Impact of the Cathode Pt Loading on PEMFC Contamination by Several Airborne Contaminants
Abstract
1. Introduction
2. Results and Discussion
2.1. Cell Voltage Transients
2.2. Impedance Spectra
2.3. Contaminant Effect Prediction
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nagula, M. Forecasting of Fuel Cell Technology in Hybrid and Electric Vehicles Using Gompertz Growth Curve. J. Stat. Manag. Syst. 2016, 19, 73–88. [Google Scholar] [CrossRef]
- Ogawa, T.; Takeuchi, M.; Kajikawa, Y. Comprehensive Analysis of Trends and Emerging Technologies in All Types of Fuel Cells Based on a Computational Method. Sustainability 2018, 10, 458. [Google Scholar] [CrossRef]
- St-Pierre, J. Air Impurities. In Polymer Electrolyte Fuel Cell Durability; Büchi, F.N., Inaba, M., Schmidt, T.J., Eds.; Springer: New York, NY, USA, 2009; pp. 289–321. [Google Scholar]
- Kennedy, D.M.; Cahela, D.R.; Zhu, W.H.; Westrom, K.C.; Nelms, R.M.; Tatarchuk, B.J. Fuel Cell Cathode Air Filters: Methodologies for Design and Optimization. J. Power Sources 2007, 168, 391–399. [Google Scholar] [CrossRef]
- Hydrogen Fuel Quality—Product Specification, ISO 14687:2019(E), 1st ed.; International Organization for Standardization: Geneva, Switzerland, 2019.
- Gasteiger, H.A.; Panels, J.E.; Yan, S.G. Dependence of PEM Fuel Cell Performance on Catalyst Loading. J. Power Sources 2004, 127, 162–171. [Google Scholar] [CrossRef]
- Ahluwalia, R.K.; Wang, X. Effect of CO and CO2 Impurities on Performance of Direct Hydrogen Polymer-Electrolyte Fuel Cells. J. Power Sources 2008, 180, 122–131. [Google Scholar] [CrossRef]
- Hashimasa, Y.; Matsuda, Y.; Imamura, D.; Akai, M. PEFC Power Generation Performance Degradation by Hydrogen Sulfide and Ammonia—Effects of Lowering Platinum Loading. Electrochemistry 2011, 79, 343–345. [Google Scholar] [CrossRef]
- Hafttananian, M.; Ramiar, A.; Shabani, B.; Ranjbar, A.A. Nonlinear Algorithm of PEM Fuel Cell Catalyst Poisoning Progress in the Presence of Carbon Monoxide in Anode Fuel: A Computational Study Using OpenFOAM. Electrochim. Acta 2017, 246, 348–364. [Google Scholar] [CrossRef]
- Prass, S.; Friedrich, K.A.; Zamel, N. Tolerance and Recovery of Ultralow-Loaded Platinum Anode Electrodes upon Carbon Monoxide and Hydrogen Sulfide Exposure. Molecules 2019, 24, 3514. [Google Scholar] [CrossRef]
- de Bruijn, F.A.; Papageorgopoulos, D.C.; Sitters, E.F.; Janssen, G.J.M. The Influence of Carbon Dioxide on PEM Fuel Cell Anodes. J. Power Sources 2002, 110, 117–124. [Google Scholar] [CrossRef]
- St-Pierre, J. PEMFC Contamination Model: Foreign Cation Exchange with Ionomer Protons. J. Power Sources 2011, 196, 6274–6283. [Google Scholar] [CrossRef]
- St-Pierre, J. PEMFC Contaminant Tolerance Limit—Foreign Cations in Ionomers. Int. J. Hydrogen Energy 2011, 36, 5527–5535. [Google Scholar] [CrossRef]
- Weber, A.Z.; Delacourt, C. Mathematical Modelling of Cation Contamination in a Proton-Exchange Membrane. Fuel Cells 2008, 8, 459–465. [Google Scholar] [CrossRef]
- Kienitz, B.L.; Baskaran, H.; Zawodzinski, T.A., Jr. Modeling the Steady-State Effects of Cationic Contamination on Polymer Electrolyte Membranes. Electrochim. Acta 2009, 54, 1671–1679. [Google Scholar] [CrossRef]
- Steinbach, A.J.; Hamilton, C.V., Jr.; Debe, M.K. Impact of Micromolar Concentrations of Externally-Provided Chloride and Sulfide Contaminants on PEMFC Reversible Stability. Electrochem. Soc. Trans. 2007, 11, 889–902. [Google Scholar] [CrossRef]
- Noda, Z.; Hirata, K.; Hayashi, A.; Taniguchi, S.; Nakazato, N.; Seo, A.; Yasuda, I.; Ariura, S.; Shinkai, H.; Sasaki, K. PEFC-Type Impurity Sensors for Hydrogen Fuels. Int. J. Hydrogen Energy 2012, 37, 16256–16263. [Google Scholar] [CrossRef]
- Noda, Z.; Hirata, K.; Hayashi, A.; Takahashi, T.; Nakazato, N.; Saigusa, K.; Seo, A.; Suzuki, K.; Ariura, S.; Shinkai, H.; et al. Hydrogen Pump-Type Impurity Sensors for Hydrogen Fuels. Int. J. Hydrogen Energy 2017, 42, 3281–3293. [Google Scholar] [CrossRef]
- Talke, A.; Misz, U.; Konrad, G.; Heinzel, A.; Klemp, D.; Wegener, R. Influence of Urban Air on Proton Exchange Membrane Fuel Cell Vehicles - Long Term Effects of Air Contaminants in an Authentic Driving Cycle. J. Power Sources 2018, 400, 556–565. [Google Scholar] [CrossRef]
- Mehrabadi, B.A.T.; Dinh, H.N.; Bender, G.; Weidner, J.W. Effect of System Contaminants on the Performance of a Proton Exchange Membrane Fuel Cell. J. Electrochem. Soc. 2016, 163, F1527–F1534. [Google Scholar] [CrossRef]
- Zhai, Y.; Baturina, O.; Ramaker, D.; Farquhar, E.; St-Pierre, J.; Swider-Lyons, K. Chlorobenzene Poisoning and Recovery of Platinum-Based Cathodes in Proton Exchange Membrane Fuel Cells. J. Phys. Chem. C 2015, 119, 20328–20338. [Google Scholar] [CrossRef]
- Zhai, Y.; St-Pierre, J. Acetylene Contamination Mechanisms in the Cathode of Proton Exchange Membrane Fuel Cells. ChemElectroChem 2017, 4, 655–670. [Google Scholar] [CrossRef]
- St-Pierre, J.; Zhai, Y.; Angelo, M.S. Effect of Selected Airborne Contaminants on PEMFC Performance. J. Electrochem. Soc. 2015, 161, F280–F290. [Google Scholar] [CrossRef]
- Yu, H.; Bonville, L.; Maric, R. Analysis of H2/Air Polarization Curves: The Influence of Low Pt Loading and Fabrication Process. J. Electrochem. Soc. 2018, 165, F272–F284. [Google Scholar] [CrossRef]
- Zhai, Y.; St-Pierre, J. Acetonitrile Contamination in the Cathode of Proton Exchange Membrane Fuel Cells and Cell Performance Recovery. Appl. Energy 2019, 242, 239–247. [Google Scholar] [CrossRef]
- Zhai, Y.; Ge, J.; Qi, J.; St-Pierre, J. Effect of Acetonitrile Contamination on Long-Term Degradation of Proton Exchange Membrane Fuel Cells. J. Electrochem. Soc. 2018, 165, F3191–F3199. [Google Scholar] [CrossRef]
- Reshetenko, T.V.; St-Pierre, J. Study of the Acetonitrile Poisoning of Platinum Cathodes on Proton Exchange Membrane Fuel Cell Spatial Performance Using a Segmented Cell System. J. Power Sources 2015, 293, 929–940. [Google Scholar] [CrossRef]
- Qi, J.; Zhai, Y.; St-Pierre, J. Effect of Contaminant Mixtures in Air on Proton Exchange Membrane Fuel Cell Performance. J. Power Sources 2019, 413, 86–97. [Google Scholar] [CrossRef]
- Reshetenko, T.V.; Artyushkova, K.; St-Pierre, J. Spatial Proton Exchange Membrane Fuel Cell Performance Under Bromomethane Poisoning. J. Power Sources 2017, 342, 135–147. [Google Scholar] [CrossRef]
- Zhai, Y.; Baturina, O.; Ramaker, D.; Farquhar, E.; St-Pierre, J.; Swider-Lyons, K. Bromomethane Contamination in the Cathode of Proton Exchange Membrane Fuel Cells. Electrochim. Acta 2016, 213, 482–489. [Google Scholar] [CrossRef]
