Development of Radiogallium-Labeled Peptides for Platelet-Derived Growth Factor Receptor β (PDGFRβ) Imaging: Influence of Different Linkers
Abstract
:1. Introduction
2. Results
2.1. Synthesis of Precursors and Non-Radiolabeled Compounds
2.2. Radiolabeling with 67Ga
2.3. In Vitro Stability Experiments
2.4. Octanol-Water Partition Coefficient Experiment (log P)
2.5. In Vitro Cellular Uptake Experiments
2.6. Biodistribution Experiments
3. Discussion
4. Materials and Methods
4.1. General
4.2. Synthesis of Precursors
4.3. Synthesis of natGa-Complexes
4.4. Radiolabeling with 67Ga
4.5. In Vitro Stability Experiments
4.6. Octanol-Water Partition Coefficient Experiment (log P)
4.7. In Vitro Cellular Uptake Experiments
4.8. Biodistribution Experiments
4.9. Statistical Evaluation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Sample Availability
References
- Yu, J.; Liu, X.-W.; Kim, H.-R.C. Platelet-derived Growth Factor (PDGF) Receptor-α-activated c-Jun NH2-terminal Kinase-1 Is Critical for PDGF-induced p21WAF1/CIP1 Promoter Activity Independent of p53. J. Biol. Chem. 2003, 278, 49582–49588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujino, S.; Miyoshi, N.; Ohue, M.; Takahashi, Y.; Yasui, M.; Hata, T.; Matsuda, C.; Mizushima, T.; Doki, Y.; Mori, M. Platelet-derived growth factor receptor-β gene expression relates to recurrence in colorectal cancer. Oncol. Rep. 2018, 39, 2178–2184. [Google Scholar] [CrossRef] [PubMed]
- Jansson, S.; Aaltonen, K.; Bendahl, P.-O.; Falck, A.-K.; Karlsson, M.; Pietras, K.; Rydén, L. The PDGF pathway in breast cancer is linked to tumour aggressiveness, triple-negative subtype and early recurrence. Breast Cancer Res. Treat. 2018, 169, 231–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurahara, H.; Maemura, K.; Mataki, Y.; Sakoda, M.; Shinchi, H.; Natsugoe, S. Impact of p53 and PDGFR-β Expression on Metastasis and Prognosis of Patients with Pancreatic Cancer. World J. Surg. 2016, 40, 1977–1984. [Google Scholar] [CrossRef] [PubMed]
- Levitzki, A.; Gazit, A. Tyrosine kinase inhibition: An approach to drug development. Science 1995, 267, 1782–1788. [Google Scholar] [CrossRef]
- Östman, A. PDGF receptors-mediators of autocrine tumor growth and regulators of tumor vasculature and stroma. Cytokine Growth Factor Rev. 2004, 15, 275–286. [Google Scholar] [CrossRef]
- Östman, A.; Heldin, C. PDGF Receptors as Targets in Tumor Treatment. Adv. Cancer Res. 2007, 97, 247–274. [Google Scholar] [CrossRef]
- Fretto, L.J.; Snape, A.J.; Tomlinson, J.E.; Seroogy, J.J.; Wolf, D.L.; LaRochelle, W.J.; Giese, N.A. Mechanism of platelet-derived growth factor (PDGF) AA, AB, and BB binding to α and β PDGF receptor. J. Biol. Chem. 1993, 268, 3625–3631. [Google Scholar]
- Maudsley, S.; Zamah, A.M.; Rahman, N.; Blitzer, J.T.; Luttrell, L.M.; Lefkowitz, R.J.; Hall, R.A. Platelet-Derived Growth Factor Receptor Association with Na+/H+ Exchanger Regulatory Factor Potentiates Receptor Activity. Mol. Cell. Biol. 2000, 20, 8352–8363. [Google Scholar] [CrossRef] [Green Version]
