Rapid Identification of Constituents in Cephalanthus tetrandrus (Roxb.) Ridsd. et Badh. F. Using UHPLC-Q-Exactive Orbitrap Mass Spectrometry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Scheme for Qualitative Analysis
2.2. Optimization of Extraction Conditions
2.3. UHPLC-ESI-MS2 Qualitative Analysis of CGAs and Flavonoids
2.3.1. Identification Based on Reference Standard
2.3.2. Identification of Speculative Chlorogenic Acid Derivatives
Identification of Monoacyl-Quinic Acids and Monoacyl-Shikimic Acids
Identification of Diacyl-Quinic Acids and Diacyl-Shikimic Acids
Identification of Triacyl-Quinic Acids and Triacyl-Shikimic Acids
Others
2.3.3. Identification of Speculative Anthocyanins
2.3.4. Identification of Speculative Flavonoids
Identification of Flavonols
Identification of Flavones
Identification of Flavanones
Identification of Flavanonols
2.4. Pharmacological Activity of Constituents in CT
3. Materials and Methods
3.1. Chemicals and Reference Standards
3.2. Reference Standards and Sample Preparation
3.3. Instruments and Conditions
3.4. Prediction of Expected Compounds
3.5. Establishment of Diagnostic Fragmentation Ions (DFIs) and Neutral Loss (NL)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Nanjing University of Chinese Medicine. Dictionary of Chinese Medicine; Shanghai Sci Technol Press: Shanghai, China, 2006; p. 653. ISBN 978-75-3238-271-2. [Google Scholar]
- Wang, X. Identification for Button in Pharmacognostica. J. Traditi. Chin. Med. 2007, 4, 86–103. [Google Scholar] [CrossRef]
- Ma, K.; Yang, C.B.; Huang, Y.Q.; Wu, X.W.; Jian, Y.C. Determination of high fructose amylose syrup in honey by solid phase extraction coupled with thin layer chromatography. China Flavor. 2021, 6, 140–143. [Google Scholar] [CrossRef]
- Tan, Y.Y.; Yang, C.Y.; Pan, Y.T. Improvement of thin-layer identification method of Nan Banlangen. J. Guangdong Chem. Ind. 2021, 9, 100–102. [Google Scholar] [CrossRef]
- Ferreyra, M.L.F.; Serra, P.; Casati, P. Recent advances on the roles of flavonoids as plant protective molecules after UV and high light exposure. J. Plant Physiol. 2021, 173, 736–749. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.C.; Peng, Q.R.; Yang, M.; Zhang, R.; Fu, Y.Y. Application of near infrared spectroscopy in honey detection. J. Sci. Technol. Food. Ind. 2020, 1, 334–341. [Google Scholar] [CrossRef]
- Peng, K.Z.; Yu, H.; Xia, M.; Liu, H.; Lan, C.J.; Wu, F.Y.; Wu, J. Study on the quality evaluation of hand ginseng herbs from different origins based on 1H-NMR metabolomi cs. J. Sichuan For. Sci. Technol. 2021, 3, 126–131. [Google Scholar] [CrossRef]
- Liang, G.Y.; Jiang, Y.M.; Zhou, M.; Xia, Y.; Li, C.Y. Determination of ethanol and acetic acid in fermented beverages by quantitative nuclear magnetic resonance hydrogen spectrometry. Food. Ferment. Ind. 2021, 10, 235–239. [Google Scholar] [CrossRef]
- Niu, J.; Cao, R.; Si, X.L.; Xin, E.D.; Zhang, Y.G.; Zhang, S.J.; Li, Y.F. Application of LC-MS in the analysis of flavonoids in natural products. Mod. China Med. 2020, 22, 1576–1579. [Google Scholar] [CrossRef]
- Hao, J.; Zhu, H.; Liu, S. Characterization of anthocyanins in fruit of Kadsura coccinea (Lem.) A.C. Smith by UPLC/Q-TOF-MS analysis and evaluation of stability of the major anthocyanins. J. Food. Chem. 2014, 7, 1312–1322. [Google Scholar] [CrossRef]
- Cai, W.; Li, K.L.; Xiong, P.; Gong, K.Y.; Zhu, L. A systematic strategy for rapid identification of chlorogenic acids derivatives in Duhaldea nervosa using UHPLC-Q-Exactive Orbitrap mass spectrometry. Arab. J. Chem. 2020, 13, 3751–3761. [Google Scholar] [CrossRef]
- Xiang, L.; Wei, J.; Tian, X.Y.; Wang, B.; Chan, W. Comprehensive analysis of acylcarnitine species in db/db mouse using a novel method of high-resolution parallel reaction monitoring reveals widespread metabolic dysfunction induced by diabetes. Anal. Chem. 2017, 89, 10368–10375. [Google Scholar] [CrossRef] [PubMed]
