–9.5 | 8.9–9.0 * | 11 | 11.0–12.0 * | 20.4–20.5 | 19.9–21 | |||
G. thoracica | 25 | 10 days | 9.4–9.5 | 9.3 * | 11 | 12 * | 20.4–20.5 | 21.3 | |||
Large surface area | G. thoracica | 25 | 1–7 days | 9.4–9.5 | 9.2–9.45 * | 11 | 11.0–12.0 * | 20.4–20.5 | 20.2–21.45 | ||
G. thoracica | 25 | 10 days | 9.4–9.5 | 9.7 * | 11 | 13.0 * | 20.4–20.5 | 22.7 |
Method of Dehydration | SLBH Species | T (°C)/ PL | Time | Total Phenolic Content (mg GAE/100 g) | Alteration | Author | ||
---|---|---|---|---|---|---|---|---|
Raw | Dehydrated | |||||||
Thermal treatment | Melipona bicolor | 90 °C | 15–60 s | 20.26 | 25–30 * | ↑ | [16] | |
M. bicolor | 95 °C | 15–60 s | 20.26 | 20–30 * | ↑ | |||
- | 50–90 °C | - | 5130 | 5700–6750 * | ↑ | [23] | ||
- | 45–90 °C | 30–120 min | 44.36 | 47.35–68.43 | ↑ | [22] | ||
Thermosonication | - | 45–90 °C | 30–120 min | 47.50 | 49.02–75.08 | ↑ | ||
Vacuum | Drying (5% moisture) | Heterotrigona itama | 40 °C | - | 21.31 | 20–25 | ↑ | [21] |
H. itama | 50–60 °C | - | 21.31 | 20–35 * | ↑ | |||
Drying (11% moisture) | H. itama | 40–50 °C | - | 21.31 | 20–25 | ↑ | ||
H. itama | 60 °C | - | 21.31 | 25–30 * | ↑ | |||
Evaporation (11% moisture) | H. itama | 40 °C | - | 21.31 | 15–20 * | ↓ | ||
H. itama | 50 °C | - | 21.31 | 20–25 | ↑ | |||
H. itama | 60 °C | - | 21.31 | 25–30 * | ↑ | |||
Freeze-drying (5% moisture) | H. itama | −54 °C | 24 h | 21.31 | 20–25 | ↑ | ||
Microwave heating | H. itama | 20 PL | 15–30 s | 12.45 | 11.93–12.11 | ↓ | [18] | |
H. itama | 20 PL | 60 s | 12.45 | 13.45 | ↑ | |||
H. itama | 60 PL | 25–30 s | 12.45 | 13.87–13.94 | ↑ | |||
H. itama | 60 PL | 60 s | 12.45 | 17.9 * | ↑ | |||
H. itama | 100 PL | 5–10 s | 12.45 | 11.05–13.43 | ↓ | |||
H. itama | 100 PL | 15 s | 12.45 | 14.02 | ↑ | |||
Dehumidification | H. itama | 35 °C | 1 day | 12.45 | 11.73 * | ↓ | ||
H. itama | 35 °C | 2 days | 12.45 | 12.70 * | ↑ | |||
Food dehydrator | H. itama | 40 °C | 12–84 h | 41.99 | 57.83 | ↑ | [17] | |
H. itama | 55 °C | 12–84 h | 41.99 | 73.77 | ↑ | |||
H. itama | 70 °C | 12–84 h | 41.99 | 157.32 | ↑ | |||
MARDI dehydrator | H. itama | 30 °C | 8 h | 24.47 | 25 | ↑ | [24] |
Method of Dehydration | SLBH Species | T (°C) | Time | Total Flavonoid Content (mg QE/g) | Alteration | Author | ||
---|---|---|---|---|---|---|---|---|
Raw | Dehydrated | |||||||
Thermal treatment | - | 50 | - | 32.2 | 33.70 * | ↑ | [23] | |
- | 75 | - | 32.2 | 35.30 * | ↑ | |||
- | 90 | - | 32.2 | 36.43 * | ↑ | |||
Vacuum | Drying (5% moisture) | Heterotrigona itama | 40–60 | - | 0.2–0.25 | 0.25–0.3 * | ↑ | [21] |
Drying (11% moisture) | H. itama | 40 | - | 0.2–0.25 | 0.2–0.25 | ↑ | ||
H. itama | 50–60 | - | 0.2–0.25 | 0.2–0.25 * | ↑ | |||
Evaporation (11% moisture) | H. itama | 40–60 | - | 0.2–0.25 | 0.2–0.25 * | ↑ | ||
Freeze-drying (5% moisture) | H. itama | −54 | - | 0.2–0.25 | 0.2–0.25 * | ↑ |
Method of Dehydration | SLBH Species | T (°C) | Time | Chlorogenic Acid (μg/100 g) | Alteration | Rosmarinic Acid (μg/100 g) | Alteration | Author | ||
---|---|---|---|---|---|---|---|---|---|---|
Raw | Dehydrated | Raw | Dehydrated | |||||||
Thermal treatment | Melipona bicolor | 90 | 15 s | <LOQ | 11.7 | ↑ | <LOQ | <LOQ | - | [16] |
60 s | <LOQ | 9.59 | ↑ | <LOQ | <LOQ | - | ||||
M. bicolor | 95 | 15 s | <LOQ | 12.3 | ↑ | <LOQ | <LOQ | - | ||
60 s | <LOQ | 10.1 | ↑ | <LOQ | <LOQ | - | ||||
Vacuum drying | Heterotrigona itama | 40 | - | 143.51 | 122.49 | ↓ | 600.86 | 623.36 | ↑ | [21] |
H. itama | 50 | - | 143.51 | 150.45 | ↑ | 600.86 | 725.64 | ↑ | ||
