Stability and Extraction of Vanillin and Coumarin under Subcritical Water Conditions
Abstract
1. Introduction
2. Results and Discussions
2.1. Stability of Vanillin and Coumarin in Subcritical Water
2.2. Subcritical Water Extraction
3. Materials and Methods
3.1. Reagents and Materials
3.2. Heating of Organic-Water Mixtures
3.3. Preparation of Standard Solutions
3.4. Sonication Extraction
3.5. Subcritical Water Extraction
3.6. HPLC Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
SBWE | Subcritical water extraction |
HPLC | High-performance liquid chromatography |
UV | Ultra violet |
References
- Priefert, H.; Rabenhorst, J.; Steinbüchel, A. Biotechnological production of vanillin. Appl. Microbiol. Biotechnol. 2001, 56, 296–314. [Google Scholar] [CrossRef] [PubMed]
- De Jager, L.S.; Perfetti, G.A.; Diachenko, G.W. Comparison of headspace-SPME-GC–MS and LC–MS for the detection and quantification of coumarin, vanillin, and ethyl vanillin in vanilla extract products. Food Chem. 2008, 107, 1701–1709. [Google Scholar] [CrossRef]
- De Jager, L.S.; Perfetti, G.A.; Diachenko, G.W. Determination of coumarin, vanillin, and ethyl vanillin in vanilla extract products: Liquid chromatography mass spectrometry method development and validation studies. J. Chromatogr. A 2007, 1145, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Maggi, F.; Barboni, L.; Caprioli, G.; Papa, F.; Ricciutelli, M.; Sagratini, G.; Vittori, S. HPLC quantification of coumarin in bastard balm (Melittis melissophyllum L., Lamiaceae). Fitoterapia 2011, 82, 1215–1221. [Google Scholar] [CrossRef] [PubMed]
- Goel, A.; Prasad, A.K.; Parmar, V.S.; Ghosh, B.; Saini, N. 7,8-Dihydroxy-4-methylcoumarin induces apoptosis of human lung adenocarcinoma cells by ROS-independent mitochondrial pathway through partial inhibition of ERK/MAPK signaling. FEBS Lett. 2007, 581, 2447–2454. [Google Scholar] [CrossRef]
- Keri, R.S.; Hosamani, K.M.; Shingalapur, R.V.; Hugar, M.H. Analgesic, anti-pyretic and DNA cleavage studies of novel pyrimidine derivatives of coumarin moiety. Eur. J. Med. Chem. 2010, 45, 2597–2605. [Google Scholar] [CrossRef]
- Sproll, C.; Ruge, W.; Andlauer, C.; Godelmann, R.; Lachenmeier, D.W. HPLC analysis and safety assessment of coumarin in foods. Food Chem. 2008, 109, 462–469. [Google Scholar] [CrossRef]
- Krishna veni, N.; Meyyanathan, S.N.; Aduri, A.R.; Alkeshbhai, S.S.; Elango, K. Analysis of vanillin in food products by high performance thin layer chromatography. J. Adv. Sci. Res. 2013, 4, 48–51. [Google Scholar]
- Yang, Y. Subcritical water chromatography: A green approach to high-temperature liquid chromatography. J. Sep. Sci. 2007, 30, 1131–1140. [Google Scholar] [CrossRef]
- Yang, Y.; Kapalavavi, B. Subcritical water chromatography—An economical and green separation technique. Encycl. Anal. Chem. 2011, 1–23. [Google Scholar] [CrossRef]
- Smith, R. Superheated water chromatography – A green technology for the future. J. Chromatogr. A 2008, 1184, 441–455. [Google Scholar] [CrossRef]
- Doctor, N.; Yang, Y. Separation and Analysis of Aspirin and Metformin HCl Using Green Subcritical Water Chromatography. Molecules 2018, 23, 2258. [Google Scholar] [CrossRef]