- Clifford, M.N.; Johnston, K.L.; Knight, S.; Kuhnert, N. Hierarchical scheme for LC-MSn identification of chlorogenic acids. J. Agric. Food. Chem. 2003, 51, 2900–2911. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Y.; Wang, Z.J.; Li, Y.; Liu, Y.; Cai, W. Astrategy for comprehensive identification of sequential constituents using ultra-high-performance liquid chromatography coupled with linear ion trap-Orbitrap mass spectrometer, application study on chlorogenic acids in Flos Lonicerae Japonicae. Talanta 2016, 47, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Clifford, M.N.; Kirkpatrick, J.; Kuhnert, N.; Roozendaal, H.; Salgado, P.R. LC-MSn analysis of the cis isomers of chlorogenic acids. Food. Chem. 2008, 106, 379–385. [Google Scholar] [CrossRef]
- Jaiswal, R.; Deshpande, S.; Kuhnert, N. Profiling the chlorogenic acids of Rudbeckia hirta, Helianthus tuberosus, Carlina acaulis and Symphyotrichum novae-angliae leavesby LC-MSn. Phytochem. Analysis 2011, 22, 432–444. [Google Scholar] [CrossRef]
- Jaiswal, R.; Halabi, E.A.; Karar, M.G.; Kuhnert, N. Identification andcharacterisation of the phenolics of Ilex glabra L. Gray (Aquifoliaceae) leaves by liquid chromatography tandem mass spectrometry. Phytochemistry 2014, 106, 141–155. [Google Scholar] [CrossRef]
- Jaiswal, R.; Matei, M.F.; Subedi, P.; Kuhnert, N. Does roasted coffee contain chlorogenic acid lactones or/and cinnamoylshikimate esters? Food. Res. Int. 2014, 61, 214–227. [Google Scholar] [CrossRef]
- Jaiswal, R.; Müller, H.; Müller, A.; Karar, M.G.E.; Kuhnert, N. Identification and characterization of chlorogenic acids, chlorogenic acid glycosides and flavonoids from Lonicera henryi L. (Caprifoliaceae) leaves by LC-MSn. Phytochemistry 2014, 108, 252–263. [Google Scholar] [CrossRef]
- Jaiswal, R.; Matei, M.F.; Golon, A.; Witt, M.; Kuhnert, N. Understanding the fate of chlorogenic acids in coffee roasting using mass spectrometry based targeted and non-targeted analytical strategies. Food. Funct. 2012, 3, 976–984. [Google Scholar] [CrossRef]
- Jaiswal, R.; Sovdat, T.; Vivan, F.; Kuhnert, N. Profiling and characterization by LC-MSn of the chlorogenic acids and hydroxycinnamoylshikimate esters in mate (Ilex paraguariensis). J. Agric. Food. Chem. 2010, 58, 5471–5484. [Google Scholar] [CrossRef]
- Liu, L.H.; Zhang, J.Y.; Zheng, B.J.; Guan, Y.; Wang, L.T. Rapid characterization of Chlorogenic Acids in Duhaldea nervosa based on UHPLC LTQ-Orbitrap-MS and mass spectral trees similarity filter technique. J. Sep. Sci. 2018, 41, 1764–1774. [Google Scholar] [CrossRef] [PubMed]
- Clifford, M.N.; Knight, S.; Kuhnert, N. Discriminating between the six isomers of dicaffeoylquinic acid by LC-MSn. J. Agric. Food. Chem. 2005, 53, 3821–3832. [Google Scholar] [CrossRef] [PubMed]
- Clifford, M.N.; Marks, S.; Knight, S.; Kuhnert, N. Characterization by LC-MSn of four new classes of pcoumaric acid-containing diacyl chlorogenic acids in green coffee beans. J. Agric. Food. Chem. 2006, 54, 4095–4101. [Google Scholar] [CrossRef] [PubMed]
- Gavrilova, V.; Kajdzanoska, M.; Gjamovski, V.; Stefova, M. Separation, Characterizationand quantification of phenolic compounds in blueberries and red and black currants byHPLC-DAD-ESI-MSn. J. Agric. Food. Chem. 2011, 59, 4009–4018. [Google Scholar] [CrossRef]
- Li, K.L.; Liu, L.H.; Xiong, P.; Tang, S.V.; Chen, H.X. Rapid Identification of Anthocyanin from the Epicarp of Kadsura Coccinea (Lem.) A.C. Smith by UHPLC-Q-Exactive Orbitrap Mass Spectrometry. Food. Anal. Methods 2021, 14, 2545–2555. [Google Scholar] [CrossRef]
- Zou, T.B.; Wang, D.L.; Guo, H.H.; Zhu, Y.N.; Luo, X.Q. Optimization of microwave-assisted extraction of anthocyanins from mulberry and identificationof anthocyanins in extractusing HPLC-ESI-MS. J. Food. Sci. 2012, 77, C46–C50. [Google Scholar] [CrossRef]
- Li, Q.; Luo, X.; He, S. Optimization for cellulase-microwave extraction process and its chemical composition of favonoizs substance from Adinandra nitida Merr.ex H.L.Lt. Sci. Technol. Food. Ind. 2020, 41, 15–22. [Google Scholar] [CrossRef]
- Jara, P.J.; Josep, L.T. Analysis of proanthocyanidins in almond blanch water by HPLC-ESI-QqQ-MS/MS and MALDI-TOF/TOF MS. J. Food. Res. Int. 2012, 49, 798–806. [Google Scholar] [CrossRef]
