Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,067)

Search Parameters:
Keywords = lung fibrosis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2823 KiB  
Article
Pro-Reparative Effects of KvLQT1 Potassium Channel Activation in a Mouse Model of Acute Lung Injury Induced by Bleomycin
by Tom Voisin, Alban Girault, Mélissa Aubin Vega, Émilie Meunier, Jasmine Chebli, Anik Privé, Damien Adam and Emmanuelle Brochiero
Int. J. Mol. Sci. 2025, 26(15), 7632; https://doi.org/10.3390/ijms26157632 - 7 Aug 2025
Abstract
Acute Respiratory Distress Syndrome (ARDS) is a complex and devastating form of respiratory failure, with high mortality rates, for which there is no pharmacological treatment. The acute exudative phase of ARDS is characterized by severe damage to the alveolar–capillary barrier, infiltration of protein-rich [...] Read more.
Acute Respiratory Distress Syndrome (ARDS) is a complex and devastating form of respiratory failure, with high mortality rates, for which there is no pharmacological treatment. The acute exudative phase of ARDS is characterized by severe damage to the alveolar–capillary barrier, infiltration of protein-rich fluid into the lungs, neutrophil recruitment, and high levels of inflammatory mediators. Rapid resolution of this reversible acute phase, with efficient restoration of alveolar functional integrity, is essential before the establishment of irreversible fibrosis and respiratory failure. Several lines of in vitro and in vivo evidence support the involvement of potassium (K+) channels—particularly KvLQT1, expressed in alveolar cells—in key cellular mechanisms for ARDS resolution, by promoting alveolar fluid clearance and epithelial repair processes. The aim of our study was to investigate whether pharmacological activation of KvLQT1 channels could elicit beneficial effects on ARDS parameters in an animal model of acute lung injury. We used the well-established bleomycin model, which mimics (at day 7) the key features of the exudative phase of ARDS. Our data demonstrate that treatments with the KvLQT1 activator R-L3, delivered to the lungs, failed to improve endothelial permeability and lung edema in bleomycin mice. However, KvLQT1 activation significantly reduced neutrophil recruitment and tended to decrease levels of pro-inflammatory cytokines/chemokines in bronchoalveolar lavages after bleomycin administration. Importantly, R-L3 treatment was associated with significantly lower injury scores, higher levels of alveolar type I (HTI-56, AQP5) and II (pro-SPC) cell markers, and improved alveolar epithelial repair capacity in the presence of bleomycin. Together, these results suggest that the KvLQT1 K+ channel may be a potential target for the resolution of the acute phase of ARDS. Full article
(This article belongs to the Special Issue Lung Diseases Molecular Pathogenesis and Therapy)
Show Figures

Figure 1

22 pages, 9750 KiB  
Article
SIK2 Drives Pulmonary Fibrosis by Enhancing Fibroblast Glycolysis and Activation
by Jianhan He, Ruihan Dong, Huihui Yue, Fengqin Zhang, Xinran Dou, Xuan Li, Hui Li and Huilan Zhang
Biomedicines 2025, 13(8), 1919; https://doi.org/10.3390/biomedicines13081919 - 6 Aug 2025
Abstract
Background: Pulmonary fibrosis (PF), the end-stage manifestation of interstitial lung disease, is defined by excessive extracellular matrix deposition and alveolar destruction. Activated fibroblasts, the primary matrix producers, rely heavily on dysregulated glucose metabolism for their activation. While Salt Inducible Kinase 2 (SIK2) regulates [...] Read more.
Background: Pulmonary fibrosis (PF), the end-stage manifestation of interstitial lung disease, is defined by excessive extracellular matrix deposition and alveolar destruction. Activated fibroblasts, the primary matrix producers, rely heavily on dysregulated glucose metabolism for their activation. While Salt Inducible Kinase 2 (SIK2) regulates glycolytic pathways in oncogenesis, its specific contributions to fibroblast activation and therapeutic potential in PF pathogenesis remain undefined. This study elucidates the functional role of SIK2 in PF and assesses its viability as a therapeutic target. Methods: SIK2 expression/localization in fibrosis was assessed by Western blot and immunofluorescence. Fibroblast-specific Sik2 KO mice evaluated effects on bleomycin-induced fibrosis. SIK2’s role in fibroblast activation and glucose metabolism impact (enzyme expression, metabolism assays, metabolites) were tested. SIK2 inhibitors were screened and evaluated therapeutically in fibrosis models. Results: It demonstrated significant SIK2 upregulation, specifically within activated fibroblasts of fibrotic lungs from both PF patients and murine models. Functional assays demonstrated that SIK2 is crucial for fibroblast activation, proliferation, and migration. Mechanistically, SIK2 enhances fibroblast glucose metabolism by increasing the expression of glycolysis-related enzymes. Additionally, this study demonstrated that the SIK2 inhibitor YKL06-061 effectively inhibited PF in both bleomycin and FITC-induced PF mouse models with the preliminary safety profile. Furthermore, we identified a novel therapeutic application for the clinically approved drug fostamatinib, demonstrating it inhibits fibroblast activation via SIK2 targeting and alleviates PF in mice. Conclusions: Our findings highlight SIK2 as a promising therapeutic target and provide compelling preclinical evidence for two distinct anti-fibrotic strategies with significant potential for future PF treatment. Full article
(This article belongs to the Special Issue New Insights in Respiratory Diseases)
Show Figures