- Reshetenko, T.V.; St-Pierre, J. Effects of Propylene, Methyl Methacrylate and Isopropanol Poisoning on Spatial Performance of a Proton Exchange Membrane Fuel Cell. J. Power Sources 2018, 378, 216–224. [Google Scholar] [CrossRef]
- Wang, M.; Park, J.H.; Kabir, S.; Neyerlin, K.C.; Kariuki, N.N.; Lv, H.; Stamenkovic, V.R.; Myers, D.J.; Ulsh, M.; Mauger, S.A. Impact of Catalyst Ink Dispersing Methodology on Fuel Cell Performance Using in-Situ X-ray Scattering. ACS Appl. Energy Mater. 2019, 2, 6417–6427. [Google Scholar] [CrossRef]
- Reddy, P.M.K.; Krushnamurty, K.; Subrahmanyam, C. Surface Modification of Carbon Fabric for Isopropanol Removal from Gas Stream. Microelectron. Eng. 2014, 126, 60–64. [Google Scholar] [CrossRef]
- St-Pierre, J.; Ge, J.; Zhai, Y.; Reshetenko, T.V.; Angelo, M. PEMFC Cathode Contamination Mechanisms for Several VOCs—Acetonitrile, Acetylene, Bromomethane, Iso-propanol, Methyl Methacrylate, Naphthalene and Propene. Electrochem. Soc. Trans. 2013, 58, 519–528. [Google Scholar] [CrossRef]
- Lee, C.-G.; Umeda, M.; Uchida, I. Cyclic Voltammetric Analysis of C1-C4 Alcohol Electrooxidations with Pt/C and Pt-Ru/C Microporous Electrodes. J. Power Sources 2006, 160, 78–89. [Google Scholar] [CrossRef]
- Zhai, Y.; St-Pierre, J. Proton Exchange Membrane Fuel Cell Cathode Contamination—Acetylene. J. Power Sources 2015, 279, 165–171. [Google Scholar] [CrossRef]
- Reshetenko, T.V.; St-Pierre, J. Study of Acetylene Poisoning of Pt Cathode on Proton Exchange Membrane Fuel Cell Spatial Performance Using a Segmented Cell System. J. Power Sources 2015, 287, 401–415. [Google Scholar] [CrossRef]
- Zhai, Y.; St-Pierre, J. Impact of Operating Conditions on the Acetylene Contamination in the Cathode of Proton Exchange Membrane Fuel cells. J. Power Sources 2017, 372, 134–144. [Google Scholar] [CrossRef]
- Zhai, Y.; St-Pierre, J. Tolerance and Mitigation Strategies of Proton Exchange Membrane Fuel Cells Subject to Acetylene Contamination. Int. J. Hydrogen Energy 2018, 43, 17475–17479. [Google Scholar] [CrossRef]
- Reshetenko, T.V.; St-Pierre, J. Study of the Aromatic Hydrocarbons Poisoning of Platinum Cathodes on Proton Exchange Membrane Fuel Cell Spatial Performance Using a Segmented Cell System. J. Power Sources 2016, 333, 237–246. [Google Scholar] [CrossRef]
- St-Pierre, J.; Virji, M.B.V. Cell Performance Distribution in a Low-Temperature Proton Exchange Membrane Fuel Cell Stack during Propene Contamination. J. Appl. Electrochem. 2016, 46, 169–181. [Google Scholar] [CrossRef]
- St-Pierre, J.; Zhai, Y.; Ge, J.; Angelo, M.; Reshetenko, T.; Molter, T.; Bonville, L.; Pasaogullari, U.; Collins, W.; Wessel, S. The Effect of Airborne Contaminants on Fuel Cell Performance and Durability. In DOE Hydrogen and Fuel Cells Program—2013 Annual Progress Report; DOE/GO-102013-4260; United States Department of Energy: Washington DC, USA, 2013; pp. V-1–V-6. [Google Scholar]
- Hydrogen Fuel—Product Specification—Part 2: Proton Exchange Membrane (PEM) Fuel Cell Applications for Road Vehicles, ISO 14687-2:2012(E), 1st ed.; International Organization for Standardization: Geneva, Switzerland, 2012.
