Comprehensive Comparison of Two Color Varieties of Perillae Folium by GC-MS-Based Metabolomic Approach
Abstract
1. Introduction
2. Results and Discussion
2.1. Compounds Identification
2.2. Chemical Comparison of Purple and Green PF
3. Materials and Methods
3.1. Plant Material
3.2. Metabolite Extraction
3.3. GC-MS Analysis
3.4. Data Processing and Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Tang, W.F.; Tsai, H.P.; Chang, Y.H.; Chang, T.Y.; Hsieh, C.F.; Lin, C.Y.; Lin, G.H.; Chen, Y.L.; Jheng, J.R.; Liu, P.C.; et al. Perilla (Perilla frutescens) leaf extract inhibits SARS-CoV-2 via direct virus inactivation. Biomed. J. 2021, 44, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Shen, Q.; Leng, L.; Zhang, D.; Chen, S.; Shi, Y.; Ning, Z.; Chen, S. Incipient diploidization of the medicinal plant Perilla within 10,000 years. Nat. Commun. 2021, 12, 5508. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.J.; Sa, K.J.; Hong, T.K.; Lee, J.K. Genetic diversity and population structure analysis in Perilla frutescens from Northern areas of China based on simple sequence repeats. Genet. Mol. Res. GMR 2017, 16, gmr16039746. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, M.; Miyazaki, Y. A review on bioactivities of perilla: Progress in research on the functions of perilla as medicine and food. Evidence-based complementary and alternative medicine. eCAM 2013, 2013, 925342. [Google Scholar] [CrossRef]
- Hou, T.; Netala, V.R.; Zhang, H.; Xing, Y.; Li, H.; Zhang, Z. Perilla frutescens: A Rich Source of Pharmacological Active Compounds. Molecules 2022, 27, 3578. [Google Scholar] [CrossRef]
- Lee, J.K.; Ohnishi, O. Genetic relationships among cultivated types of perilla frutescens and their weedy types in East Asia revealed by AFLP markers. Genet. Resour. Crop Evol. 2003, 50, 65–74. [Google Scholar] [CrossRef]
- Ahmed, H.M. Ethnomedicinal, Phytochemical and pharmacological investigations of Perilla frutescens (L.) Britt. Molecules 2018, 24, 102. [Google Scholar] [CrossRef]
- Makino, T.; Furuta, Y.; Wakushima, H.; Fujii, H.; Saito, K.; Kano, Y. Anti-allergic effect of Perilla frutescens and its active constituents. Phytother. Res. PTR 2003, 17, 240–243. [Google Scholar] [CrossRef]
- Yu, H.; Qiu, J.F.; Ma, L.J.; Hu, Y.J.; Li, P.; Wan, J.B. Phytochemical and phytopharmacological review of Perilla frutescens L. (Labiatae), A traditional edible-medicinal herb in China. Food Chem. Toxicol. 2017, 108 Pt B, 375–391. [Google Scholar] [CrossRef]
- Ghimire, B.K.; Yoo, J.H.; Yu, C.Y.; Chung, I.M. GC-MS analysis of volatile compounds of Perilla frutescens Britton var. Japonica accessions: Morphological and seasonal variability. Asian Pac. J. Trop. Med. 2017, 10, 643–651. [Google Scholar] [CrossRef]
- Seo, W.H.; Baek, H.H. Characteristic aroma-active compounds of Korean perilla (Perilla frutescens Britton) leaf. J. Agric. Food Chem. 2009, 57, 11537–11542. [Google Scholar] [CrossRef]
- Ahmed, H.M.; Tavaszi-Sarosi, S. Identification and quantification of essential oil content and composition, total polyphenols and antioxidant capacity of Perilla frutescens (L.) Britt. Food Chem. 2019, 275, 730–738. [Google Scholar] [CrossRef]