- Camorani, S.; Esposito, C.L.; Rienzo, A.; Catuogno, S.; Iaboni, M.; Condorelli, G.; De Franciscis, V.; Cerchia, L. Inhibition of Receptor Signaling and of Glioblastoma-derived Tumor Growth by a Novel PDGFRβ Aptamer. Mol. Ther. 2014, 22, 828–841. [Google Scholar] [CrossRef] [Green Version]
- Strand, J.; Varasteh, Z.; Eriksson, O.; Abrahmsen, L.; Orlova, A.; Tolmachev, V. Gallium-68-Labeled Affibody Molecule for PET Imaging of PDGFRβ Expression in Vivo. Mol. Pharm. 2014, 11, 3957–3964. [Google Scholar] [CrossRef] [PubMed]
- Tolmachev, V.; Varasteh, Z.; Honarvar, H.; Hosseinimehr, S.J.; Eriksson, O.; Jonasson, P.; Frejd, F.Y.; Abrahmsen, L.; Orlova, A. Imaging of platelet-derived growth factor receptor beta expression in glioblastoma xenografts using affibody molecule 111In-DOTA-Z09591. J. Nucl. Med. 2014, 55, 294–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Askoxylakis, V.; Marr, A.; Altmann, A.; Markert, A.; Mier, W.; Debus, J.; Huber, P.E.; Haberkorn, U. Peptide-Based Targeting of the Platelet-Derived Growth Factor Receptor Beta. Mol. Imaging Biol. 2012, 15, 212–221. [Google Scholar] [CrossRef] [Green Version]
- Marr, A.; Nissen, F.; Maisch, D.; Altmann, A.; Rana, S.; Debus, J.; Huber, P.E.; Haberkorn, U.; Askoxylakis, V. Peptide Arrays for Development of PDGFRβ Affine Molecules. Mol. Imaging Biol. 2013, 15, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Effendi, N.; Mishiro, K.; Takarada, T.; Makino, A.; Yamada, D.; Kitamura, Y.; Shiba, K.; Kiyono, Y.; Odani, A.; Ogawa, K. Radiobrominated benzimidazole-quinoline derivatives as Platelet-derived growth factor receptor beta (PDGFRβ) imaging probes. Sci. Rep. 2018, 8, 10369. [Google Scholar] [CrossRef]
- Effendi, N.; Mishiro, K.; Takarada, T.; Yamada, D.; Nishii, R.; Shiba, K.; Kinuya, S.; Odani, A.; Ogawa, K. Design, synthesis, and biological evaluation of radioiodinated benzo[d]imidazole-quinoline derivatives for platelet-derived growth factor receptor β (PDGFRβ) imaging. Bioorg. Med. Chem. 2019, 27, 383–393. [Google Scholar] [CrossRef] [PubMed]
- Effendi, N.; Ogawa, K.; Mishiro, K.; Takarada, T.; Yamada, D.; Kitamura, Y.; Shiba, K.; Maeda, T.; Odani, A. Synthesis and evaluation of radioiodinated 1-{2-[5-(2-methoxyethoxy)-1H-benzo[d]imidazol-1-yl]quinolin-8-yl}piperidin-4-amine derivatives for platelet-derived growth factor receptor β (PDGFRβ) imaging. Bioorg. Med. Chem. 2017, 25, 5576–5585. [Google Scholar] [CrossRef] [Green Version]
- Fani, M.; Maecke, H.R.; Okarvi, S.M. Radiolabeled Peptides: Valuable Tools for the Detection and Treatment of Cancer. Theranostics 2012, 2, 481–501. [Google Scholar] [CrossRef] [Green Version]