- Viitakangas, J.; Ihonen, J.; Koski, P.; Reinikainen, M.; Aarhaug, T.A. Study of Formaldehyde and Formic Acid Contamination Effect on PEMFC. J. Electrochem. Soc. 2018, 165, F718–F727. [Google Scholar] [CrossRef]
- Malevich, D.; Halliop, E.; Peppley, B.A.; Pharoah, J.G.; Karan, K. Investigation of Charge-Transfer and Mass-Transport Resistances in PEMFCs with Microporous Layer Using Electrochemical Impedance Spectroscopy. J. Electrochem. Soc. 2009, 156, B216–B224. [Google Scholar] [CrossRef]
- Cruz-Manzo, S.; Chen, R.; Rama, P. Inductive Effect on the Fuel Cell Cathode Impedance Spectrum at High Frequencies. J. Fuel Cell Sci. Technol. 2012, 9, 051002. [Google Scholar] [CrossRef]
- Pivac, I.; Barbir, F. Inductive Phenomena at Low Frequencies in Impedance Spectra of Proton Exchange Membrane Fuel Cells—A Review. J. Power Sources 2016, 326, 112–119. [Google Scholar] [CrossRef]
- Setzler, B.P.; Fuller, T.F. A Physics-Based Impedance Model of Proton Exchange Membrane Fuel Cells Exhibiting Low-Frequency Inductive Loops. J. Electrochem. Soc. 2015, 162, F519–F530. [Google Scholar] [CrossRef]
- Schneider, I.A.; Bayer, M.H.; Wokaun, A.; Scherer, G.G. Impedance Response of the Proton Exchange Membrane in Polymer Electrolyte Fuel Cells. J. Electrochem. Soc. 2008, 155, B783–B792. [Google Scholar] [CrossRef]
- Gu, Y.; St-Pierre, J.; Joly, A.; Goeke, R.; Datye, A.; Atanassov, P. Aging Studies of Pt/Glassy Carbon Model Electrocatalysts. J. Electrochem. Soc. 2009, 156, B485–B492. [Google Scholar] [CrossRef]
- Zhai, Y.; Ge, J.; St-Pierre, J. The Ionic Conductivity and Catalyst Activity Effects of Acetonitrile on Proton Exchange Membrane Fuel Cells. Electrochem. Commun. 2016, 66, 49–52. [Google Scholar] [CrossRef]
- Butcher, D.R.; Zhu, Z.; Mao, B.; Wang, H.; Liu, Z.; Salmeron, M.; Somorjai, G.A. Mobility on the Reconstructed Pt(100)-hex Surface in Ethylene and in its Mixture with Hydrogen and Carbon Monoxide. Chem. Commun. 2013, 49, 6903–6905. [Google Scholar] [CrossRef]
- Tao, F.; Dag, S.; Wang, L.-W.; Liu, Z.; Butcher, D.R.; Bluhm, H.; Salmeron, M.; Somorjai, G.A. Break-Up of Stepped Platinum Catalyst Surfaces by High CO Coverage. Science 2010, 327, 850–853. [Google Scholar] [CrossRef]
- Zhai, Y.; Bethune, K.; Bender, G.; Rocheleau, R. Analysis of the SO2 Contamination Effect on the Oxygen Reduction Reaction in PEMFCs by Electrochemical Impedance Spectroscopy. J. Electrochem. Soc. 2012, 159, B524–B530. [Google Scholar] [CrossRef]
- Wang, X.; Hsing, I.-M.; Leng, Y.-J.; Yue, P.-L. Model Interpretation of Electrochemical Impedance Spectroscopy and Polarization Behavior of H2/CO Mixture Oxidation in Polymer Electrolyte Fuel Cells. Electrochim. Acta 2001, 46, 4397–4405. [Google Scholar] [CrossRef]
- Wagner, N.; Gülzow, E. Change of Electrochemical Impedance Spectra (EIS) with Time during CO-Poisoning of the Pt-Anode in a Membrane Fuel Cell. J. Power Sources 2004, 127, 341–347. [Google Scholar] [CrossRef]
- Bethune, K.; St-Pierre, J.; LaManna, J.M.; Hussey, D.S.; Jacobson, D.L. Contamination Mechanisms of Proton Exchange Membrane Fuel Fells—Mass Transfer Overpotential Origin. ACS Appl. Energy Mater. In preparation.
