Next Article in Journal
Taste Evaluation of Yellowtail (Seriola Quinqueradiata) Ordinary and Dark Muscle by Metabolic Profiling
Previous Article in Journal
Approach Study for Mass Balance of Pesticide Residues in Distillers’ Stillage along with Distillate and Absence Verification of Pesticides in Distilled Spirits from Pilot-Scale of Distillation Column
Article

β-Peltoboykinolic Acid from Astilbe rubra Attenuates TGF-β1-Induced Epithelial-to-Mesenchymal Transitions in Lung Alveolar Epithelial Cells

1
School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea
2
College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Korea
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Molecules 2019, 24(14), 2573; https://doi.org/10.3390/molecules24142573
Received: 31 May 2019 / Revised: 9 July 2019 / Accepted: 14 July 2019 / Published: 15 July 2019
Epithelial-to-mesenchymal transition (EMT) is increasingly recognized as contributing to the pathogenesis of idiopathic pulmonary fibrosis. Therefore, novel plant-based natural, active compounds have been sought for the treatment of fibrotic EMT. The aim of the present study was to investigate the inhibitory effects of Astilbe rubra on TGF-β1-induced EMT in lung alveolar epithelial cells (A549). A. rubra was subjected to extraction using 70% ethanol (ARE), and ethanol extracts of the aerial part and that of the rhizome were further partitioned using various solvents. Protein expression and cell motility were investigated to evaluate the inhibitory effects of ARE on EMT. EMT occurred in A549 cells treated with TGF-β1, but was prevented by co-treatment with ARE. The dichloromethane fractions showed the strongest inhibitory effect on TGF-β1-induced EMT. β-Peltoboykinolic acid was isolated from the dichloromethane fractions of A. rubra by activity-oriented isolation. β-Peltoboykinolic acid not only attenuated TGF-β1-induced EMT, but also the overproduction of extracellular matrix components including type I collagen and fibronectin. The Smad pathway activated by TGF-β1 was inhibited by co-treatment with β-peltoboykinolic acid. Taken together, these results indicate that β-peltoboykinolic acid from A. rubra and dichloromethane fractions shows potential as an antifibrotic agent in A549 cells treated with TGF-β1. View Full-Text
Keywords: Astilbe rubra; β-peltoboykinolic acid; epithelial-mesenchymal transition; TGF-β1; lung fibrosis Astilbe rubra; β-peltoboykinolic acid; epithelial-mesenchymal transition; TGF-β1; lung fibrosis
Show Figures

Figure 1

MDPI and ACS Style

Bang, I.J.; Kim, H.R.; Jeon, Y.; Jeong, M.H.; Park, Y.J.; Kwak, J.H.; Chung, K.H. β-Peltoboykinolic Acid from Astilbe rubra Attenuates TGF-β1-Induced Epithelial-to-Mesenchymal Transitions in Lung Alveolar Epithelial Cells. Molecules 2019, 24, 2573. https://doi.org/10.3390/molecules24142573

AMA Style

Bang IJ, Kim HR, Jeon Y, Jeong MH, Park YJ, Kwak JH, Chung KH. β-Peltoboykinolic Acid from Astilbe rubra Attenuates TGF-β1-Induced Epithelial-to-Mesenchymal Transitions in Lung Alveolar Epithelial Cells. Molecules. 2019; 24(14):2573. https://doi.org/10.3390/molecules24142573

Chicago/Turabian Style

Bang, In J.; Kim, Ha R.; Jeon, Yukyoung; Jeong, Mi H.; Park, Yong J.; Kwak, Jong H.; Chung, Kyu H. 2019. "β-Peltoboykinolic Acid from Astilbe rubra Attenuates TGF-β1-Induced Epithelial-to-Mesenchymal Transitions in Lung Alveolar Epithelial Cells" Molecules 24, no. 14: 2573. https://doi.org/10.3390/molecules24142573

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop