Comparative Analysis of the Conversion of Mandelonitrile and 2-Phenylpropionitrile by a Large Set of Variants Generated from a Nitrilase Originating from Pseudomonas fluorescens EBC191
Abstract
1. Introduction
2. The Nitrilase from Pseudomonas fluorescens EBC191
2.1. Mutational Studies with the Nitrilase from P. fluorescens EBC191
2.2. Mutations Which Result in the Increased Formation of (R)-Acids
2.3. Mutations Which Result in the Increased Formation of (S)-Mandelic Acid
2.4. Correlation Between the Relative Proportions of Amides Formed from (R,S)-Mandelonitrile or (R,S)-2-Phenylpropionitrile
2.5. Correlation Between the Relative Amounts of Amides Formed from (R,S)-Mandelonitrile or (R,S)-2-Phenylpropionitrile and the Enantiomeric Composition of the Amides
2.6. Comparison of the Enantiomeric Composition of the Acids and Amides Formed During the Turn-Over of (R,S)-Mandelonitrile or (R,S)-2Phenylpropionitrile
2.7. Comparison of the Relative Amounts of Mandelamide Formed and the Enantiomeric Excess of the Mandelic Acid Produced During the Turn-Over of (R,S)-Mandelonitrile
2.8. Comparison of the Reaction- and Enantiospecificity of the Nitrilase Variants During the Conversion of (R,S)-Mandelonitrile
2.9. Comparison of the Reaction- and Enantiospecificity of the Nitrilase Variants During the Conversion of (R,S)-2-Phenylpropionitrile
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nagasawa, T.; Mauger, J.; Yamada, H. A novel nitrilase, arylacetonitrilase, of Alcaligenes faecalis JM3. Eur. J. Biochem. 1990, 194, 765–772. [Google Scholar] [CrossRef] [PubMed]
- Brunner, S.; Eppinger, E.; Fischer, S.; Gröning, J.; Stolz, A. Conversion of aliphatic nitriles by the arylacetonitrilase from Pseudomonas fluorescens EBC191. World J. Microbiol. Biotechnol. 2018, 34, 91. [Google Scholar] [CrossRef]
- Martinková, L.; Křen, V. Nitrile- and amide-converting microbial enzymes: Stereo-, regio- and chemoselectivity. Biocatal. Biotrans. 2002, 20, 79–93. [Google Scholar] [CrossRef]
- Gong, J.S.; Shi, J.S.; Lu, Z.M.; Li, H.; Zhou, Z.M.; Xu, Z.H. Nitrile-converting enzymes as a tool to improve biocatalysis in organic synthesis: Recent insights and promises. Crit. Rev. Biotechnol. 2017, 37, 69–81. [Google Scholar] [CrossRef] [PubMed]
- Martinková, L.; Rucká, L.; Nešvera, J.; Pátek, M. Recent advances and challenges in the heterologous production of microbial nitrilases for biocatalytic applications. World J. Microbiol. Biotechnol. 2017, 33, 8. [Google Scholar] [CrossRef] [PubMed]
- Bhalla, T.C.; Kumar, V.; Kumar, V.; Thakur, N.; Savitri. Nitrile metabolizing enzymes in biocatalysis and biotransformation. Appl. Biochem. Biotechnol. 2018, 185, 925–946. [Google Scholar] [CrossRef] [PubMed]
- Martinková, L.; Křen, V. Biocataytic production of mandelic acid and analogues: A review and comparison with chemical processes. Appl. Microbiol. Biotechnol. 2018, 102, 3893–3900. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.; Oishi, K.; Fujimatsu, I.; Komatsu, K.-I. Production of R-(-)-mandelic acid from mandelonitrile by Alcaligenes faecalis ATCC 8750. Appl. Environ. Microbiol. 1991, 57, 3028–3032. [Google Scholar]
- Yamamoto, K.; Fujimatsu, I.; Komatsu, K.-I. Purification and characterization of the nitrilase from Alcaligenes faecalis ATCC 8750 responsible for enantioselective hydrolysis of mandelonitrile. J. Ferment. Bioeng. 1992, 73, 425–430. [Google Scholar] [CrossRef]
- Ress-Löschke, M.; Friedrich, T.; Hauer, B.; Mattes, R. Verfahren zur Herstellung chiraler Carbonsäuren aus Nitrilen mit Hilfe einer Nitrilase oder Mikroorganismen, die ein Gen für eine Nitrilase enthalten. German Patent Application DE 19848129A1, 19 October 1998. [Google Scholar]
- Kaul, P.; Banerjee, A.; Mayilraj, S.; Banerjee, U.C. Screening for enantioselective nitrilases: Kinetic resolution of racemic mandelonitrile to (R)-mandelic acid by new bacterial isolates. Tetrahedron Asymmetry 2004, 15, 207–211. [Google Scholar] [CrossRef]
- Liese, A.; Seelbach, K.; Wandrey, C. Industrial Biotransformations, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2006. [Google Scholar]
- Banerjee, A.; Kaul, P.; Banerjee, U.C. Purification and characterization of an enantioselective arylacetonitrilase from Pseudomonas putida. Arch. Microbiol. 2006, 184, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-H.; Liu, Z.-Q.; Xue, Y.-P.; Zhang, Y.-G. Nitrilase catalyzed conversion of (R,S)-mandelonitrile by immobilized recombinant Escherichia coli cells harboring nitrilase. Biotechnol. Appl. Biochem. 2015. [Google Scholar] [CrossRef]
- Zhang, C.-S.; Zhang, Z.J.; Li, C.-X.; Yu, H.-L.; Zheng, G.-W.; Xu, J.-H. Efficient production of (R)-o-chloromandelic acid by deracemization of o-chloromandelonitrile with a new nitrilase mined from Labrenzia aggregata. Appl. Microbiol. Biotechnol. 2012, 95, 91–99. [Google Scholar] [CrossRef]
- Wang, H.; Sun, H.; Gao, W.; Wei, D. Efficient production of (r)-o-chloromandelic acid by recombinant Escherichia coli cells harboring nitrilase from Burkholderia cenocepacia J2315. Org. Process. Res. Dev. 2014, 18, 767–773. [Google Scholar] [CrossRef]
- Sun, H.; Wang, H.; Gao, W.; Chen, L.; We, K.; Wei, D. Directed evolution of nitrilase PpL19 from Pseudomonas psychrotolerans and identification of enantiocomplementary mutants toward mandelonitrile. Biochem. Biophys. Res. Commun. 2015, 468, 820–825. [Google Scholar] [CrossRef] [PubMed]
- DeSantis, G.; Zhu, Z.; Greenberg, W.A.; Wong, K.; Chaplin, J.; Hanson, S.R.; Farwell, B.; Nicholson, L.W.; Rand, C.L.; Weiner, D.P.; et al. An enzyme library approach to biocatalysis: Development of nitrilases for enantioselective production of carboxylic acid derivatives. J. Am. Chem. Soc. 2002, 124, 9024–9025. [Google Scholar] [CrossRef]
- Robertson, D.E.; Chaplin, J.A.; DeSantis, G.; Podar, M.; Madden, M.; Chi, E.; Richardson, T.; Milan, A.; Miller, M.; Weiner, D.P.; et al. Exploring nitrilase sequence space for enantioselective catalysis. Appl. Environ. Microbiol. 2004, 70, 2429–2436. [Google Scholar] [CrossRef]
- Kiziak, C.; Conradt, D.; Stolz, A.; Mattes, R.; Klein, J. Nitrilase from Pseudomonas fluorescens EBC191: Cloning and heterologous expression of the gene and biochemical characterization of the recombinant enzyme. Microbiology 2005, 151, 3639–3648. [Google Scholar] [CrossRef]
- Fernandes, B.C.M.; Mateo, C.; Kiziak, C.; Wacker, J.; Chmura, A.; van Rantwijk, F.; Stolz, A.; Sheldon, R.A. Nitrile hydratase activity of a recombinant nitrilase. Adv. Synth. Catal. 2006, 348, 2597–2603. [Google Scholar] [CrossRef]
- Brenner, C. Catalysis in the nitrilase superfamily. Curr. Opinion Struct. Biol. 2002, 12, 775–782. [Google Scholar] [CrossRef]
- Sosedov, O.; Stolz, A. Improvement of the amides forming capacity of the arylacetonitrilase from Pseudomonas fluorescens EBC191 by site-directed mutagenesis. Appl. Microbiol. Biotechnol. 2015, 99, 2623–2635. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, D.E.; Feng, R.; Storer, A.C. Detection of covalent enzyme-substrate complexes of nitrilases by ion-spray mass spectroscopy. FEBS Lett. 1990, 277, 112–114. [Google Scholar] [CrossRef]
- Kobayashi, M.; Komeda, H.; Yanaka, N.; Nagasawa, T.; Yamada, H. Nitrilase from Rhodococcus rhodochrous J1. Sequencing and overexpression of the gene and identification of an essential cysteine residue. J. Biol. Chem. 1992, 267, 20746–20751. [Google Scholar] [PubMed]
- Thuku, R.N.; Brady, D.; Benedik, M.J.; Sewell, B.T. Microbial nitrilases: Versatile, spiral forming, industrial enzymes. J. Appl. Microbiol. 2008, 106, 703–727. [Google Scholar] [CrossRef] [PubMed]
- Hook, R.H.; Robinson, W.G. Ricinine nitrilase: II. Purification and properties. J. Biol. Chem. 1964, 239, 4263–4267. [Google Scholar] [PubMed]
- Robinson, W.G.; Hook, R.H. Ricinine nitrilase: I. Reaction product and substrate specificity. J. Biol. Chem. 1964, 239, 4257–4262. [Google Scholar]
- Goldlust, A.; Bohak, Z. Induction, purification, and characterization of the nitrilase of Fusarium oxysporum f. sp. melonis. Biotechnol. Appl. Biochem. 1989, 11, 581–601. [Google Scholar]
- Stevenson, D.E.; Feng, R.; Dumas, F.; Groleau, D.; Mihoc, A.; Storer, A.C. Mechanistic and structural studies on Rhodococcus ATCC39484 nitrilase. Biotechnol. Appl. Biochem. 1992, 15, 283–302. [Google Scholar]
- Effenberger, F.; Osswald, S. Enantioselective hydrolysis of (RS)-2-fluoroarylacetonitriles using nitrilase from Arabidopsis thaliana. Tetrahedron Asymmetry 2001, 12, 279–285. [Google Scholar] [CrossRef]
- Osswald, S.; Wajant, H.; Effenberger, F. Characterization and synthetic applications of recombinant AtNIT1 from Arabidopsis thaliana. Eur. J. Biochem. 2002, 269, 680–687. [Google Scholar] [CrossRef]
- Piotrowski, M.; Schönfelder, S.; Weiler, E.W. The Arabidopsis thaliana isogene NIT4 and its orthologs in tobacco encode β-cyano-L-alanine hydratase/nitrilase. J. Biol. Chem. 2001, 276, 2616–2621. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, M.; Goda, M.; Shimizu, S. Nitrilase catalyzes amide hydrolysis as well as nitrile hydrolysis. Biochem. Biophys. Res. Comm. 1998, 253, 662–666. [Google Scholar] [CrossRef] [PubMed]
- Thuku, R.N.; Weber, B.W.; Varsani, A.; Sewell, B.T. Post-translational cleavage of recombinantly expressed nitrilase from Rhodococcus rhodochrous J1 yields a stable, active helical form. FEBS J. 2007, 274, 2099–2108. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Bin, Y.; Wang, C.; Jiang, S.; Wang, H.; Yuan, Y.A.; Wei, D. Structural insights into enzymatic activity and substrate specificity by a single amino acid in nitrilase from Synechocystis sp. PCC6803. J. Struct. Biol. 2014, 188, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Woodward, J.D.; Trompetter, I.; Sewell, B.T.; Piotrowski, M. Substrate specificity of plant nitrilases complexes is affected by their helical twist. Commun. Biol. 2018, 1, 186. [Google Scholar] [CrossRef] [PubMed]
- Layh, N.; Stolz, A.; Förster, S.; Effenberger, F.; Knackmuss, H.-J. Enantioselective hydrolysis of O-acetylmandelonitrile to O-acetylmandelic acid by bacterial nitrilases. Arch. Microbiol. 1992, 158, 405–411. [Google Scholar] [CrossRef][Green Version]
- Kiziak, C.; Klein, J.; Stolz, A. Influence of different carboxyterminal mutations on the substrate-, reaction-, and enantiospecificity of the arylacetonitrilase from Pseudomonas fluorescens EBC191. Prot. Eng. Design Sel. 2007, 20, 385–396. [Google Scholar] [CrossRef][Green Version]
- Krieger, E.; Koraimann, G.; Vriend, G. Increasing the precision of comparative models with YASARA NOVA- a self-parameterizing force field. Proteins 2002, 47, 393–402. [Google Scholar] [CrossRef]
- Sosedov, O. Steigerung der Nitril-Hydratase-Aktivität der Nitrilase aus Pseudomonas fluorescens EBC191. Ph.D. Thesis, Universität Stuttgart, Stuttgart, Germany, 2012. [Google Scholar]
- Heinemann, U.; Kiziak, C.; Zibek, S.; Layh, N.; Schmidt, M.; Griengl, H.; Stolz, A. Conversion of aliphatic 2-acetoxynitriles by nitriles hydrolysing bacteria. Appl. Microbiol. Biotechnol. 2003, 63, 274–281. [Google Scholar] [CrossRef]
- Mateo, C.; Chmura, A.; Rustler, S.; van Rantwijk, F.; Stolz, A.; Sheldon, R.A. Synthesis of enantiomerically pure (S)-mandelic acid using an oxynitrilase-nitrilase bienzymatic cascade. A nitrilase surprsisingly shows nitrile hydratase activity. Tetrahedron Asymmetry 2006, 17, 320–323. [Google Scholar] [CrossRef]
- Rustler, S.; Müller, A.; Windeisen, V.; Chmura, A.; Fernandes, B.C.M.; Kiziak, C.; Stolz, A. Conversion of mandelonitrile and phenylglycinenitrile by recombinant E. coli cells synthesizing a nitrilase from Pseudomonas fluorescens EBC191. Enzyme Microb. Technol. 2007, 40, 598–606. [Google Scholar] [CrossRef]
- Baum, S.; Williamson, D.S.; Sewell, T.; Stolz, A. Conversion of sterically demanding α-α-disubstituted phenylacetonitriles by the arylacetonitrilase from Pseudomonas fluorescens EBC191. Appl. Environ. Microbiol. 2012, 78, 48–57. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kiziak, C.; Stolz, A. Identification of amino acid residues which are responsible for the enantioselectivity and amide formation capacity of the arylacetonitrilase from Pseudomonas fluorescens EBC 191. Appl. Environ. Microbiol. 2009, 75, 5592–5599. [Google Scholar] [CrossRef] [PubMed]
- Sosedov, O.; Baum, S.; Bürger, S.; Matzer, K.; Kiziak, C.; Stolz, A. Construction and application of variants of the arylacetonitrilase from Pseudomonas fluorescens EBC191 which form increased amounts of acids or amides. Appl. Environ. Microbiol. 2010, 76, 3668–3674. [Google Scholar] [CrossRef] [PubMed]
- Sosedov, O.; Stolz, A. Random mutagenesis of the arylacetonitrilase from Pseudomonas fluorescens EBC191 and identification of variants which form increased amounts of mandelamide from mandelonitrile. Appl. Microbiol. Biotechnol. 2014, 98, 1595–1607. [Google Scholar] [CrossRef]
Nitrilase | MAA (%) | ee MAA | ee MA | (R)-MA (%) | (S)-MA (%) | (R)-MAA (%) | (S)-MAA (%) | (R)/(S) | “Total Enantiomeric Excess” |
---|---|---|---|---|---|---|---|---|---|
Wild type | 16 | 84 (S) | 31 (R) | 55 | 29 | 1 | 15 | 56/44 | 12 (R) |
Del C60 | 52 | 59 (S) | 73 (R) | 41 | 7 | 11 | 41 | 52/48 | 4 (R) |
A165H | 6 | 1 (R) | 91 (R) | 90 | 4 | 3 | 3 | 93/7 | 86 (R) |
W188K | 94 | 57 (S) | 47 (S) | 2 | 4 | 20 | 74 | 22/78 | 56 (S) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stolz, A.; Eppinger, E.; Sosedov, O.; Kiziak, C. Comparative Analysis of the Conversion of Mandelonitrile and 2-Phenylpropionitrile by a Large Set of Variants Generated from a Nitrilase Originating from Pseudomonas fluorescens EBC191. Molecules 2019, 24, 4232. https://doi.org/10.3390/molecules24234232
Stolz A, Eppinger E, Sosedov O, Kiziak C. Comparative Analysis of the Conversion of Mandelonitrile and 2-Phenylpropionitrile by a Large Set of Variants Generated from a Nitrilase Originating from Pseudomonas fluorescens EBC191. Molecules. 2019; 24(23):4232. https://doi.org/10.3390/molecules24234232
Chicago/Turabian StyleStolz, Andreas, Erik Eppinger, Olga Sosedov, and Christoph Kiziak. 2019. "Comparative Analysis of the Conversion of Mandelonitrile and 2-Phenylpropionitrile by a Large Set of Variants Generated from a Nitrilase Originating from Pseudomonas fluorescens EBC191" Molecules 24, no. 23: 4232. https://doi.org/10.3390/molecules24234232
APA StyleStolz, A., Eppinger, E., Sosedov, O., & Kiziak, C. (2019). Comparative Analysis of the Conversion of Mandelonitrile and 2-Phenylpropionitrile by a Large Set of Variants Generated from a Nitrilase Originating from Pseudomonas fluorescens EBC191. Molecules, 24(23), 4232. https://doi.org/10.3390/molecules24234232