Figure 1

19 pages, 4247 KiB  
Article
Assessing CFTR Function and Epithelial Morphology in Human Nasal Respiratory Cell Cultures: A Combined Immunofluorescence and Electrophysiological Study
by Roshani Narayan Singh, Vanessa Mete, Willy van Driessche, Heymut Omran, Wolf-Michael Weber and Jörg Grosse-Onnebrink
Int. J. Mol. Sci. 2025, 26(15), 7618; https://doi.org/10.3390/ijms26157618 - 6 Aug 2025
Abstract
Cystic fibrosis (CF), the most common hereditary lung disease in Caucasians, is caused by dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR). We evaluated CFTR function using a newly developed Ussing chamber system, the Multi Trans Epithelial Current Clamp (MTECC), in an [...] Read more.
Cystic fibrosis (CF), the most common hereditary lung disease in Caucasians, is caused by dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR). We evaluated CFTR function using a newly developed Ussing chamber system, the Multi Trans Epithelial Current Clamp (MTECC), in an in vitro model of human airway epithelia. Air–liquid interface (ALI) cultures were established from nasal brushings of healthy controls (HC) and CF patients with biallelic CFTR variants. ALI layer thickness was similar between groups (HC: 62 ± 13 µm; CF: 55 ± 9 µm). Immunofluorescence showed apical CFTR expression in HC, but reduced or absent signal in CF cultures. MTECC enabled continuous measurement of transepithelial resistance (Rt), potential difference (PD), and conductance (Gt). Gt was significantly reduced in CF cultures compared to HC (0.825 ± 0.024 vs. −0.054 ± 0.016 mS/cm2), indicating impaired cAMP-inducible ion transport by CFTR. Treatment of CF cultures with elexacaftor, tezacaftor, and ivacaftor (Trikafta®) increased Gt, reflecting partial restoration of CFTR function. These findings demonstrate the utility of MTECC in detecting functional differences in CFTR activity and support its use as a platform for evaluating CFTR-modulating therapies. Our model may contribute to the development of personalized treatment strategies for CF patients. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Pathophysiology of Cystic Fibrosis)
Show Figures

Figure 1

25 pages, 1504 KiB  
Article
Systemic Sclerosis with Interstitial Lung Disease: Identification of Novel Immunogenetic Markers and Ethnic Specificity in Kazakh Patients
by Lina Zaripova, Abay Baigenzhin, Zhanar Zarkumova, Zhanna Zhabakova, Alyona Boltanova, Maxim Solomadin and Alexey Pak
Epidemiologia 2025, 6(3), 41; https://doi.org/10.3390/epidemiologia6030041 - 6 Aug 2025
Abstract
Systemic sclerosis (SSc) is an autoimmune connective tissue disorder characterized by vascular abnormalities, immune dysfunction, and progressive fibrosis. One of the most common manifestations of SSc is interstitial lung disease (ILD), known by a progressive course leading to significant morbidity and mortality. Aim: [...] Read more.
Systemic sclerosis (SSc) is an autoimmune connective tissue disorder characterized by vascular abnormalities, immune dysfunction, and progressive fibrosis. One of the most common manifestations of SSc is interstitial lung disease (ILD), known by a progressive course leading to significant morbidity and mortality. Aim: to investigate autoantibodies, cytokines, and genetic markers in SSc-ILD through a systematic review and analysis of a Kazakh cohort of SSc-ILD patients. Methods: A PubMed search over the past 10 years was performed with “SSc-ILD”, “autoantibodies”, “cytokines”, and “genes”. Thirty patients with SSc were assessed for lung involvement, EScSG score, and modified Rodnan skin score. IL-6 was measured by ELISA, antinuclear factor on HEp-2 cells by indirect immunofluorescence, and specific autoantibodies by immunoblotting. Genetic analysis was performed using a 120-gene AmpliSeq panel on the Ion Proton platform. Results: The literature review identified 361 articles, 26 addressed autoantibodies, 20 genetic variants, and 12 cytokine profiles. Elevated levels of IL-6, TGF-β, IL-33, and TNF-α were linked to SSc. Based on the results of the systemic review, we created a preliminary immunogenic panel for SSc-ILD with following analysis in Kazakh patients with SSc (n = 30). Fourteen of them (46.7%) demonstrated signs of ILD and/or lung hypertension, with frequent detection of antibodies such as Scl-70, U1-snRNP, SS-A, and genetic variants in SAMD9L, REL, IRAK1, LY96, IL6R, ITGA2B, AIRE, TREX1, and CD40 genes. Conclusions: Current research confirmed the presence of the broad range of autoantibodies and variations in IRAK1, TNFAIP3, SAMD9L, REL, IRAK1, LY96, IL6R, ITGA2B, AIRE, TREX1, CD40 genes in of Kazakhstani cohort of SSc-ILD patients. Full article
Show Figures

Figure 1

20 pages, 6034 KiB  
Article
Pexidartinib and Nintedanib Combination Therapy Targets Macrophage Polarization to Reverse Pulmonary Fibrosis: A Preclinical Study
by Ji-Hee Kim, Jae-Kyung Nam, Min-Sik Park, Seungyoul Seo, Hyung Chul Ryu, Hae-June Lee, Jeeyong Lee and Yoon-Jin Lee
Int. J. Mol. Sci. 2025, 26(15), 7570; https://doi.org/10.3390/ijms26157570 - 5 Aug 2025
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease with limited therapeutic options and increasing global incidence, with a median survival of only 2–5 years. The clinical utility of macrophage polarization to regulate the progression of pulmonary fibrosis remains understudied. This [...] Read more.
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease with limited therapeutic options and increasing global incidence, with a median survival of only 2–5 years. The clinical utility of macrophage polarization to regulate the progression of pulmonary fibrosis remains understudied. This study determined the efficacy of nintedanib and pexidartinib (PLX3397) combination therapy for treating IPF. Combination treatment effectively inhibited the progression of radiation-induced pulmonary fibrosis (RIPF) and prolonged survival in bleomycin-treated mice. Micro-CT analysis revealed a significant tissue repair efficacy. The therapy significantly normalized the abnormal vascular structure observed during RIPF and bleomycin-induced pulmonary fibrosis progression and was accompanied by a decrease in the M2 population. Polarized M1 macrophages enhanced normalized tube formation of irradiated endothelial cells (ECs) in vitro; M2 macrophages increased adhesion in irradiated ECs and abnormal tube formation. Single-cell RNA sequencing data from patients with IPF further supports colony stimulating factor (CSF) 1 upregulation in macrophages and downregulation of capillary EC markers. This study highlights a promising combination strategy to overcome the therapeutic limitations of monotherapy with nintedanib for the treatment of IPF. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