- Kapalavavi, B.; Yang, Y.; Marple, R.; Gamsky, C. Separation and analysis of pharmaceuticals in cold drugs using green chromatography. Sep. Purif. Technol. 2016, 158, 308–312. [Google Scholar] [CrossRef]
- Scott, A.F.; Thurbide, K.B.; Quickfall, D. A comparison of hydrocarbon and alkali metal response in the flame ionization detector used in subcritical water chromatography. Can. J. Chem. 2015, 93, 784–789. [Google Scholar] [CrossRef]
- Akay, S.; Odabaşı, M.; Yang, Y.; Kayan, B. Synthesis and evaluation of NA-PHEMAH polymer for use as a new stationary phase in high-temperature liquid chromatography. Sep. Purif. Technol. 2015, 152, 1–6. [Google Scholar] [CrossRef]
- Srisopa, A. Preparation of monodisperse porous poly(glycidylmethacrylate-co-ethylenedimethacrylate) microspheres and their application as stationary phase for superheated water HPLC. Talanta 2016, 147, 358–363. [Google Scholar] [CrossRef]
- Yang, Y.; Kapalavavi, B.; Gujjar, L.; Hadrous, S.; Marple, R.; Gamsky, C. Industrial application of green chromatography - II. Separation and analysis of preservatives in skincare products using subcritical water chromatography. Int. J. Cosmet. Sci. 2012, 34, 466–476. [Google Scholar] [CrossRef]
- Wu, Y.; Deng, X.; Mao, Y.; Zhang, Y.; Liu, J.; Rong, L.; Xu, Z. Retention mechanism of phenolic compounds in subcritical water chromatography. Chem. Res. Chin. Univ. 2015, 31, 103–106. [Google Scholar] [CrossRef]
- Kayan, B.; Akay, S.; Yang, Y. Green Chromatographic Separation of Coumarin and Vanillins Using Subcritical Water as the Mobile Phase. J. Chromatogr. Sci. 2016, 54, 1187–1192. [Google Scholar] [CrossRef]
- Kapalavavi, B.; Gamsky, C.; Marple, R.; Yang, Y. Separation of sunscreens in skincare creams using greener high?temperature liquid chromatography and subcritical water chromatography. Int. J. Cosmet. Sci. 2011, 34, 169–175. [Google Scholar] [CrossRef]
- Droux, S.; Roy, M.; Felix, G. Green chiral HPLC study of the stability of Chiralcel OD under high temperature liquid chromatography and subcritical water conditions. J. Chromatogr. B 2014, 968, 22–25. [Google Scholar] [CrossRef]
- Yang, Y.; Strickland, Z.; Kapalavavi, B.; Marple, R.; Gamsky, C. Industrial application of green chromatography—I. Separation and analysis of niacinamide in skincare creams using pure water as the mobile phase. Talanta 2011, 84, 169–174. [Google Scholar] [CrossRef]
- Yarita, T.; Aoyagi, Y.; Sasai, H.; Nishigaki, A.; Shibukawa, M. Separation of parabens on a zirconia-based stationary phase in superheated water chromatography. Anal. Sci. 2013, 29, 213–219. [Google Scholar] [CrossRef]
- Kapalavavi, B.; Marple, R.; Gamsky, C.; Yang, Y. Studies on the stability of preservatives under subcritical water conditions. Int. J. Cosmet. Sci. 2015, 37, 306–311. [Google Scholar] [CrossRef]
- Lindquist, E.; Yang, Y. Degradation of benzoic acid and its derivatives in subcritical water. J. Chromatogr. A 2011, 1218, 2146–2152. [Google Scholar] [CrossRef]
- Yang, Y.; Kayan, B.; Bozer, N.; Pate, B.; Baker, C.; Gizir, A.M. Terpene degradation and extraction from basil and oregano leaves using subcritical water. J. Chromatogr. A 2007, 1152, 262–267. [Google Scholar] [CrossRef]