- Lee, Y.H.; Kim, B.; Kim, S.; Kim, M.S.; Kim, H.; Hwang, S.R.; Kim, K.; Lee, J.H. Characterization of metabolite profiles from the leaves of green perilla (Perilla frutescens) by ultra high performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry and screening for their antioxidant properties. J. Food Drug Anal. 2017, 25, 776–788. [Google Scholar] [CrossRef]
- Nakajima, A.; Yamamoto, Y.; Yoshinaka, N.; Namba, M.; Matsuo, H.; Okuyama, T.; Yoshigai, E.; Okumura, T.; Nishizawa, M.; Ikeya, Y. A new flavanone and other flavonoids from green perilla leaf extract inhibit nitric oxide production in interleukin 1β-treated hepatocytes. Biosci. Biotechnol. Biochem. 2015, 79, 138–146. [Google Scholar] [CrossRef]
- Fujiwara, Y.; Kono, M.; Ito, A.; Ito, M. Anthocyanins in perilla plants and dried leaves. Phytochemistry 2018, 147, 158–166. [Google Scholar] [CrossRef]
- Kim, J.K.; Park, S.Y.; Na, J.K.; Seong, E.S.; Yu, C.Y. Metabolite profiling based on lipophilic compounds for quality assessment of perilla (Perilla frutescens) cultivars. J. Agric. Food Chem. 2012, 60, 2257–2263. [Google Scholar] [CrossRef]
- Asif, M. Health effects of omega-3,6,9 fatty acids: Perilla frutescens is a good example of plant oils. Orient. Pharm. Exp. Med. 2011, 11, 51–59. [Google Scholar] [CrossRef]
- Peng, Y.; Ye, J.; Kong, J. Determination of phenolic compounds in Perilla frutescens L. by capillary electrophoresis with electrochemical detection. J. Agric. Food Chem. 2005, 53, 8141–8147. [Google Scholar] [CrossRef]
- Assefa, A.D.; Jeong, Y.J.; Kim, D.J.; Jeon, Y.A.; Ok, H.C.; Baek, H.J.; Sung, J.S. Characterization, identification, and quantification of phenolic compounds using UPLC-Q-TOF-MS and evaluation of antioxidant activity of 73 Perilla frutescens accessions. Food Res. Int. Ott. Ont. 2018, 111, 153–167. [Google Scholar] [CrossRef]
- Wang, Z.; Tu, Z.; Xie, X.; Cui, H.; Kong, K.W.; Zhang, L. Perilla frutescens Leaf Extract and Fractions: Polyphenol Composition, Antioxidant, Enzymes (α-Glucosidase, Acetylcholinesterase, and Tyrosinase) Inhibitory, Anticancer, and Antidiabetic Activities. Foods 2021, 10, 315. [Google Scholar] [CrossRef]
- Shin, T.Y.; Kim, S.H.; Kim, S.H.; Kim, Y.K.; Park, H.J.; Chae, B.S.; Jung, H.J.; Kim, H.M. Inhibitory effect of mast cell-mediated immediate-type allergic reactions in rats by Perilla frutescens. Immunopharmacol. Immunotoxicol. 2000, 22, 489–500. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, X.; Chen, S.; Wu, L.; Zhou, J.; Jia, K.; Ju, W. Integrated Network Pharmacology and GC-MS-Based Metabolomics to Investigate the Effect of Xiang-Su Volatile Oil Against Menopausal Depression. Front. Pharmacol. 2021, 12, 765638. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.H.; Yoo, J.M.; Lee, E.; Lee, B.; Cho, W.K.; Park, K.I.; Yeul Ma, J. Anti-inflammatory effects of Perillae Herba ethanolic extract against TNF-α/IFN-γ-stimulated human keratinocyte HaCaT cells. J. Ethnopharmacol. 2018, 211, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Kagawa, N.; Iguchi, H.; Henzan, M.; Hanaoka, M. Drying the leaves of Perilla frutescens increases their content of anticancer nutraceuticals. Food Sci. Nutr. 2019, 7, 1494–1501. [Google Scholar] [CrossRef]
- Huang, B.; Lei, Y.; Tang, Y.; Zhang, J.; Qin, L.; Liu, J. Comparison of HS-SPME with hydrodistillation and SFE for the analysis of the volatile compounds of zisu and baisu, two varietal species of Perilla frutescens of Chinese origin. Food Chem. 2011, 125, 268–275. [Google Scholar] [CrossRef]
- Tabanca, N.; Demirci, B.; Ali, A.; Ali, Z.; Khan, I.A. Essential oils of green and red perilla frutescens as potential sources of compounds for mosquito management. Ind. Crops Prod. 2015, 65, 36–44. [Google Scholar] [CrossRef]
- Fan, Y.; Cao, X.; Zhang, M.; Wei, S.; Zhu, Y.; Ouyang, H.; He, J. Quantitative Comparison and Chemical Profile Analysis of Different Medicinal Parts of Perilla frutescens (L.) Britt. from Different Varieties and Harvest Periods. J. Agric. Food Chem. 2022, 70, 8838–8853. [Google Scholar] [CrossRef]
- Deguchi, Y.; Ito, M. Rosmarinic acid in Perilla frutescens and perilla herb analyzed by HPLC. J. Nat. Med. 2020, 74, 341–352. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Li, D.Y.; Sun, J.; Cheng, J.M.; Chai, C.; Zhang, L.; Peng, G.P. Comprehensive Comparison of Two Color Varieties of Perillae Folium Using Rapid Resolution Liquid Chromatography Coupled with Quadruple-Time-of-Flight Mass Spectrometry (RRLC-Q/TOF-MS)-Based Metabolic Profile and in Vivo/in Vitro Anti-Oxidative Activity. J. Agric. Food Chem. 2020, 68, 14684–14697. [Google Scholar] [CrossRef]
- Nitta, M.; Kobayashi, H.; Ohnishi-Kameyama, M.; Nagamine, T.; Yoshida, M. Essential oil variation of cultivated and wild perilla analyzed by GC/MS. Biochem. Syst. Ecol. 2006, 34, 25–37. [Google Scholar] [CrossRef]
- Xu, Z.; Wu, W.; Zheng, Y.; Chen, L.; Cai, Q. Essential oil variations in different Perilla L. accessions: Chemotaxonomic implications. Plant Syst. Evol. 2009, 281, 1–10. [Google Scholar] [CrossRef]
- Vogt, T. Phenylpropanoid biosynthesis. Mol. Plant 2010, 3, 2–20. [Google Scholar] [CrossRef]
- Yuba, A.; Yazaki, K.; Tabata, M.; Honda, G.; Croteau, R. cDNA cloning, characterization, and functional expression of 4S-(-)-limonene synthase from Perilla frutescens. Arch. Biochem. Biophys. 1996, 332, 280–287. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, D.; Wang, L.; Xue, Z.; Guo, M.; Duan, L.; Zheng, Y. Comparison and Discrimination of Artemisia argyi and Artemisia lavandulifolia by Gas Chromatography-Mass Spectrometry-Based Metabolomic Approach. J. AOAC Int. 2019, 102, 1814–1821. [Google Scholar] [CrossRef]
- Cebi, N.; Arici, M.; Sagdic, O. The famous Turkish rose essential oil: Characterization and authenticity monitoring by FTIR, Raman and GC-MS techniques combined with chemometrics. Food Chem. 2021, 354, 129495. [Google Scholar] [CrossRef]
- Avci, A.B.; Korkmaz, M.; Özçelik, H. Essential oil composition of Cymbocarpum erythraeum (DC.) Boiss. from Turkey. Nat. Prod. Res. 2014, 28, 636–640. [Google Scholar] [CrossRef]