- Weber, A.Z.; Kusoglu, A. Unexplained Transport Resistances for Low-Loaded Fuel-Cell Catalyst Layers. J. Mater. Chem. A 2014, 2, 17207–17211. [Google Scholar] [CrossRef]
- Kongkanand, A.; Mathias, M.F. The Priority and Challenge of High-Power Performance of Low-Platinum Proton-Exchange Membrane Fuel Cells. J. Phys. Chem. Lett. 2016, 7, 1127–1137. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; St-Pierre, J.; Zhai, Y. PEMFC Cathode Catalyst Contamination Evaluation with a RRDE—Acetylene. Electrochim. Acta 2014, 133, 65–72. [Google Scholar] [CrossRef]
- Ge, J.; St-Pierre, J.; Zhai, Y. PEMFC Cathode Catalyst Contamination Evaluation with a RRDE—Acetonitrile. Electrochim. Acta 2014, 134, 272–280. [Google Scholar] [CrossRef]
- Ge, J.; St-Pierre, J.; Zhai, Y. PEMFC Cathode Catalyst Contamination Evaluation with a RRDE—Methyl Methacrylate. Int. J. Hydrogen Energy 2014, 39, 18351–18361. [Google Scholar] [CrossRef]
- Ge, J.; St-Pierre, J.; Zhai, Y. PEMFC Cathode Catalyst Contamination Evaluation with a RRDE—Propene and Naphthalene. Electrochim. Acta 2014, 138, 437–446. [Google Scholar] [CrossRef]
- Zatoń, M.; Rozière, J.; Jones, D.J. Current Understanding of Chemical Degradation Mechanisms of Perfluorosulfonic Acid Membranes and their Mitigation Strategies: A Review. Sustain. Energy Fuels 2017, 1, 409–438. [Google Scholar] [CrossRef]
- St-Pierre, J.; Zhai, Y.; Ge, J. Relationships between PEMFC Cathode Kinetic Losses and Contaminants’ Dipole Moment and Adsorption Energy on Pt. J. Electrochem. Soc. 2016, 163, F247–F254. [Google Scholar] [CrossRef]
- St-Pierre, J. PEMFC Contamination Model: Neutral Species Sorption by Ionomer. Electrochem. Soc. Trans. 2011, 41, 307–315. [Google Scholar] [CrossRef]
- Okada, T.; Dale, J.; Ayato, Y.; Asbjørnsen, O.A.; Yuasa, M.; Sekine, I. Unprecedented Effect of Impurity Cations on the Oxygen Reduction Kinetics at Platinum Electrodes Covered with Perfluorinated Ionomer. Langmuir 1999, 15, 8490–8496. [Google Scholar] [CrossRef]
- Okada, T.; Ayato, Y.; Dale, J.; Yuasa, M.; Sekine, I.; Asbjornsen, O.A. Oxygen Reduction Kinetics at Platinum Electrodes Covered with Perfluorinated Ionomer in the Presence of Impurity Cations Fe3+, Ni2+ and Cu2+. Phys. Chem. Chem. Phys. 2000, 2, 3255–3261. [Google Scholar] [CrossRef]
- Okada, T.; Ayato, Y.; Satou, H.; Yuasa, M.; Sekine, I. The Effect of Impurity Cations on the Oxygen Reduction Kinetics at Platinum Electrodes Covered with Perfluorinated Ionomer. J. Phys. Chem. B 2001, 105, 6980–6986. [Google Scholar] [CrossRef]
- Okada, T.; Satou, H.; Yuasa, M. Effects of Additives on Oxygen Reduction Kinetics at the Interface between Platinum and Perfluorinated Ionomer. Langmuir 2003, 19, 2325–2332. [Google Scholar] [CrossRef]
- St-Pierre, J.; Wetton, B.; Zhai, Y.; Ge, J. Liquid Water Scavenging of PEMFC Contaminants. J. Electrochem. Soc. 2014, 161, E3357–E3364. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Contaminant | Catalyst Loading/mg Pt cm−2 | Cell Voltage/V | Cell Voltage Percentage Change/% | |||