25 pages, 906 KiB  
Review
Evolution and Prognostic Variables of Cystic Fibrosis in Children and Young Adults: A Narrative Review
by Mădălina Andreea Donos, Elena Țarcă, Elena Cojocaru, Viorel Țarcă, Lăcrămioara Ionela Butnariu, Valentin Bernic, Paula Popovici, Solange Tamara Roșu, Mihaela Camelia Tîrnovanu, Nicolae Sebastian Ionescu and Laura Mihaela Trandafir
Diagnostics 2025, 15(15), 1940; https://doi.org/10.3390/diagnostics15151940 - 2 Aug 2025
Viewed by 265
Abstract
Introduction: Cystic fibrosis (CF) is a genetic condition affecting several organs and systems, including the pancreas, colon, respiratory system, and reproductive system. The detection of a growing number of CFTR variants and genotypes has contributed to an increase in the CF population which, [...] Read more.
Introduction: Cystic fibrosis (CF) is a genetic condition affecting several organs and systems, including the pancreas, colon, respiratory system, and reproductive system. The detection of a growing number of CFTR variants and genotypes has contributed to an increase in the CF population which, in turn, has had an impact on the overall statistics regarding the prognosis and outcome of the condition. Given the increase in life expectancy, it is critical to better predict outcomes and prognosticate in CF. Thus, each person’s choice to aggressively treat specific disease components can be more appropriate and tailored, further increasing survival. The objective of our narrative review is to summarize the most recent information concerning the value and significance of clinical parameters in predicting outcomes, such as gender, diabetes, liver and pancreatic status, lung function, radiography, bacteriology, and blood and sputum biomarkers of inflammation and disease, and how variations in these parameters affect prognosis from the prenatal stage to maturity. Materials and methods: A methodological search of the available data was performed with regard to prognostic factors in the evolution of CF in children and young adults. We evaluated articles from the PubMed academic search engine using the following search terms: prognostic factors AND children AND cystic fibrosis OR mucoviscidosis. Results: We found that it is crucial to customize CF patients’ care based on their unique clinical and biological parameters, genetics, and related comorbidities. Conclusions: The predictive significance of more dynamic clinical condition markers provides more realistic future objectives to center treatment and targets for each patient. Over the past ten years, improvements in care, diagnostics, and treatment have impacted the prognosis for CF. Although genotyping offers a way to categorize CF to direct research and treatment, it is crucial to understand that a variety of other factors, such as epigenetics, genetic modifiers, environmental factors, and socioeconomic status, can affect CF outcomes. The long-term management of this complicated multisystem condition has been made easier for patients, their families, and physicians by earlier and more accurate identification techniques, evidence-based research, and centralized expert multidisciplinary care. Full article
(This article belongs to the Special Issue Advances in the Diagnosis of Inherited/Genetic Diseases)
Show Figures

Figure 1

12 pages, 1739 KiB  
Article
Tailored Levofloxacin Incorporated Extracellular Matrix Nanoparticles for Pulmonary Infections
by Raahi Patel, Ignacio Moyano, Masahiro Sakagami, Jason D. Kang, Phillip B. Hylemon, Judith A. Voynow and Rebecca L. Heise
Int. J. Mol. Sci. 2025, 26(15), 7453; https://doi.org/10.3390/ijms26157453 - 1 Aug 2025
Viewed by 222
Abstract
Cystic fibrosis produces viscous mucus in the lung that increases bacterial invasion, causing persistent infections and subsequent inflammation. Pseudomonas aeruginosa and Staphylococcus aureus are two of the most common infections in cystic fibrosis patients that are resistant to antibiotics. One antibiotic approved to [...] Read more.
Cystic fibrosis produces viscous mucus in the lung that increases bacterial invasion, causing persistent infections and subsequent inflammation. Pseudomonas aeruginosa and Staphylococcus aureus are two of the most common infections in cystic fibrosis patients that are resistant to antibiotics. One antibiotic approved to treat these infections is levofloxacin (LVX), which functions to inhibit bacterial replication but can be further developed into tailorable particles. Nanoparticles are an emerging inhaled therapy due to enhanced targeting and delivery. The extracellular matrix (ECM) has been shown to possess pro-regenerative and non-toxic properties in vitro, making it a promising delivery agent. The combination of LVX and ECM formed into nanoparticles may overcome barriers to lung delivery to effectively treat cystic fibrosis bacterial infections. Our goal is to advance CF care by providing a combined treatment option that has the potential to address both bacterial infections and lung damage. Two hybrid formulations of a 10:1 and 1:1 ratio of LVX to ECM have shown neutral surface charges and an average size of ~525 nm and ~300 nm, respectively. The neutral charge and size of the particles may suggest their ability to attract toward and penetrate through the mucus barrier in order to target the bacteria. The NPs have also been shown to slow the drug dissolution, are non-toxic to human airway epithelial cells, and are effective in inhibiting Pseudomonas aeruginosa and Staphylococcus aureus. LVX-ECM NPs may be an effective treatment for pulmonary CF bacterial treatments. Full article
(This article belongs to the Special Issue The Advances in Antimicrobial Biomaterials)
Show Figures