No. | Source | Specimen No. | No. | Source | Specimen No. |
---|---|---|---|---|---|
Z1 | Hebei Province | PF201908Z01 | Z12 | Imported from Japan | PF201908Z12 |
Z2 | Hebei Province | PF201908Z02 | B1 | Gansu Province | PF201908B01 |
Z3 | Hebei Province | PF201908Z03 | B2 | Gansu Province | PF201908B02 |
Z4 | Guizhou Province | PF201908Z04 | B3 | Gansu Province | PF201908B03 |
Z5 | Hebei Province | PF201908Z05 | B4 | Hebei Province | PF201908B04 |
Z6 | Hebei Province | PF201908Z06 | B5 | Gansu Province | PF201908B05 |
Z7 | Hebei Province | PF201908Z07 | B6 | Hebei Province | PF201908B06 |
Z8 | Hebei Province | PF201908Z08 | B7 | Gansu Province | PF201908B07 |
Z9 | Sichuan Province | PF201908Z09 | B8 | Gansu Province | PF201908B08 |
Z10 | Shanxi Province | PF201908Z10 | B9 | Gansu Province | PF201908B09 |
Z11 | Gansu Province | PF201908Z11 | B10 | Liaoning Province | PF201908B10 |
Peak No. | Retention Time (min) | Compounds | Molecular Weight | Molecular Formula | Retention Index | VIP | p-Value |
---|---|---|---|---|---|---|---|
1 | 5.01 | α-Pinene | 136 | C10H16 | 918 | 0.11 | *** |
2 | 5.66 | Pseudolimonene | 136 | C10H16 | 964 | 0.12 | *** |
3 | 6.45 | D-limonene | 136 | C10H16 | 1018 | 1.02 | *** |
4 | 7.52 | α-Terpinene | 136 | C10H16 | 1083 | 0.09 | *** |
5 | 7.69 | Linalool | 154 | C10H18O | 1093 | 0.13 | - |
6 | 9.71 | α-Terpineol | 154 | C10H18O | 1193 | 0.24 | *** |
7 | 10.01 | Perilla alcohol | 152 | C10H16O | 1207 | 0.06 | *** |
8 | 10.1 | Egomaketone | 166 | C10H14O2 | 1210 | 0.34 | *** |
9 | 10.54 | Nerol | 154 | C10H18O | 1229 | 0.14 | * |
10 | 11.21 | Perilla ketone | 166 | C10H14O2 | 1257 | 5.78 | *** |
11 | 11.71 | Shisool | 154 | C10H18O | 1277 | 1.06 | *** |
12 | 11.87 | Perillaldehyde | 150 | C10H14O | 1284 | 2.56 | *** |
13 | 12.45 | Isoegomaketone | 164 | C10H12O2 | 1307 | 2.03 | *** |
14 | 13.28 | Methyl perillate | 180 | C11H16O2 | 1339 | 0.07 | *** |
15 | 13.43 | γ-Elemene | 204 | C15H24 | 1344 | 0.20 | *** |
16 | 13.94 | Eugenol | 164 | C10H12O2 | 1363 | 0.20 | *** |
17 | 14.51 | α-Copaene | 204 | C15H24 | 1385 | 0.06 | - |
18 | 14.77 | β-Bourbonene | 204 | C15H24 | 1395 | 0.18 | *** |
19 | 14.94 | β-Elemene | 204 | C15H24 | 1401 | 0.05 | * |
20 | 15.77 | β-Caryophyllene | 204 | C15H24 | 1431 | 0.45 | *** |
21 | 16.66 | Perillic acid | 166 | C10H14O2 | 1464 | 0.22 | *** |
22 | 17.44 | β-Copaene | 204 | C15H24 | 1492 | 0.19 | - |
23 | 17.74 | Cis-α-Bergamotene | 204 | C15H24 | 1503 | 0.63 | - |
24 | 17.88 | Bicyclogermacrene | 204 | C15H24 | 1508 | 0.28 | ** |
25 | 18.09 | α-Farnesene | 204 | C15H24 | 1516 | 0.17 | *** |
26 | 18.51 | Myristicin | 192 | C11H12O3 | 1531 | 0.03 | * |
27 | 18.59 | δ-Cadinene | 204 | C15H24 | 1532 | 0.05 | * |
28 | 19.43 | Elemicin | 208 | C12H16O3 | 1565 | 0.05 | - |
29 | 19.64 | Nerolidol | 222 | C15H26O | 1572 | 0.15 | - |
30 | 20.12 | Espatulenol | 220 | C15H24O | 1590 | 0.10 | *** |
31 | 20.27 | β-Caryophyllene oxide | 220 | C15H24O | 1595 | 0.11 | - |