- Saw, P.E.; Song, E. Phage display screening of therapeutic peptide for cancer targeting and therapy. Protein Cell 2019, 10, 787–807. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, K.; Takai, K.; Kanbara, H.; Kiwada, T.; Kitamura, Y.; Shiba, K.; Odani, A. Preparation and evaluation of a radiogallium complex-conjugated bisphosphonate as a bone scintigraphy agent. Nucl. Med. Biol. 2011, 38, 631–636. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, K.; Ishizaki, A.; Takai, K.; Kitamura, Y.; Kiwada, T.; Shiba, K.; Odani, A. Development of Novel Radiogallium-Labeled Bone Imaging Agents Using Oligo-Aspartic Acid Peptides as Carriers. PLoS ONE 2013, 8, e84335. [Google Scholar] [CrossRef] [PubMed]
- Ishizaki, A.; Mishiro, K.; Shiba, K.; Hanaoka, H.; Kinuya, S.; Odani, A.; Ogawa, K. Fundamental study of radiogallium-labeled aspartic acid peptides introducing octreotate derivatives. Ann. Nucl. Med. 2019, 33, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, K.; Ishizaki, A.; Takai, K.; Kitamura, Y.; Makino, A.; Kozaka, T.; Kiyono, Y.; Shiba, K.; Odani, A. Evaluation of Ga-DOTA-(D-Asp)n as bone imaging agents: D-aspartic acid peptides as carriers to bone. Sci. Rep. 2017, 7, 13971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakravarty, R.; Chakraborty, S.; Dash, A.; Pillai, M.R. Detailed evaluation on the effect of metal ion impurities on complexation of generator eluted 68Ga with different bifunctional chelators. Nucl. Med. Biol. 2013, 40, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Garrison, J.C.; Rold, T.L.; Sieckman, G.L.; Naz, F.; Sublett, S.V.; Figueroa, S.D.; Volkert, W.A.; Hoffman, T.J. Evaluation of the Pharmacokinetic Effects of Various Linking Group Using the 111In-DOTA-X-BBN(7−14)NH2 Structural Paradigm in a Prostate Cancer Model. Bioconjugate Chem. 2008, 19, 1803–1812. [Google Scholar] [CrossRef] [Green Version]
- Lears, K.A.; Ferdani, R.; Liang, K.; Zheleznyak, A.; Andrews, R.; Sherman, C.D.; Achilefu, S.; Anderson, C.J.; Rogers, B.E. In vitro and in vivo evaluation of 64Cu-labeled SarAr-bombesin analogs in gastrin-releasing peptide receptor-expressing prostate cancer. J. Nucl. Med. 2011, 52, 470–477. [Google Scholar] [CrossRef] [Green Version]
- Strand, J.; Honarvar, H.; Perols, A.; Orlova, A.; Selvaraju, R.K.; Karlström, A.E.; Tolmachev, V. Influence of Macrocyclic Chelators on the Targeting Properties of 68Ga-Labeled Synthetic Affibody Molecules: Comparison with 111In-Labeled Counterparts. PLoS ONE 2013, 8, e70028. [Google Scholar] [CrossRef] [Green Version]
- Siwowska, K.; Haller, S.; Bortoli, F.; Benešová, M.; Groehn, V.; Bernhardt, P.; Schibli, R.; Müller, C. Preclinical Comparison of Albumin-Binding Radiofolates: Impact of Linker Entities on the in Vitro and in Vivo Properties. Mol. Pharm. 2017, 14, 523–532. [Google Scholar] [CrossRef]
- Fragogeorgi, E.A.; Zikos, C.; Gourni, E.; Bouziotis, P.; Paravatou-Petsotas, M.; Loudos, G.; Mitsokapas, N.; Xanthopoulos, S.; Mavri-Vavayanni, M.; Livaniou, E.; et al. Spacer site modifications for the improvement of the in vitro and in vivo binding properties of 99mTc-N3S-X-bombesin[2–14] derivatives. Bioconjug. Chem. 2009, 20, 856–867. [Google Scholar] [CrossRef]