- Fujii, T.; Kawasaki, S.-I. Effects of process parameters on vanillin partition coefficient in water-supercritical CO2 extraction. Fluid Phase Equilibria 2019, 485, 153–157. [Google Scholar] [CrossRef]
- Fujii, T.; Kawasaki, S.-I. Salting-out effects on vanillin extraction by supercritical carbon dioxide from aqueous vanillin solution containing salts. J. Supercrit. Fluids 2019, 152, 104550. [Google Scholar] [CrossRef]
- Jadhav, D.; Rekha, B.N.; Gogate, P.R.; Rathod, V.K. Extraction of vanillin from vanilla pods: A comparison study of conventional soxhlet and ultrasound assisted extraction. J. Food Eng. 2009, 93, 421–426. [Google Scholar] [CrossRef]
- Rodríguez-Jimenes, G.D.C.; Vargas-Garcia, A.; Espinoza-Pérez, D.J.; Salgado-Cervantes, M.A.; Robles-Olvera, V.J.; A García-Alvarado, M. Mass Transfer During Vanilla Pods Solid Liquid Extraction: Effect of Extraction Method. Food Bioprocess Technol. 2012, 6, 2640–2650. [Google Scholar] [CrossRef]
- Gbashi, S.; Adebo, O.; Piater, L.; Madala, N.E.; Njobeh, P.B. Subcritical Water Extraction of Biological Materials. Sep. Purif. Rev. 2016, 46, 21–34. [Google Scholar] [CrossRef]
- Kawamura, F.; Saary, N.S.; Hashim, R.; Sulaiman, O.; Hashida, K.; Otsuka, Y.; Nakamura, M.; Ohara, S. Subcritical Water Extraction of Low-molecular-weight Phenolic Compounds from Oil Palm Biomass. Jpn. Agric. Res. Quarterly: JARQ 2014, 48, 355–362. [Google Scholar] [CrossRef]
Temperature | 15 min | 60 min | ||
---|---|---|---|---|
(°C) | % Recovery | % RSD a | % Recovery | % RSD a |
100 | 97 | 5 | 93 | 6 |
150 | 103 | 5 | 98 | 2 |
200 | 97 | 2 | 99 | 2 |
250 | 99 | 1 | 95 | 2 |
Temperature | 15 min | 60 min | ||
---|---|---|---|---|
(°C) | % Recovery | % RSD a | % Recovery | % RSD a |
100 | 98 | 6 | 96 | 7 |
150 | 101 | 4 | 100 | 7 |
200 | 97 | 3 | 91 | 10 |
250 | 101 | 5 | 82 | 20 |
Temperature | Vanillin | Coumarin | ||
---|---|---|---|---|
% Recovery | % RSD a | % Recover | % RSD a | |
100 °C | 98.4 | 0.6 | 96.9 | 0.7 |
150 °C | 104.2 | 0.8 | 102.3 | 0.8 |
200 °C | 104 | 0.6 | 102.2 | 0.6 |
Temperature (°C) | Vanillin in Vanilla Beans | Coumarin in Tonka Beans | ||
---|---|---|---|---|
mg/g | % RSD a | mg/g | % RSD a | |
100 | 1.07 | 9 | 23.9 | 6 |
150 | 1.66 | 3 | 25.2 | 3 |
200 | 1.95 | 5 | 36.8 | 9 |
Sonication | 4.97 | 5 | 102.5 | 5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doctor, N.; Parker, G.; Vang, K.; Smith, M.; Kayan, B.; Yang, Y. Stability and Extraction of Vanillin and Coumarin under Subcritical Water Conditions. Molecules 2020, 25, 1061. https://doi.org/10.3390/molecules25051061
Doctor N, Parker G, Vang K, Smith M, Kayan B, Yang Y. Stability and Extraction of Vanillin and Coumarin under Subcritical Water Conditions. Molecules. 2020; 25(5):1061. https://doi.org/10.3390/molecules25051061
Chicago/Turabian StyleDoctor, Ninad, Grayson Parker, Katie Vang, Melanie Smith, Berkant Kayan, and Yu Yang. 2020. "Stability and Extraction of Vanillin and Coumarin under Subcritical Water Conditions" Molecules 25, no. 5: 1061. https://doi.org/10.3390/molecules25051061
APA StyleDoctor, N., Parker, G., Vang, K., Smith, M., Kayan, B., & Yang, Y. (2020). Stability and Extraction of Vanillin and Coumarin under Subcritical Water Conditions. Molecules, 25(5), 1061. https://doi.org/10.3390/molecules25051061