Figure 1

12 pages, 1302 KiB  
Article
Exploring the Relationship Between Insulin Resistance, Liver Health, and Restrictive Lung Diseases in Type 2 Diabetes
by Mani Roshan, Christian Mudrack, Alba Sulaj, Ekaterina von Rauchhaupt, Thomas Fleming, Lukas Schimpfle, Lukas Seebauer, Viktoria Flegka, Valter D. Longo, Elisabeth Kliemank, Stephan Herzig, Anna Hohneck, Zoltan Kender, Julia Szendroedi and Stefan Kopf
J. Pers. Med. 2025, 15(8), 340; https://doi.org/10.3390/jpm15080340 - 1 Aug 2025
Viewed by 192
Abstract
Background: Restrictive lung disease (RLD) is a potential complication in type 2 diabetes (T2D), but its relationship with insulin resistance and liver-related metabolic dysfunction remains unclear. This study evaluated the association between lung function and metabolic markers in T2D and retrospectively assessed [...] Read more.
Background: Restrictive lung disease (RLD) is a potential complication in type 2 diabetes (T2D), but its relationship with insulin resistance and liver-related metabolic dysfunction remains unclear. This study evaluated the association between lung function and metabolic markers in T2D and retrospectively assessed whether metabolic improvements from dietary intervention were accompanied by changes in lung function. Methods: This cross-sectional analysis included 184 individuals (101 with T2D, 33 with prediabetes, and 50 glucose-tolerant individuals). Lung function parameters—vital capacity (VC), total lung capacity by plethysmography (TLC-B), and diffusion capacity for carbon monoxide (TLCO)—were assessed alongside metabolic markers including HOMA2-IR, fatty liver index (FLI), NAFLD score, and Fibrosis-4 index (FIB-4). In a subset of 54 T2D participants, lung function was reassessed after six months following either a fasting-mimicking diet (FMD, n = 14), Mediterranean diet (n = 13), or no dietary intervention (n = 27). Results: T2D participants had significantly lower VC and TLC-B compared to glucose-tolerant and prediabetic individuals, with 18–21% falling below clinical thresholds for RLD. Lung volumes were negatively correlated with HOMA2-IR, FLI, NAFLD score, and FIB-4 across the cohort and within the T2D group. Although the FMD intervention led to significant improvements in HOMA2-IR and FLI, no corresponding changes in lung function were observed over the six-month period. Conclusions: Restrictive lung impairment in T2D is associated with insulin resistance and markers of liver steatosis and fibrosis. While short-term dietary interventions can improve metabolic parameters, their effect on lung function may require a longer duration or additional interventions and targeted follow-up. These findings highlight the relevance of pulmonary assessment in individuals with metabolic dysfunction. Full article
Show Figures

Figure 1

23 pages, 40218 KiB  
Article
ACSL4 Drives C5a/C5aR1–Calcium-Induced Fibroblast-to-Myofibroblast Transition in a Bleomycin-Induced Mouse Model of Pulmonary Fibrosis
by Tingting Ren, Jia Shi, Lili Zhuang, Ruiting Su, Yimei Lai and Niansheng Yang
Biomolecules 2025, 15(8), 1106; https://doi.org/10.3390/biom15081106 - 31 Jul 2025
Viewed by 307
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by excessive extracellular matrix (ECM) deposition driven by aberrant fibroblast-to-myofibroblast transition (FMT). However, the upstream regulators and downstream effectors of this process remain incompletely understood. Here, we identify acyl-CoA synthetase long-chain family member 4 (ACSL4), a lipid [...] Read more.
Idiopathic pulmonary fibrosis (IPF) is characterized by excessive extracellular matrix (ECM) deposition driven by aberrant fibroblast-to-myofibroblast transition (FMT). However, the upstream regulators and downstream effectors of this process remain incompletely understood. Here, we identify acyl-CoA synthetase long-chain family member 4 (ACSL4), a lipid metabolic enzyme, as a critical mediator linking complement component 5a (C5a)/C5a receptor 1 (C5aR1) signaling to FMT via calcium signaling. In bleomycin (BLM)-induced pulmonary fibrosis of C57BL/6JGpt mice, and in C5a-stimulated primary lung fibroblasts, the expression of ACSL4 was markedly upregulated. Pharmacological inhibition of ACSL4 (PRGL493) or C5aR1 (PMX53) attenuated the deposition of ECM and suppressed the expression of fibrotic markers in vivo and in vitro. Mechanistically, the activation of C5a/C5aR1 signaling increased intracellular calcium levels and promoted the expression of ACSL4, while inhibition of calcium signaling (FK506) reversed the upregulation of ACSL4 and FMT-related changes, including the expression of α-smooth muscle actin (αSMA) and the migration of fibroblasts. Notably, inhibition of ACSL4 did not affect the proliferation of fibroblasts, suggesting its specific role in phenotypic transition. These findings demonstrate that ACSL4 functions downstream of C5a/C5aR1-induced calcium signaling to promote FMT and the progression of pulmonary fibrosis. Targeting ACSL4 may therefore offer a novel therapeutic strategy for IPF. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