---|---|---|---|---|---|---|
Before Contamination 1 | During Contamination | After Contamination | During Contamination | After Contamination | ||
Acetonitrile | 0.1 | 0.597 | 0.198 | 0.587 | −67 | −1.7 |
0.4 | 0.666 | 0.412 | 0.670 | −38 | 0.60 | |
Acetylene | 0.1 | 0.607 | 0.093 | 0.608 | −85 | 0.16 |
0.4 | 0.672 | 0.664 | 0.672 | −1.2 | 0 | |
Bromomethane | 0.1 | 0.561 | 0.299 | 0.309 | −47 | −45 |
0.4 | 0.663 | 0.376 | 0.398 | −43 | −40 | |
Isopropanol | 0.1 | 0.570 | 0.439 | 0.577 | −23 | 1.2 |
0.4 | 0.681 | 0.623 | 0.687 | −8.5 | 0.88 | |
Methyl methacrylate | 0.1 | 0.599 | 0.444 | 0.608 | −26 | 1.5 |
0.4 | 0.673 | 0.598 | 0.678 | −11 | 0.74 | |
Naphthalene | 0.1 | 0.557 | 0.060 2 | 0.566 | −89 | 1.6 |
0.4 | 0.671 | 0.495 | 0.677 | −26 | 0.89 | |
Propene | 0.1 | 0.609 | 0.209 | 0.621 | −66 | 2.0 |
0.4 | 0.670 | 0.547 | 0.674 | −18 | 0.60 |
Contaminant | Catalyst Loading/mg Pt cm−2 | Kinetic/Mass Transfer Resistances/Ω cm2 | Dimensionless Resistance During/After Contamination 1 | |||
---|---|---|---|---|---|---|
Before Contamination | During Contamination | After Contamination | Kinetic | Mass Transfer | ||
Acetonitrile | 0.1 | 0.118/0.095 | 0.396/0.187 | 0.108/0.080 | 3.36/0.915 | 1.97/0.842 |
0.4 | 0.104/0.056 | 0.210/0.079 | 0.099/0.056 | 2.02/0.952 | 1.41/1.00 | |
Acetylene | 0.1 | 0.133/0.107 | - 2 | 0.117/0.106 | - | - |
0.4 | 0.107/0.061 | 0.112/0.064 | 0.109/0.059 | 1.05/1.02 | 1.05/0.967 | |
Bromomethane | 0.1 | 0.103/0.109 | 0.139/0.341 | 0.285/0.288 | 1.35/2.77 | 3.13/2.64 |
0.4 | 0.116/0.062 | 0.265/0.157 | 0.274/0.167 | 2.28/2.36 | 2.53/2.69 | |
Isopropanol | 0.1 | 0.102/0.100 | - 3 | 0.123/0.090 | - | - |
0.4 | 0.100/0.070 | 0.117/0.065 | 0.095/0.068 | 1.17/0.950 | 0.929/0.971 | |
Methyl methacrylate | 0.1 | 0.121/0.104 | 0.164/0.189 | 0.104/0.098 | 1.36/0.860 | 1.82/0.942 |
0.4 | 0.111/0.063 | 0.152/0.104 | 0.107/0.059 | 1.37/0.964 | 1.65/0.937 | |
Naphthalene | 0.1 | 0.115/0.108 | - 3 | 0.119/0.097 | - | - |
0.4 | 0.106/0.075 | 0.288/0.152 | 0.101/0.066 | 2.72/0.953 | 2.03/0.880 | |
Propene | 0.1 | 0.137/0.107 | 0.189/0.118 | 0.114/0.107 | 1.38/0.832 | 1.10/1.00 |
0.4 | 0.117/0.063 | 0.152/0.134 | - 4 | 1.30/- | 2.13/- |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
St-Pierre, J.; Zhai, Y. Impact of the Cathode Pt Loading on PEMFC Contamination by Several Airborne Contaminants. Molecules 2020, 25, 1060. https://doi.org/10.3390/molecules25051060
St-Pierre J, Zhai Y. Impact of the Cathode Pt Loading on PEMFC Contamination by Several Airborne Contaminants. Molecules. 2020; 25(5):1060. https://doi.org/10.3390/molecules25051060
Chicago/Turabian StyleSt-Pierre, Jean, and Yunfeng Zhai. 2020. "Impact of the Cathode Pt Loading on PEMFC Contamination by Several Airborne Contaminants" Molecules 25, no. 5: 1060. https://doi.org/10.3390/molecules25051060
APA StyleSt-Pierre, J., & Zhai, Y. (2020). Impact of the Cathode Pt Loading on PEMFC Contamination by Several Airborne Contaminants. Molecules, 25(5), 1060. https://doi.org/10.3390/molecules25051060