H. itama | 60 | - | 143.51 | 153.47 | ↑ | 600.86 | 804.79 | ↑ | ||
Freeze-drying | H. itama | −54 | 24 h | 143.51 | 166.28 | ↑ | 600.86 | 768.98 | ↑ |
Method of Dehydration | SLBH Species | T (°C) | Time | Rutin (μg/100 g) | Alteration | Quercetin (μg/100 g) | Alteration | Author | ||
---|---|---|---|---|---|---|---|---|---|---|
Raw | Dehydrated | Raw | Dehydrated | |||||||
Thermal treatment | Tetragonisca angustula | 52 | 470 min | ND | ND | - | 41.28 | 9.63 | ↓ | [15] |
T. angustula | 55 | 170 min | ND | ND | - | 41.28 | 11.47 | ↓ | ||
T. angustula | 57 | 60 min | ND | ND | - | 41.28 | 8.50 | ↓ | ||
T. angustula | 60 | 22 min | ND | 56.98 | ↑ | 41.28 | 81.18 | ↑ | ||
T. angustula | 66 | 8 min | ND | 43.08 | ↑ | 41.28 | 60.27 | ↑ | ||
T. angustula | 66 | 3 min | ND | 38.35 | ↑ | 41.28 | 48.10 | ↑ | ||
T. angustula | 68 | 1 min | ND | 27.51 | ↑ | 41.28 | 50.15 | ↑ | ||
T. angustula | 71 | 24 s | ND | 39.44 | ↑ | 41.28 | 51.15 | ↑ | ||
Vacuum drying | Heterotrigona itama | 40 | - | 82.88 | 67.25 | ↓ | 498.25 | 504.95 | ↑ | [21] |
H. itama | 50 | - | 82.88 | 73.82 | ↓ | 498.25 | 584.71 | ↑ | ||
H. itama | 60 | - | 82.88 | 79.78 | ↓ | 498.25 | 646.72 | ↑ | ||
Freeze-drying | H. itama | −54 | 24 h | 82.88 | 90.82 | ↑ | 498.25 | 618.39 | ↑ |
Method of Dehydration | T (°C)/ PL | Time | MC (%) | WR (%) | WA | HMF (mg/kg) | pH | FA | Ash | EC | DA | TSS | TRC | TPC | TFC | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Thermal treatment | 90–95 °C | 15–60 s | >17 | 4.2 | - | <LOQ | NC | NC | - | NC | NC | ↑ | ↓ | ↑ | ↑ | |
45–90 °C | 30–120 min | >17 | 6.9 | >0.6 | 42.40 | - | - | - | - | - | - | - | ↑ | - | ||
Thermosonication | 45–90 °C | 30–120 min | >17 | 16.6 | >0.6 | 62.46 | - | - | - | - | - | - | - | ↑ | - | |
Vacuum drying (5% moisture) | 60 °C | - | <17 | 84.3 | <0.6 | 12.18 | ↑ | ↓ | - | - | - | - | ↑ | ↑ | ↑ | |
Freeze-drying (5% moisture) | −54 °C | 24 h | <17 | 84.3 | <0.6 | 9.29 | NC | NC | - | - | - | - | ↓ | ↑ | ↑ | |
Microwave heating | 60 PL | 60 s | <17 | 52 | - | - | NC | - | - | - | - | ↑ | - | ↑ | - | |
Dehumidification | 35 °C | 2 days | >17 | 45 | - | - | NC | - | - | - | - | ↑ | - | ↑ | - | |
Food dehydrator | 55 °C | 18 h | <17 | 80 | <0.6 | <5.81 | - | - | - | - | NC | - | - | ↑ | - | |
MARDI dehydrator | 30 °C | 8 h | >17 | 35 | - | 2.39 | - | - | - | - | - | - | ↑ | ↑ | - | |
Clay pot storage | Large surface area | 25 °C | 10 days | >17 | 10.9 | >0.6 | - | NC | NC | ↑ | - | - | ↑ | ↑ | - | - |
35 °C | 3 days | >17 | 24.2 | >0.6 | - | ↑ | NC | NC | ↑ | - | ↑ | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ikhsan, L.N.; Chin, K.-Y.; Ahmad, F. Methods of the Dehydration Process and Its Effect on the Physicochemical Properties of Stingless Bee Honey: A Review. Molecules 2022, 27, 7243. https://doi.org/10.3390/molecules27217243
Ikhsan LN, Chin K-Y, Ahmad F. Methods of the Dehydration Process and Its Effect on the Physicochemical Properties of Stingless Bee Honey: A Review. Molecules. 2022; 27(21):7243. https://doi.org/10.3390/molecules27217243
Chicago/Turabian StyleIkhsan, Liyana Nabihah, Kok-Yong Chin, and Fairus Ahmad. 2022. "Methods of the Dehydration Process and Its Effect on the Physicochemical Properties of Stingless Bee Honey: A Review" Molecules 27, no. 21: 7243. https://doi.org/10.3390/molecules27217243
APA StyleIkhsan, L. N., Chin, K. -Y., & Ahmad, F. (2022). Methods of the Dehydration Process and Its Effect on the Physicochemical Properties of Stingless Bee Honey: A Review. Molecules, 27(21), 7243. https://doi.org/10.3390/molecules27217243