- Yang, Y.S.; Li, R.; Jiang, Z.T.; Liu, T. Analysis and identification of flavonoids in laurel leaves. Mod. Food Sci. Technol. 2016, 32, 270–275. [Google Scholar] [CrossRef]
- Chen, L.L.; Chen, C.H.; Zhang, X.X.; Wang, Y.; Wang, S.F. Identification of constituents in Gui-Zhi-Jia-Ge-Gen-Tang by LC-IT-MS combined with LC-Q-TOF-MS and elucidation of their metabolic networks in rat plasma after oral administration. Chin. J. Nat. Med. 2019, 17, 803–821. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.X. Component analysis and authenticity identification of Yunwu Tea on Lushan Mountain based on UPLC-QTOF-MS technology. Chin. J. Food. Sci. 2020, 20, 269–277. [Google Scholar] [CrossRef]
- Mao, Y.L. Chlorogenic Acid Prevents Ovariectomized Acquired Osteoporosis in Rats through the Shp2/PI3/Akt Signaling Pathway. Master’s Thesis, Nanchang University, Nanchang, China, 2016. [Google Scholar] [CrossRef]
- Zhang, B.R.; Ma, W.H.; Chen, B. Effect of Chlorogenic Acid on the Fever Induced by Endotoxin. J. Liaoning University. Tradl Chin. Med. 2012, 14, 229–231. [Google Scholar] [CrossRef]
- Santos, D. Evaluation of the anti-inflflammatory, analgesic and antipyretic activities of the natural polyphenol chlorogenic acid. Biol. Pharm. Bull. 2006, 29, 2236–2240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almeida, A.A.P. Antibacterial activity of coffee extracts and selected coffee chemical compounds against enterobacteria. J. Agricol. Food Chem. 2006, 54, 8738–8743. [Google Scholar] [CrossRef] [PubMed]
- Kono, Y. Iron chelation by chlorogenic acid as a natural antioxidant. Biosci. Biotechnol. Biochem. 1998, 62, 22–27. [Google Scholar] [CrossRef] [Green Version]
- Qi, H.; Shi, Y.T.; Wu, H.; Niu, C.Y.; Sun, X.Y.; Wang, K.W. Inhibition of temperature-sensitive TRPV3 channel by two natural isochlorogenic acid isomers for alleviation of dermatitis and chronic pruritus. Acta Pharm. Sin. B 2022, 12, 723–734. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Y.Y.; Jiang, Q.C. Research progress on pharmacological action of quercetin. Spec. Econ. Anim. Plants 2020, 23, 24–28. [Google Scholar] [CrossRef]
- Lei, X.Q.; Chen, A.; Liu, Y.; He, J. Research progress on pharmacological action of kaempferol. Stud. Trace Elem. Health 2017, 34, 61–62. [Google Scholar]
- Martins, G.R.; Amaral, F.R.L.d.; Brum, F.L.; Mohana-Borges, R.; de Moura, S.S.T.; Ferreira, F.A.; Sangenito, L.S.; Santos, A.L.S.; Figueiredo, N.G.; da Silva, A.S. Chemical characterization, antioxidant and antimicrobial activities of açaí seed (Euterpe oleracea Mart.) extracts containing A and B-type procyanidins. LWT 2020, 132, 109830. [Google Scholar] [CrossRef]
Peak | tR | Theoretical Mass m/z | Experimental Mass m/z | Error (ppm) | Formula | MS/MS Fragment (−) | MS/MS Fragment (+) | Identification |
---|---|---|---|---|---|---|---|---|
1 | 0.93 | 353.1089 | 353.1082 | −2.14 | C13H22O11 | MS2 [353]: 353.1088 (100), 173.0444 (67), 191.0551 (62), 85.0279 (3) | QA-hexoside | |
2 | 1.11 | 353.1089 | 353.1084 | −1.51 | C13H22O11 | MS2 [353]: 191.0551 (100), 173.0443 (21), 179.0549 (15), 129.0376 (11) | QA-hexoside | |
3 | 2.58 | 341.0878 | 341.0876 | −0.63 | C15H18O9 | MS2 [341]: 161.0233 (100), 179.0340 (41), 135.0439 (20) | CA-hexoside | |
4 | 2.96 | 341.0878 | 341.0875 | −0.84 | C15H18O9 | MS2 [341]: 161.0232 (100), 179.0338 (55), 135.0438 (29) | CA-hexoside | |
5 | 3.38 | 341.0878 | 341.0872 | −1.72 | C15H18O9 | MS2 [341]: 203.0341 (100), 161.0233 (93), 135.0438 (53), 179.0342 (49), 101.0230 (25) | CA-hexoside | |
6 * | 3.41 | 353.0878 | 353.0874 | −1.15 | C16H18O9 | MS2 [353]: 191.0552 (100), 135.0440 (79), 179.0341 (46), 173.0448 (2) | trans-3-CQA | |
7 | 3.66 | 341.0878 | 341.0874 | −1.19 | C15H18O9 | MS2 [341]: 161.0233 (100), 179.0339 (91), 135.0438 (26) | CA-hexoside | |
8 | 3.80 | 341.0878 | 341.0873 | −1.36 | C15H18O9 | MS2 [341]: 161.0233 (100), 179.0339 (23) | CA-hexoside | |
9 | 3.81 | 515.1406 | 515.1385 | −4.15 | C22H28O14 | MS2 [515]: 191.0554 (100) | CQA-hexoside | |
10 | 3.82 | 499.1457 | 499.1463 | 1.11 | C22H28O13 | MS2 [499]: 173.0446 (100), 93.0332 (89), 191.0553 (38), 163.0392 (22) | 4-pCoQA-hexoside | |