- Miao, Y.; Gallazzi, F.; Guo, H.; Quinn, T.P. 111In-Labeled Lactam Bridge-Cyclized α-Melanocyte Stimulating Hormone Peptide Analogues for Melanoma Imaging. Bioconjugate Chem. 2008, 19, 539–547. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Shi, J.; Kim, Y.S.; Zhai, S.; Jia, B.; Zhao, H.; Liu, Z.; Wang, F.; Chen, X.; Liu, S. Improving tumor-targeting capability and pharmacokinetics of 99mTc-labeled cyclic RGD dimers with PEG4 linkers. Mol. Pharm. 2009, 6, 231–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogawa, K.; Takeda, T.; Yokokawa, M.; Yu, J.; Makino, A.; Kiyono, Y.; Shiba, K.; Kinuya, S.; Odani, A. Comparison of Radioiodine- or Radiobromine-Labeled RGD Peptides between Direct and Indirect Labeling Methods. Chem. Pharm. Bull. 2018, 66, 651–659. [Google Scholar] [CrossRef] [PubMed]
- Tornesello, A.L.; Buonaguro, L.; Tornesello, M.L.; Buonaguro, F.M. New Insights in the Design of Bioactive Peptides and Chelating Agents for Imaging and Therapy in Oncology. Molecules 2017, 22, 1282. [Google Scholar] [CrossRef] [Green Version]
- Aoki, M.; Zhao, S.; Takahashi, K.; Washiyama, K.; Ukon, N.; Tan, C.; Shimoyama, S.; Nishijima, K.-I.; Ogawa, K. Preliminary Evaluation of Astatine-211-Labeled Bombesin Derivatives for Targeted Alpha Therapy. Chem. Pharm. Bull. 2020, 68, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Chen, X. Design and Development of Molecular Imaging Probes. Curr. Top. Med. Chem. 2010, 10, 1227–1236. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Shi, W.; Zhou, Z.; Wagh, N.-K.; Fan, W.; Brusnahan, S.-K.; Garrison, J.-C. Evaluation of DOTA-chelated neurotensin analogs with spacer-enhanced biological performance for neurotensin-receptor-1-positive tumor targeting. Nucl. Med. Biol. 2015, 42, 816–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lane, S.R.; Nanda, P.; Rold, T.L.; Sieckman, G.L.; Figueroa, S.D.; Hoffman, T.J.; Jurisson, S.S.; Smith, C.J. Optimization, biological evaluation and microPET imaging of copper-64-labeled bombesin agonists, [64Cu-NO2A-(X)-BBN(7–14)NH2], in a prostate tumor xenografted mouse model. Nucl. Med. Biol. 2010, 37, 751–761. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, T.J.; Gali, H.; Smith, C.J.; Sieckman, G.L.; Hayes, D.L.; Owen, N.K.; Volkert, W.A. Novel series of 111In-labeled bombesin analogs as potential radiopharmaceuticals for specific targeting of gastrin-releasing peptide receptors expressed on human prostate cancer cells. J. Nucl. Med. 2003, 44, 823–831. [Google Scholar]
- Li, G.; Wang, X.; Zong, S.; Wang, J.; Conti, P.S.; Chen, K. MicroPET Imaging of CD13 Expression Using a 64Cu-Labeled Dimeric NGR Peptide Based on Sarcophagine Cage. Mol. Pharm. 2014, 11, 3938–3946. [Google Scholar] [CrossRef]