11 pages, 284 KiB  
Article
A Pragmatic Tele-Nursing Program Improves Satisfaction of Patients with Pulmonary Fibrosis and Their Caregivers—A Pilot Study
by Mireia Baiges, David Iglesias, Sara Persentili, Marta Jiménez, Pilar Ortega and Jaume Bordas-Martinez
Medicina 2025, 61(8), 1385; https://doi.org/10.3390/medicina61081385 - 30 Jul 2025
Viewed by 330
Abstract
Background and Objectives: Specialized nurses play an essential role in managing pulmonary fibrosis. While tele-nursing has the potential to optimize disease management, current evidence regarding its impact remains limited. This study aimed to evaluate a tele-nursing intervention that provided unscheduled access to [...] Read more.
Background and Objectives: Specialized nurses play an essential role in managing pulmonary fibrosis. While tele-nursing has the potential to optimize disease management, current evidence regarding its impact remains limited. This study aimed to evaluate a tele-nursing intervention that provided unscheduled access to a specialized nurse via phone or email for both patients and caregivers. Materials and Methods: This was a prospective, single-center, open-label, and pre–post pilot study. Participants and their caregivers were provided with direct access to a specialized nurse, by phone and email, for unscheduled consultations. Patient-reported experience measures (PREMs) and patient-reported outcome measures (PROMs) were collected at baseline and after three months of tele-nursing access. PREMs were assessed using a 10-point Likert scale questionnaire, and PROMs were evaluated using the King’s Brief Interstitial Lung Disease (K-BILD) and the Living with Pulmonary Fibrosis (L-PF) questionnaires. Results: A total of 47 patients with pulmonary fibrosis receiving antifibrotic drugs were enrolled. At three months, 44 patients and 34 caregivers completed the questionnaires. Four patients did not complete the study due to death, lung transplantation, or transition to end-of-life care. No significant changes were observed in PROMs. However, PREMs showed significant improvements, with most scores exceeding 9/10. Patient satisfaction increased by 28% (p < 0.001), and caregiver satisfaction by 30% (p < 0.001). Caregivers of patients who did not complete the study also reported high satisfaction, comparable to that of other caregivers. Conclusions: A pragmatic and affordable tele-nursing program, based on direct phone and email consultations, may enhance patient and caregiver satisfaction in the management of pulmonary fibrosis. Full article
(This article belongs to the Special Issue Advances in Interstitial Lung Diseases: From Diagnosis to Treatment)
14 pages, 1906 KiB  
Article
Integrating CT-Based Lung Fibrosis and MRI-Derived Right Ventricular Function for the Detection of Pulmonary Hypertension in Interstitial Lung Disease
by Kenichi Ito, Shingo Kato, Naofumi Yasuda, Shungo Sawamura, Kazuki Fukui, Tae Iwasawa, Takashi Ogura and Daisuke Utsunomiya
J. Clin. Med. 2025, 14(15), 5329; https://doi.org/10.3390/jcm14155329 - 28 Jul 2025
Viewed by 388
Abstract
Background/Objectives: Interstitial lung disease (ILD) is frequently complicated by pulmonary hypertension (PH), which is associated with reduced exercise capacity and poor prognosis. Early and accurate non-invasive detection of PH remains a clinical challenge. This study evaluated whether combining quantitative CT analysis of [...] Read more.
Background/Objectives: Interstitial lung disease (ILD) is frequently complicated by pulmonary hypertension (PH), which is associated with reduced exercise capacity and poor prognosis. Early and accurate non-invasive detection of PH remains a clinical challenge. This study evaluated whether combining quantitative CT analysis of lung fibrosis with cardiac MRI-derived measures of right ventricular (RV) function improves the diagnostic accuracy of PH in patients with ILD. Methods: We retrospectively analyzed 72 ILD patients who underwent chest CT, cardiac MRI, and right heart catheterization (RHC). Lung fibrosis was quantified using a Gaussian Histogram Normalized Correlation (GHNC) software that computed the proportions of diseased lung, ground-glass opacity (GGO), honeycombing, reticulation, consolidation, and emphysema. MRI was used to assess RV end-systolic volume (RVESV), ejection fraction, and RV longitudinal strain. PH was defined as a mean pulmonary arterial pressure (mPAP) ≥ 20 mmHg and pulmonary vascular resistance ≥ 3 Wood units on RHC. Results: Compared to patients without PH, those with PH (n = 21) showed significantly reduced RV strain (−13.4 ± 5.1% vs. −16.4 ± 5.2%, p = 0.026) and elevated RVESV (74.2 ± 18.3 mL vs. 59.5 ± 14.2 mL, p = 0.003). CT-derived indices also differed significantly: diseased lung area (56.4 ± 17.2% vs. 38.4 ± 12.5%, p < 0.001), GGO (11.8 ± 3.6% vs. 8.65 ± 4.3%, p = 0.005), and honeycombing (17.7 ± 4.9% vs. 12.8 ± 6.4%, p = 0.0027) were all more prominent in the PH group. In receiver operating characteristic curve analysis, diseased lung area demonstrated an area under the curve of 0.778 for detecting PH. This increased to 0.847 with the addition of RVESV, and further to 0.854 when RV strain was included. Combined models showed significant improvement in risk reclassification: net reclassification improvement was 0.700 (p = 0.002) with RVESV and 0.684 (p = 0.004) with RV strain; corresponding IDI values were 0.0887 (p = 0.03) and 0.1222 (p = 0.01), respectively. Conclusions: Combining CT-based fibrosis quantification with cardiac MRI-derived RV functional assessment enhances the non-invasive diagnosis of PH in ILD patients. This integrated imaging approach significantly improves diagnostic precision and may facilitate earlier, more targeted interventions in the management of ILD-associated PH. Full article
(This article belongs to the Section Nuclear Medicine & Radiology)
Show Figures