32 | 20.59 | α-Patchoulene | 204 | C15H24 | 1607 | 0.36 | *** |
33 | 21.35 | Apiol | 222 | C12H14O4 | 1636 | 0.07 | - |
34 | 22.16 | Isoelemicin | 208 | C12H16O3 | 1666 | 0.03 | - |
35 | 22.62 | Isoaromadendrene epoxide | 220 | C15H24O | 1683 | 0.03 | ** |
36 | 26.89 | Phytyl acetate | 338 | C22H42O2 | 1849 | 0.29 | ** |
37 | 27.04 | Pentadecanone | 268 | C18H36O | 1855 | 0.05 | *** |
38 | 29.91 | Palmitic acid | 256 | C16H32O2 | 1973 | 0.38 | *** |
39 | 30.67 | Ethyl palmitate | 284 | C18H36O2 | 2005 | 0.03 | * |
40 | 33.39 | Phytol | 296 | C20H40O | 2119 | 0.24 | * |
41 | 34.89 | α-Linolenic acid | 278 | C18H30O2 | 2181 | 0.06 | - |
42 | 37.32 | Glycidyl palmitate | 312 | C19H36O3 | 2283 | 0.08 | *** |
43 | 47.41 | Squalene | 410 | C30H50 | 2705 | 1.60 | *** |
44 | 48.56 | Nonacosane | 408 | C29H60 | 2754 | 0.40 | * |
45 | 49.16 | 1-Heptatriacotanol | 537 | C37H76O | 2779 | 0.38 | *** |
46 | 51.91 | Hentriacontane | 436 | C31H64 | 2894 | 0.98 | *** |
47 | 52.61 | Tocopheryl | 430 | C29H50O2 | 2923 | 1.01 | *** |
48 | 54.44 | Campesterol | 400 | C28H48O | 3000 | 0.20 | *** |
49 | 55.2 | β-Stigmasterol | 412 | C29H48O | 3031 | 0.12 | * |
50 | 56.33 | Dotriacontane | 450 | C32H66 | 3079 | 0.87 | *** |
51 | 56.68 | γ-Sitosterol | 414 | C29H50O | 3093 | 0.39 | *** |
52 | 57.42 | β-Amyrin | 426 | C30H50O | 3124 | 0.17 | - |
53 | 57.98 | β-Amyrone | 424 | C30H48O | 3148 | 0.04 | - |
54 | 58.7 | α-Amyrin | 426 | C30H50O | 3178 | 0.27 | - |
No. | Retention Time (min) | Retention Index | Compounds | Purple PF ( ± SD, n = 12, %) | Green PF ( ± SD, n = 10, %) |
---|---|---|---|---|---|
3 | 6.45 | 1018 | D-limonene | 5.12 ± 1.23 | 0.20 ± 0.04 |
10 | 11.21 | 1257 | Perilla ketone | 2.15 ± 0.97 | 27.50 ± 3.01 |
11 | 11.71 | 1277 | Shisool | 5.41 ± 0.86 | 0.05 ± 0.02 |
12 | 11.87 | 1284 | Perillaldehyde | 31.72 ± 3.12 | 0.60 ± 0.21 |
13 | 12.45 | 1307 | Isoegomaketone | 0.13 ± 0.07 | 5.71 ± 0.80 |
43 | 47.41 | 2705 | Squalene | 4.44 ± 0.88 | 7.32 ± 0.76 |
47 | 52.61 | 2923 | Tocopheryl | 4.81 ± 0.67 | 7.00 ± 0.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Zhang, D.; Wang, Q.; Yang, A.; Zheng, Y.; Wang, L. Comprehensive Comparison of Two Color Varieties of Perillae Folium by GC-MS-Based Metabolomic Approach. Molecules 2022, 27, 6792. https://doi.org/10.3390/molecules27206792
Chen J, Zhang D, Wang Q, Yang A, Zheng Y, Wang L. Comprehensive Comparison of Two Color Varieties of Perillae Folium by GC-MS-Based Metabolomic Approach. Molecules. 2022; 27(20):6792. https://doi.org/10.3390/molecules27206792
Chicago/Turabian StyleChen, Jiabao, Dan Zhang, Qian Wang, Aitong Yang, Yuguang Zheng, and Lei Wang. 2022. "Comprehensive Comparison of Two Color Varieties of Perillae Folium by GC-MS-Based Metabolomic Approach" Molecules 27, no. 20: 6792. https://doi.org/10.3390/molecules27206792
APA StyleChen, J., Zhang, D., Wang, Q., Yang, A., Zheng, Y., & Wang, L. (2022). Comprehensive Comparison of Two Color Varieties of Perillae Folium by GC-MS-Based Metabolomic Approach. Molecules, 27(20), 6792. https://doi.org/10.3390/molecules27206792