- Liu, S. Radiolabeled Cyclic RGD Peptides as Integrin αvβ3-Targeted Radiotracers: Maximizing Binding Affinity via Bivalency. Bioconjugate Chem. 2009, 20, 2199–2213. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y. Radiolabeled Cyclic RGD Peptides as Radiotracers for Imaging Tumors and Thrombosis by SPECT. Theranostics 2011, 1, 58–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brabez, N.; Saunders, K.; Nguyen, K.L.; Jayasundera, T.B.M.; Weber, C.; Lynch, R.M.; Chassaing, G.; Lavielle, S.; Hruby, V.J. Multivalent Interactions: Synthesis and Evaluation of Melanotropin Multimers—Tools for Melanoma Targeting. ACS Med. Chem. Lett. 2012, 4, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Gestwicki, J.E.; Cairo, C.W.; Strong, L.E.; Oetjen, K.A.; Kiessling, L.L. Influencing Receptor−Ligand Binding Mechanisms with Multivalent Ligand Architecture. J. Am. Chem. Soc. 2002, 124, 14922–14933. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, V.; Singh, A.K.; Rogers, B.E.; Thotala, D.; Hallahan, D.E. PEGylated peptide to TIP1 is a novel targeting agent that binds specifically to various cancers in vivo. J. Control. Release 2019, 298, 194–201. [Google Scholar] [CrossRef]
- Sun, X.; Li, Y.; Liu, T.; Li, Z.; Zhang, X.; Chen, X. Peptide-based imaging agents for cancer detection. Adv. Drug Deliv. Rev. 2017, 38–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogawa, K.; Yu, J.; Ishizaki, A.; Yokokawa, M.; Kitamura, M.; Kitamura, Y.; Shiba, K.; Odani, A. Radiogallium Complex-Conjugated Bifunctional Peptides for Detecting Primary Cancer and Bone Metastases Simultaneously. Bioconjugate Chem. 2015, 26, 1561–1570. [Google Scholar] [CrossRef]
- Ogawa, K.; Kanbara, H.; Kiyono, Y.; Kitamura, Y.; Kiwada, T.; Kozaka, T.; Kitamura, M.; Mori, T.; Shiba, K.; Odani, A. Development and evaluation of a radiobromine-labeled sigma ligand for tumor imaging. Nucl. Med. Biol. 2013, 40, 445–450. [Google Scholar] [CrossRef]
- Ogawa, K.; Mukai, T.; Arano, Y.; Otaka, A.; Ueda, M.; Uehara, T.; Magata, Y.; Hashimoto, K.; Saji, H. Rhemium-186-monoaminemonoamidedithiol-conjugated bisphosphonate derivatives for bone pain palliation. Nucl. Med. Biol. 2006, 33, 513–520. [Google Scholar] [CrossRef]
Radiopeptides | Physical Properties | ||
---|---|---|---|
RC Yield | RC Purity | tR (min) | |
[67Ga]Ga-DOTA-IPLPPPRRPFFK ([67Ga]22) | 98.0% | 99.3% | 8.5 |
[67Ga]Ga-DOTA-aaa-IPLPPPRRPFFK ([67Ga]23) | 86.6% | 99.5% | 11.3 |
[67Ga]Ga-DOTA-aaaaa-IPLPPPRRPFFK ([67Ga]24) | 94.7% | 99.3% | 12.0 |
[67Ga]Ga-DOTA-ββ-IPLPPPRRPFFK ([67Ga]25) | 97.4% | 99.1% | 9.8 |
[67Ga]Ga-DOTA-ββββ-IPLPPPRRPFFK ([67Ga]26) | 97.9% | 99.6% | 9.6 |
[67Ga]Ga-DOTA-EG2-IPLPPPRRPFFK ([67Ga]27) | 98.1% | 99.5% | 12.2 |
[67Ga]Ga-DOTA-EG4-IPLPPPRRPFFK ([67Ga]28) | 96.7% | 99.4% | 12.7 |
Radiopeptides | In Vitro Stability | |||
---|---|---|---|---|
In PBS pH 7.4 | In Murine Plasma | |||
3 h | 24 h | 10 min | 1 h | |
[67Ga]Ga-DOTA-IPLPPPRRPFFK ([67Ga]22) | 95.3 ± 2.7% | 94.1 ± 0.6% | ND | 35.2 ± 1.7% |
[67Ga]Ga-DOTA-aaa-IPLPPPRRPFFK ([67Ga]23) | 95.9 ± 0.7% | 94.0 ± 0.5% | ND | 15.7 ± 2.9% |
[67Ga]Ga-DOTA-aaaaa-IPLPPPRRPFFK ([67Ga]24) | 96.3 ± 1.1% | 94.0 ± 0.5% | ND | 41.4 ± 2.5% |
[67Ga]Ga-DOTA-ββ-IPLPPPRRPFFK ([67Ga]25) | 94.2 ± 1.7% | 93.0 ± 0.4% | ND | 26.2 ± 6.7% |
[67Ga]Ga-DOTA-ββββ-IPLPPPRRPFFK ([67Ga]26) | 96.9 ± 0.3% | 95.4 ± 0.2% | ND | 33.1 ± 5.7% |
[67Ga]Ga-DOTA-EG2-IPLPPPRRPFFK ([67Ga]27) | 96.9 ± 0.5% | 95.6 ± 0.4% | 84.4 ± 2.0% | 75.9 ± 1.2% |