11 | 4.01 | 341.0878 | 341.0875 | −0.92 | C15H18O9 | MS2 [341]: 179.0340 (100), 135.0439 (26), 161.0232 (17) | CA-hexoside | |
12 | 4.21 | 341.0878 | 341.0876 | −0.75 | C15H18O9 | MS2 [341]: 179.0340 (100), 161.0233 (37), 135.0439 (27) | CA-hexoside | |
13 * | 4.25 | 577.1351 | 577.1350 | −0.35 | C30H26O12 | MS2 [577]: 289.0716 (100), 125.0232 (88), 407.0769 (55), 161.0235 (25), 245.0813 (15), 353.0880 (19) | MS2 [579]: 127.0390 (100), 139.0391 (30), 123.0443 (21) | Procyanidin B1 |
579.1497 | 579.1517 | 3.50 | ||||||
14 | 4.29 | 337.0929 | 337.0926 | −0.89 | C16H18O8 | MS2 [337]: 163.0389 (100), | trans-3-pCoQA | |
15 | 4.31 | 515.1406 | 515.1408 | 0.35 | C22H28O14 | MS2 [515]: 191.0554 (100), 323.0773 (39), 161.0235 (11) | CQA-hexoside | |
16 | 4.40 | 529.1563 | 529.1566 | 0.65 | C23H30O14 | MS2 [529]: 191.0554 (100), 173.0446 (41) | 5-FQA-hexoside | |
17 | 4.45 | 677.1935 | 677.1924 | −1.49 | C28H38O19 | MS2 [677]: 191.0553 (100), 353.0882 (22) | CQA-Dihexoside | |
18 | 4.47 | 341.0878 | 341.0875 | −0.84 | C15H18O9 | MS2 [341]: 179.0340 (100), 161.0233 (39), 135.0439 (29) | CA-hexoside | |
19 | 4.48 | 465.1038 | 465.1030 | −1.76 | C21H22O12 | MS2 [465]: 61.9869 (100), 285.0400 (88), 125.0231 (53), 275.0556 (35), 177.0183 (26), 178.9975 (21), 303.0507 (18),151.0023 (11) | Taxifolin hexoside | |
20 | 4.50 | 515.1406 | 515.1397 | −1.78 | C22H28O14 | MS2 [515]: 191.0554 (100), 323.0773 (39), 161.0235 (12) | CQA-hexoside | |
21 | 4.69 | 341.0878 | 341.0877 | −0.37 | C15H18O9 | MS2 [341]: 179.0340 (100), 161.0233 (30), 135.0439 (24) | CA-hexoside | |
22 | 4.74 | 515.1406 | 515.1395 | −2.25 | C22H28O14 | MS2 [515]: 191.0554 (100), 179.0342 (21), 323.0774 (18), 173.0447 (15) | CQA-hexoside | |
23 | 4.78 | 499.1457 | 499.1449 | −1.61 | C22H28O13 | MS2 [499]: 191.0554 (100), 173.0446 (36), 163.0391 (21) | 5-pCoQA-hexoside | |
24 * | 4.89 | 353.0878 | 353.0872 | −1.74 | C16H18O9 | MS2 [353]: 173.0448 (100), 179.0342 (69), 191.0554 (58), 135.0441 (29) | trans-4-CQA | |
25 * | 5.03 | 353.0878 | 353.0872 | −1.66 | C16H18O9 | MS2 [353]: 191.0554 (100) | trans-5-CQA | |
26 | 5.14 | 757.2186 | 757.2186 | 0.08 | C33H41O20 | MS2 [757]: 287.0534 (100), 449.1057 (57), 595.1647 (1) | Cyanidin-O-rutinoside-O-galactoside | |
27 | 5.21 | 397.1140 | 397.1133 | −1.71 | C18H22O10 | MS2 [397]: 191.0553 (100), 173.0446 (12) | trans-3-SQA | |
28 | 5.25 | 337.0929 | 337.0925 | −1.07 | C16H18O8 | MS2 [337]: 173.0444 (100), 163.0389 (20), 191.0551 (12) | trans-4-pCoQA | |
29 | 5.25 | 529.1563 | 529.1561 | −0.28 | C23H30O14 | MS2 [529]: 191.0554 (100), 173.0447 (31), 193.0499 (15) | 5-FQA-hexoside | |
30 | 5.30 | 397.1140 | 397.1131 | −2.24 | C18H22O10 | MS2 [397]: 191.0553 (100), 173.0446 (8), 179.0340 (6) | cis-3-SQA | |
31 | 5.31 | 515.1406 | 515.1397 | −1.78 | C22H28O14 | MS2 [515]: 191.0554 (100), 323.0773 (38), 161.0235 (14) | CQA-hexoside | |
32 * | 5.34 | 577.1351 | 577.1346 | −0.88 | C30H26O12 | MS2 [577]: 289.0720 (100), 125.0233 (92), 407.0775 (60), 161.0236 (24), 245.0818 (16) | MS2 [579]: 127.0389 (100), 139.0388 (53), 123.0441 (26) | Procyanidin B2 |
579.1497 | 579.1484 | −2.28 | ||||||
33 | 5.44 | 353.0878 | 353.0874 | −1.23 | C16H18O9 | MS2 [353]: 191.0551 (100) | cis-5-CQA | |
34 | 5.52 | 515.1406 | 515.1396 | −2.02 | C22H28O14 | MS2 [515]: 191.0554 (100), 353.1092 (16) | CQA-hexoside | |
35 | 5.54 | 497.1301 | 497.1289 | −2.26 | C22H26O13 | MS2 [497]: 179.0341 (100), 335.0775 (24), 135.0441 (20) 161.0235 (18) | CSA-hexoside | |
36 | 5.54 | 771.1989 | 771.1998 | 1.09 | C33H40O21 | MS2 [771]: 301.0349 (100), 300.0266 (56),463.0845 (15), 609.1459 (7) | Quercetin-O-glucosylrutinoside | |
37 | 5.62 | 449.1089 | 449.1088 | −0.39 | C21H22O11 | MS2 [449]: 61.9869 (100), 259.0607 (30), 269.0451 (21), 125.0230 (12), 287.0560 (11) | Erodcyol-O-hexoside | |
38 | 5.67 | 335.0772 | 335.0772 | −0.00 | C16H16O8 | MS2 [335]: 161.0232 (100), 179.0339 (25), 135.0439 (15) | 3-CQL | |
39 | 5.68 | 289.0718 | 289.0716 | −0.70 | C15H14O6 | MS2 [289]: 245.0815 (100), 109.0282 (69), 125.0231 (66), 203.0704 (64) | MS2 [291]: 139.0388 (100), 123.0440 (48), 147.0439 (20) | Catechin |
291.0863 | 291.0859 | −1.39 | ||||||
40 | 5.74 | 529.1563 | 529.1563 | 0.06 | C23H30O14 | MS2 [529]: 191.0553 (100), 193.0498 (43), 173.0445 (14) | 5-FQA-hexoside | |
41 | 5.76 | 497.1301 | 497.1303 | 0.56 | C22H26O13 | MS2 [497]: 161.0234 (100), 173.0809 (49), 193.0709 (41) | CQL-hexoside | |
42 | 5.79 | 337.0929 | 337.0928 | −0.36 | C16H18O8 | MS2 [337]: 173.0444 (100), 163.0390 (21), 119.0498 (5), | cis-4-pCoQA | |
43 | 5.85 | 335.0772 | 335.0771 | −0.45 | C16H16O8 | MS2 [335]: 179.0339 (100), 135.0439 (39), 161.0233 (16) | 5-CSA | |
44 | 5.98 | 677.1935 | 677.1951 | 2.39 | C28H38O19 | MS2 [677]: 191.0553 (100) | CQA-dihexoside | |
45 | 5.99 | 353.0878 | 353.0874 | −1.06 | C16H18O9 | MS2 [353]: 191.0551 (100), 173.0445 (2), 85.0280 (1) | cis-3-CQA | |
46 | 5.99 | 449.1089 | 449.1080 | −2.01 | C21H22O11 | MS2 [449]: 61.9869 (100), 269.0450 (16), 259.0593 (14), 287.0560 (6) | Erodcyol-O-hexoside | |
47 | 6.01 | 529.1563 | 529.1553 | −1.91 | C23H30O14 | MS2 [529]: 173.0447 (100), 191.0554 (74), 193.0499 (58) | 4-FQA-hexoside | |
48 | 6.02 | 757.2186 | 757.2177 | −1.22 | C33H41O20 | MS2 [757]: 287.0533 (100), 449.1054 (59), 595.1649 (1) | Cyanidin-O-rutinoside-O-galactoside | |
49 | 6.17 | 335.0772 | 335.0769 | −1.02 | C16H16O8 | MS2 [335]: 179.0340 (100), 135.0439 (44), 161.0233 (20) | 4-CSA | |
50 | 6.25 | 367.1035 | 367.1028 | −1.68 | C17H20O9 | MS2 [367]: 173.0445 (100), 191.0553 (68), 193.0497 (23) | 4-FQA | |
51 | 6.32 | 465.1038 | 465.1038 | −0.19 | C21H22O12 | MS2 [465]: 285.0403 (100), 125.0231 (54), 177.0182 (29), 303.0508 (19), 139.0387 (12) | Taxifolin hexoside | |
52 | 6.34 | 337.0929 | 337.0927 | −0.71 | C16H18O8 | MS2 [337]: 191.0551 (100),173.0444 (2) | cis-5-pCoQA | |
53 | 6.37 | 335.0772 | 335.0769 | −0.81 | C16H16O8 | MS2 [335]: 161.0235 (100), 135.0440 (51), 179.0341 (10), 173.0446 (2) | 1-CQL | |
54 | 6.39 | 397.1140 | 397.1141 | −0.38 | C18H22O10 | MS2 [397]: 161.0235 (100), 191.0554 (26), 173.0447 (13) | trans-5-SQA | |
55 | 6.42 | 367.1035 | 367.1028 | −1.76 | C17H20O9 | MS2 [367]: 191.0551 (100), 93.0331 (23), 173.0444 (14) | trans-5-FQA | |
56 | 6.49 | 335.0772 | 335.0772 | −0.27 | C16H16O8 | MS2 [335]: 161.0232 (100), 135.0438 (12), 179.0339 (10) | 4-CQL | |
57 | 6.57 | 397.1140 | 397.1136 | −0.93 | C18H22O10 | MS2 [397]: 191.0553 (100), 173.0446 (24) | cis-5-SQA | |
58 | 6.63 | 771.1989 | 771.1989 | 0.05 | C33H40O21 | MS2 [771]: 367.1034 (100), 609.1469 (31), 301.0352 (17), 463.0880 (6) | Quercetin-O-glucosylrutinoside | |
59 | 6.74 | 367.1035 | 367.1029 | −1.32 | C17H20O9 | MS2 [367]: 191.0551 (100) | cis-5-FQA | |
60 | 6.77 | 755.2040 | 755.2032 | −1.02 | C33H40O20 | MS2 [755]: 300.0271 (100), 191.0551 (37), 301.0391 (14) | Quercetin rhamnosylrutinoside | |
61 | 6.83 | 515.1195 | 515.1181 | −2.60 | C25H24O12 | MS2 [515]: 191.0552 (100), 323.0558 (16), 173.0444 (14), 179.0338 (3) | Dicaffeoylquinic acid | |
62 | 6.86 | 625.1410 | 625.1392 | −2.79 | C27H30O17 | MS2 [625]: 301.0348 (100), 300.0271 (94), 625.1396 (66), 463.0883 (3), 151.0023 (2) | Quercetin-O-sophoroside | |
63 | 6.89 | 771.1989 | 771.1961 | −3.66 | C33H40O21 | MS2 [771]: 301.0350 (100), 300.0271 (33), 463.0898 (6), 609.1464 (4) | Quercetin-O-glucosylrutinoside | |
64 | 7.11 | 597.1450 | 597.1441 | −1.53 | C26H29O16 | MS2 [597]: 303.0493 (100) | Delphinidin-3-xylosylglucoside | |
65 | 7.24 | 739.2091 | 739.2125 | 4.62 | C33H40O19 | MS2 [739]: 284.0322 (100), 285.0398 (19), 593.1513 (1) | MS2 [741]: 287.0544 (100) | Kaempferol-O-rutinosylrhamnoside |
741.2237 | 741.2226 | −1.34 | ||||||
66 | 7.26 | 303.0510 | 303.0504 | −2.00 | C15H12O7 | MS2 [303]: 125.0233 (100), 153.0186 (12), 175.0393 (11), 151.0026 (10), 199.0398 (10) | Taxifolin | |
67 | 7.50 | 449.1078 | 449.1073 | −1.00 | C21H21O11 | MS2 [449]: 303.0495 (100) | Delphinidin-3-O-rhamnoside | |
68 | 7.50 | 611.1607 | 611.1597 | −1.43 | C27H31O16 | MS2 [611]: 303.0493 (100) | Delphinidin-3-O-rutinoside | |
69 | 7.51 | 465.1028 | 465.1019 | −1.64 | C21H21O12 | MS2 [465]: 303.0494 (100) | Delphinidin-3-O-hexoside | |
70 * | 7.52 | 609.1461 | 609.1455 | −0.88 | C27H30O16 | MS2 [609]: 300.0271 (100), 301.0345 (57) | Rutin | |
71 * | 7.77 | 463.0882 | 463.0877 | −0.93 | C21H20O12 | MS2 [463]: 300.0272 (100), 301.0344 (56), 151.0024 (4), 178.9977 (3) | MS2 [465]: 303.0496 (100) | Isoquercitrin |
465.1028 | 465.1022 | −1.12 | ||||||
72 | 7.80 | 917.2357 | 917.2340 | −1.79 | C42H46O23 | MS2 [917]: 301.0343 (100), 300.0271 (95), 609.1456 (15), 463.0869 (12), 151.0027 (8), 771.1989 (1) | Quercetin caffeoylrutinosylrhamnoside | |
73 | 7.98 | 595.1657 | 595.1653 | −0.66 | C27H31O15 | MS2 [595]: 287.0544 (100) | Cyanidin-3-O-rutinoside | |
74 | 7.99 | 593.1512 | 593.1508 | −0.53 | C27H30O15 | MS2 [593]: 284.0322 (100), 285.0394 (53), 151.0026 (3) | Kaempferol-3-O-rutinoside isomer | |
75 * | 8.06 | 515.1195 | 515.1190 | −0.81 | C25H24O12 | MS2 [515]: 173.0444 (100), 179.0339 (92), 191.0551 (38), 135.0439 (14), 161.0231 (13), 353.0877 (12) | 3,4-DiCQA | |
76 | 8.15 | 433.0776 | 433.0759 | −3.87 | C20H18O11 | MS2 [433]: 300.0278 (100), 123.0440 (24), 119.0339 (12), 301.0351 (12), 151.0026 (1) | Quercetin-O-arabinoside | |
77 | 8.34 | 447.0933 | 447.0928 | −0.95 | C21H20O11 | MS2 [447]: 284.0323 (100), 285.0387 (27), 255.0291 (11), 151.0027 (4) | MS2 [449]: 287.0544 (100) | Astragalin isomer |
449.1078 | 449.1071 | −1.60 | ||||||
78 * | 8.34 | 515.1195 | 515.1187 | −1.42 | C25H24O12 | MS2 [515]: 191.0551 (100), 179.0339 (80), 173.0444 (37), 353.0874 (15), 135.0438 (14) | 3,5-DiCQA | |
79 | 8.38 | 595.1657 | 595.1647 | −1.61 | C27H31O15 | MS2 [595]: 287.0544 (100) | Cyanidin-3-O-rutinoside isomer | |
80 * | 8.39 | 593.1512 | 593.1506 | −0.95 | C27H30O15 | MS2 [593]: 285.0400 (100), 284.0323 (49), 151.0026 (1) | Kaempferol-3-O-rutinoside | |
81 | 8.46 | 917.2357 | 917.2359 | 0.27 | C42H46O23 | MS2 [917]: 300.0268 (100), 301.0345 (52), 609.1443 (12), 151.0025 (4), 463.0871 (1) | Quercetin caffeoylrutinosylrhamnoside | |
82 | 8.48 | 625.1763 | 625.1754 | −1.43 | C28H33O16 | MS2 [625]: 317.0649 (100) | Petunidin-3-O-rutinoside | |
83 | 8.49 | 623.1618 | 623.1608 | −1.39 | C28H32O16 | MS2 [623]: 314.0428 (100), 315.0502 (77), 299.0185 (13), 101.0230 (10) | Isorhamnetin-3-O-rutinoside | |
84 | 8.67 | 479.1184 | 479.1178 | −1.26 | C22H23O12 | MS2 [479]: 317.0650 (100), 163.0387 (25) | Petunidin hexoside | |
85 | 8.67 | 623.1618 | 623.1613 | −0.70 | C28H32O16 | MS2 [623]: 315.0505 (100), 314.0428 (39) | Isorhamnetin-3-O-rutinoside | |
86 | 8.67 | 625.1763 | 625.1757 | −0.95 | C28H33O16 | MS2 [625]: 317.0650 (100) | Petunidin-3-O-rutinoside isomer | |
87 | 8.68 | 289.0718 | 289.0714 | −1.11 | C15H14O6 | MS2 [289]: 109.0283 (100), 123.0441 (77), 125.0234 (57), 151.0391 (27), 137.0234 (27), 203.0710 (20) | MS2 [291]: 139.0387 (100), 123.0440 (49), 147.0438 (20) | Epicatechin |
291.0868 | 291.0858 | −1.84 | ||||||
88 | 8.73 | 447.0933 | 447.0929 | −0.79 | C21H20O11 | MS2 [447]: 284.0323 (100), 285.0387 (42), 255.0298 (10), 151.0022 (2) | MS2 [449]: 287.0545 (100) | Astragalin isomer |
449.1078 | ||||||||
89 | 8.77 | 479.1184 | 479.1180 | −0.64 | C22H23O12 | MS2 [479]: 317.0650 (100), 163.0387 (29) | Petunidin hexoside | |
90 | 8.99 | 479.1184 | 479.1181 | −0.70 | C22H23O12 | MS2 [479]: 317.0650 (100) | Petunidin hexoside | |
91 | 9.15 | 515.1195 | 515.1188 | −1.28 | C25H24O12 | MS2 [515]: 173.0445 (100), 179.0340 (74), 191.0552 (24), 353.0874 (16), 135.0438 (10) | 1,4-DiCQA | |
92 | 9.20 | 447.0933 | 447.0929 | −0.79 | C21H20O11 | MS2 [447]: 300.0273 (100), 301.0341 (34), 285.0403 (14), 151.0026 (2) | Quercetin-O-rhamnoside | |
93 | 9.25 | 609.1814 | 609.1804 | −1.51 | C28H33O15 | MS2 [609]: 301.0690 (100) | Peonidin-3-O-rutinoside | |
94 | 9.27 | 901.2408 | 901.2406 | −0.22 | C42H46O22 | MS2 [901]: 901.2413 (100), 300.0279 (63), 755.2086 (36), 301.0333 (7) | MS2 [903]: 303.0494 (100), 147.0438 (79) | Quercetin coumaroylrutinosylrhamnoside |
903.2553 | 903.2533 | −2.27 | ||||||
95 | 9.43 | 463.1235 | 463.1236 | 0.44 | C22H23O11 | MS2 [463]: 301.0689 (100), 121.0279 (94), 147.0432 (31), 139.0382 (25) | Peonidin-O-hexoside | |
96 | 9.44 | 901.2408 | 901.2410 | 0.33 | C42H46O22 | MS2 [901]: 901.2418 (100), 300.0272 (58), 755.2048 (30), 301.0338 (1),151.0025 (1) | MS2 [903]: 303.0492 (100), 147.0437 (82) | Quercetin coumaroylrutinosylrhamnoside |