[67Ga]Ga-DOTA-EG4-IPLPPPRRPFFK ([67Ga]28) | 96.9 ± 0.2% | 94.3 ± 0.3% | 96.2 ± 1.1% | 80.1 ± 0.8% |
Radiopeptides | Time Points | |||
---|---|---|---|---|
0.5 h | 1 h | 2 h | 4 h | |
[67Ga]Ga-DOTA-IPLPPPRRPFFK ([67Ga]22) | 0.22 (0.03) | 0.86 (0.24) | 0.44 (0.10) | 0.83 (0.16) |
[67Ga]Ga-DOTA-aaa-IPLPPPRRPFFK ([67Ga]23) | 1.40 (0.45) | 2.07 (0.11) | 1.89 (0.16) | 1.07 (0.06) |
[67Ga]Ga-DOTA-aaaaa-IPLPPPRRPFFK ([67Ga]24) | 1.40 (0.27) | 1.85 (0.21) | 2.55 (0.08) | 1.28 (0.05) |
[67Ga]Ga-DOTA-ββ-IPLPPPRRPFFK ([67Ga]25) | 0.49 (0.18) | 0.44 (0.05) | 0.51 (0.09) | 0.69 (0.13) |
[67Ga]Ga-DOTA-ββββ-IPLPPPRRPFFK ([67Ga]26) | 0.49 (0.13) | 0.62 (0.10) | 0.61 (0.22) | 0.53 (0.02) |
[67Ga]Ga-DOTA-EG2-IPLPPPRRPFFK ([67Ga]27) | 3.09 (0.50) | 2.98 (0.29) | 3.70 (0.16) | 3.35 (0.06) |
[67Ga]Ga-DOTA-EG4-IPLPPPRRPFFK ([67Ga]28) | 1.29 (0.08) | 1.37 (0.13) | 1.09 (0.18) | 1.72 (0.16) |
Tissues | [67Ga]27 | [67Ga]28 | ||||
---|---|---|---|---|---|---|
10 min | 1 h | Blocking (1 h) | 1 h | |||
Blood | 3.87 (0.23) | 0.15 (0.01) | 0.93 (0.49) | * | 0.12 (0.01) | * |
Liver | 0.90 (0.01) | 0.22 (0.06) | 0.27 (0.04) | 0.20 (0.02) | ||
Kidney | 13.88 (0.49) | 3.07 (0.55) | 12.17 (1.04) | * | 2.96 (0.13) | |
Small intestine | 1.16 (0.14) | 0.63 (0.28) | 0.66 (0.08) | 0.34 (0.33) | ||
Large intestine | 0.87 (0.18) | 0.13 (0.04) | 0.25 (0.01) | * | 0.11 (0.01) | |
Spleen | 0.99 (0.06) | 0.13 (0.02) | 0.29 (0.02) | * | 0.07 (0.01) | * |
Pancreas | 0.89 (0.08) | 0.13 (0.07) | 0.21 (0.01) | 0.07 (0.01) | ||
Lung | 3.70 (0.11) | 0.46 (0.10) | 0.66 (0.05) | * | 0.18 (0.00) | * |
Heart | 1.47 (0.47) | 0.07 (0.02) | 0.28 (0.03) | * | 0.03 (0.00) | * |
Stomach † | 0.19 (0.05) | 0.06 (0.04) | 0.05 (0.00) | 0.01 (0.00) | ||
Bone | 1.62 (0.30) | 0.24 (0.06) | 0.21 (0.02) | 0.10 (0.02) | * | |
Muscle | 0.86 (0.08) | 0.07 (0.02) | 0.22 (0.04) | * | 0.03 (0.00) | * |
Brain | 0.13 (0.05) | 0.01 (0.00) | 0.02 (0.00) | * | 0.00 (0.00) | * |
Tumor | 3.11 (0.31) | 0.39 (0.10) | 0.96 (0.13) | * | 0.25 (0.05) | * |
Tumor/Blood ‡ | 0.81 (0.11) | 2.61 (0.75) | 1.19 (0.48) | * | 2.05 (0.77) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Effendi, N.; Mishiro, K.; Shiba, K.; Kinuya, S.; Ogawa, K. Development of Radiogallium-Labeled Peptides for Platelet-Derived Growth Factor Receptor β (PDGFRβ) Imaging: Influence of Different Linkers. Molecules 2021, 26, 41. https://doi.org/10.3390/molecules26010041
Effendi N, Mishiro K, Shiba K, Kinuya S, Ogawa K. Development of Radiogallium-Labeled Peptides for Platelet-Derived Growth Factor Receptor β (PDGFRβ) Imaging: Influence of Different Linkers. Molecules. 2021; 26(1):41. https://doi.org/10.3390/molecules26010041
Chicago/Turabian StyleEffendi, Nurmaya, Kenji Mishiro, Kazuhiro Shiba, Seigo Kinuya, and Kazuma Ogawa. 2021. "Development of Radiogallium-Labeled Peptides for Platelet-Derived Growth Factor Receptor β (PDGFRβ) Imaging: Influence of Different Linkers" Molecules 26, no. 1: 41. https://doi.org/10.3390/molecules26010041