903.2553 | 903.2538 | −1.66 | ||||||
97 | 9.46 | 499.1246 | 499.1227 | −3.64 | C25H24O11 | MS2 [499]: 173.0444 (100), 163.0389 (21), 179.0337 (7), 191.0557 (4), 135.0436 (1) | 4-pCo,5CQA | |
98 | 9.54 | 579.1708 | 579.1724 | 2.87 | C27H31O14 | MS2 [579]: 271.0602 (100), 207.0653 (59), 163.0391 (57) | Pelargonidin-3-O-rutinoside | |
99 | 9.76 | 499.1246 | 499.1241 | −0.81 | C25H24O11 | MS2 [499]: 191.0551 (100), 179.0341 (45), 173.0447 (12), 135.0440 (10) | 3C,5-pCoQA | |
100 | 9.77 | 447.0933 | 447.0928 | −0.95 | C21H20O11 | MS2 [447]: 300.0271 (100), 301.0341 (37), 169.0491 (24), 151.0025 (3) | Quercetin-O-rhamnoside | |
101 | 9.88 | 529.1351 | 529.1344 | −1.30 | C26H26O12 | MS2 [529]: 191.0551 (100), 179.0339 (42), 163.0389 (30), 173.0445 (18), 135.0439 (10) | 3C,5FQA | |
102 | 10.18 | 529.1351 | 529.1339 | −2.23 | C26H26O12 | MS2 [529]: 193.0496 (100), 173.0443 (10) | 3F,5CQA | |
103 | 10.31 | 529.1351 | 529.1348 | −0.60 | C26H26O12 | MS2 [529]: 191.0551 (100), 179.0339 (41), 173.0444 (16), 135.0437 (11) | 3C,5FQA | |
104 * | 10.60 | 515.1195 | 515.1192 | −0.47 | C25H24O12 | MS2 [515]: 173.0446 (100), 179.0341 (77), 191.0554 (37), 353.0878 (19) | 4,5-DiCQA | |
105 | 10.62 | 917.2357 | 917.2354 | −0.33 | C42H46O23 | MS2 [917]: 300.0272 (100), 301.0333 (13), 755.2038 (5), 151.0029 (1), | Quercetin caffeoylrutinosylrhamnoside | |
106 * | 10.73 | 287.0561 | 287.0560 | −0.29 | C15H12O6 | MS2 [287]: 135.0441 (100), 107.0126 (22), 151.0028 (18) | Eriodictyol | |
107 | 10.96 | 515.1195 | 515.1185 | −1.77 | C25H24O12 | MS2 [515]: 161.0232 (100) | Dicaffeoylquinic acid | |
179.0339 (56), 173.0445 (33), 135.0439 (14), 191.0546 (11), 353.0871 (5) | ||||||||
108 | 10.96 | 755.1829 | 755.1823 | −0.69 | C36H36O18 | MS2 [755]: 609.1457 (100), 301.0349 (55), 300.0275 (30), 151.0026 (1) | MS2 [757]: 147.0438 (100), 303.0494 (16) | Quercetin coumaroylrutinoside |
757.1974 | 757.1955 | −2.48 | ||||||
109 | 11.20 | 901.2408 | 901.2392 | −1.70 | C42H46O22 | MS2 [901]: 300.0272 (100), 755.2032 (86), 301.0339 (21), 151.0028 (2) | Quercetin coumaroylrutinosylrhamnoside | |
110 | 11.24 | 497.1089 | 497.1080 | −1.88 | C25H22O11 | MS2 [497]: 179.0341 (100), 135.0440 (43), 161.0233 (25) | DiCSA | |
111 | 11.29 | 529.1351 | 529.1347 | −0.72 | C26H26O12 | MS2 [529]: 173.0444 (100), 179.0339 (41), 191.0551 (22) | 4C,5FQA | |
112 | 11.34 | 499.1246 | 499.1240 | −1.01 | C25H24O11 | MS2 [499]: 173.0444 (100), 179.0339 (41), 191.0551 (22) | trans-4-pCo,5CQA | |
113 | 11.37 | 755.1829 | 755.1825 | −0.51 | C36H36O18 | MS2 [755]: 609.1461 (100), 301.0349 (66), 300.0270 (36), 151.0027 (1) | MS2 [757]: 147.0438 (100), 303.0495 (20) | Quercetin coumaroylrutinoside |
757.1974 | 757.1964 | −1.28 | ||||||
114 | 11.69 | 529.1351 | 529.1350 | −0.26 | C26H26O12 | MS2 [529]: 173.0444 (100), 179.0338 (60), 191.0550 (47), 135.0438 (10) | 4F,5CQA | |
115 | 11.72 | 497.1089 | 497.1087 | −0.35 | C25H22O11 | MS2 [497]: 179.0339 (100), 161.0233 (97), 135.0439 (50) | DiCSA | |
116 | 12.18 | 755.1829 | 755.1821 | −0.92 | C36H36O18 | MS2 [755]: 609.1462 (100), 301.0351 (62), 300.0270 (25), 151.0025 (1) | MS2 [757]: 147.0432 (100), 303.0494 (18) | Quercetin coumaroylrutinoside |
757.1974 | 757.1966 | −1.03 | ||||||
117 * | 12.24 | 301.0354 | 301.0349 | −1.35 | C15H10O7 | MS2 [301]: 151.0025 (100), 178.9975 (53), 121.0281 (14), 107.0126 (9) | Quercetin | |
118 | 12.29 | 497.1089 | 497.1089 | 0.09 | C25H22O11 | MS2 [497]: 161.0234 (100), 335.0772 (44), 179.0341 (37), 137.0233 (33), 135.0440 (23) | DiCQL | |
119 | 12.32 | 755.1829 | 755.1821 | −1.00 | C36H36O18 | MS2 [755]: 609.1457 (100), 301.0352 (56), 300.0270 (26), 151.0024 (1) | MS2 [757]: 147.0432 (100), 303.0496 (14) | Quercetin coumaroylrutinoside |
757.1974 | 757.1962 | −1.52 | ||||||
120 | 12.40 | 901.2408 | 901.2391 | −1.84 | C42H46O22 | MS2 [901]: 901.2434 (100), 300.0272 (39), 755.2037 (38), 301.0364 (8), 151.0025 (2) | Quercetin coumaroylrutinosylrhamnoside | |
121 | 12.43 | 283.0612 | 283.0607 | −1.44 | C16H12O5 | MS2 [283]: 268.0374 (100), 269.0415 (11), 240.0427 (6), 151.0029 (2), 107.0128 (2) | Genkwanin | |
122 | 12.67 | 499.1246 | 499.1241 | −0.87 | C25H24O11 | MS2 [499]: 173.0444 (100), 179.0340 (49), 191.0551 (32) | cis-4-pCo,5CQA | |
123 | 12.73 | 739.1879 | 739.1873 | −0.88 | C36H36O17 | MS2 [739]: 285.0402 (100), 593.1505 (45), 739.1868 (22), 284.0320 (10), 145.0283 (5), 151.0026 (1) | MS2 [741]: 147.0439 (100), 287.0545 (18) | Kaempferol coumaroylrutinoside |
741.2025 | 741.2013 | −1.59 | ||||||
124 | 13.23 | 739.1879 | 739.1879 | −0.06 | C36H36O17 | MS2 [739]: 285.0402 (100), 593.1508 (35), 284.0323 (28), 145.0283 (34),151.0025 (1) | MS2 [741]: 147.0439 (100), 287.0545 (61) | Kaempferol coumaroylrutinoside |
741.2025 | 741.2017 | −1.09 | ||||||
125 | 13.39 | 901.2408 | 901.2398 | −1.03 | C42H46O22 | MS2 [901]: 755.2032 (100), 300.0272 (99), 301.0343 (26), 756.2083 (13), 151.0027 (1) | Quercetin coumaroylrutinosylrhamnoside | |
126 * | 13.41 | 271.0612 | 271.0610 | −0.47 | C15H12O5 | MS2 [271]: 151.0025 (100), 119.0498 (39), 177.0182 (13), 107.0124 (12) | MS2 [273]: 273.0751 (100), 153.0180 (70), | Naringenin |
273.0758 | 273.0756 | −0.22 | ||||||
127 | 13.41 | 677.1512 | 677.1492 | −2.81 | C34H30O15 | MS2 [677]: 353.0879 (100), 173.0446 (28), 179.0340 (24), 191.0553 (18), 335.0776 (15) | TriCQA | |
128 | 13.48 | 431.0984 | 431.0976 | −1.72 | C21H20O10 | MS2 [431]: 269.0457 (100) | Oroxin A | |
129 | 13.50 | 739.1879 | 739.1878 | −0.22 | C36H36O17 | MS2 [739]: 285.0402 (100), 593.1517 (50), 284.0322 (11), 151.0024 (2) | MS2 [741]: 147.0438 (100), 287.0544 (10) | Kaempferol coumaroylrutinoside |
741.2025 | 741.2017 | −1.01 | ||||||
130 | 13.60 | 739.1879 | 739.1878 | −0.14 | C36H36O17 | MS2 [739]: 285.0401 (100), 593.1510 (51), 284.0326 (12), 145.0284 (2), 151.0024 (2) | Kaempferol coumaroylrutinoside | |
131 | 13.85 | 739.1879 | 739.1878 | −0.22 | C36H36O17 | MS2 [739]: 285.0401 (100), 593.1508 (43), 284.0324 (23), 151.0025 (1) | MS2 [741]: 147.0438 (100), 287.0545 (94) | Kaempferol coumaroylrutinoside |
741.2025 | 741.2023 | −0.26 | ||||||
132 | 14.66 | 739.1879 | 739.1875 | −0.56 | C36H36O17 | MS2 [739]: 285.0402 (100), 593.1509 (13), 284.0326 (39), 151.0027 (1) | MS2 [741]: 287.0545 (100), 147.0439 (70) | Kaempferol coumaroylrutinoside |
741.2025 | 741.2019 | −0.84 | ||||||
133 | 14.73 | 269.0455 | 269.0451 | −1.66 | C15H10O5 | MS2 [269]: 117.0334 (100), 151.0029 (33), 107.0127 (33), 121.0284 (10) | MS2 [271]: 153.0183 (37), 119.0494 (34), 109.1016 (19) | Apigenin |
271.0601 | 271.0602 | 0.44 | ||||||
134 | 14.87 | 285.0405 | 285.0403 | −0.43 | C15H10O6 | MS2 [285]: 285.0406 (100), 185.0600 (23), 107.0125 (18), 137.0235 (15), 143.0493 (14), 159.0444 (12), 151.0021 (1) | Kaempferol isomer | |
135 * | 14.98 | 285.0405 | 285.0400 | −1.37 | C15H10O6 | MS2 [285]: 285.0397 (100), 178.9978 (5), 151.0023 (2), 107.0121 (1) | Kaempferol |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, S.-N.; Yang, J.-B.; E, S.; He, S.; Li, J.-X.; Yu, K.-Q.; Zhang, M.; Li, Q.; Sun, L.; Li, H. Rapid Identification of Constituents in Cephalanthus tetrandrus (Roxb.) Ridsd. et Badh. F. Using UHPLC-Q-Exactive Orbitrap Mass Spectrometry. Molecules 2022, 27, 4038. https://doi.org/10.3390/molecules27134038
Tang S-N, Yang J-B, E S, He S, Li J-X, Yu K-Q, Zhang M, Li Q, Sun L, Li H. Rapid Identification of Constituents in Cephalanthus tetrandrus (Roxb.) Ridsd. et Badh. F. Using UHPLC-Q-Exactive Orbitrap Mass Spectrometry. Molecules. 2022; 27(13):4038. https://doi.org/10.3390/molecules27134038
Chicago/Turabian StyleTang, Su-Nv, Jian-Bo Yang, Shuai E, Shuo He, Jia-Xin Li, Kai-Quan Yu, Min Zhang, Qing Li, Lei Sun, and Hui Li. 2022. "Rapid Identification of Constituents in Cephalanthus tetrandrus (Roxb.) Ridsd. et Badh. F. Using UHPLC-Q-Exactive Orbitrap Mass Spectrometry" Molecules 27, no. 13: 4038. https://doi.org/10.3390/molecules27134038
APA StyleTang, S.-N., Yang, J.-B., E, S., He, S., Li, J.-X., Yu, K.-Q., Zhang, M., Li, Q., Sun, L., & Li, H. (2022). Rapid Identification of Constituents in Cephalanthus tetrandrus (Roxb.) Ridsd. et Badh. F. Using UHPLC-Q-Exactive Orbitrap Mass Spectrometry. Molecules, 27(13), 4038. https://doi.org/10.3390/molecules27134038