Figure 1

20 pages, 2643 KiB  
Article
Modulation of Pulmonary Fibrosis by Pulmonary Surfactant-Associated Phosphatidylethanolamine In Vitro and In Vivo
by Beatriz Tlatelpa-Romero, Luis G. Vázquez-de-Lara Cisneros, Olga Cañadas, Amaya Blanco-Rivero, Barbara Olmeda, Jesús Pérez-Gil, Criselda Mendoza-Milla, José Luis Martinez-Vaquero, Yair Romero, David Atahualpa Contreras-Cruz, René de-la-Rosa Paredes, Sinuhé Ruiz-Salgado, Roberto Berra-Romani, Alonso Antonio Collantes-Gutiérrez, María Susana Pérez-Fernández, María Guadalupe Hernández-Linares and Gabriel Guerrero-Luna
Int. J. Mol. Sci. 2025, 26(15), 7132; https://doi.org/10.3390/ijms26157132 - 24 Jul 2025
Viewed by 275
Abstract
Pulmonary fibrosis (PF) is characterized by excessive collagen deposition and impaired lung function. Pulmonary surfactant may modulate fibroblast activity and offer therapeutic benefits. We developed a natural porcine pulmonary surfactant (NPPS) enriched with 1,2-dipalmitoyl-rac-glycero-3-phosphatidylethanolamine (PE) and evaluated its biophysical and biological properties. Biophysical [...] Read more.
Pulmonary fibrosis (PF) is characterized by excessive collagen deposition and impaired lung function. Pulmonary surfactant may modulate fibroblast activity and offer therapeutic benefits. We developed a natural porcine pulmonary surfactant (NPPS) enriched with 1,2-dipalmitoyl-rac-glycero-3-phosphatidylethanolamine (PE) and evaluated its biophysical and biological properties. Biophysical analysis showed that PE improved surfactant performance by increasing surface pressure and stability. In vitro, NPPS-PE reduced collagen expression and induced apoptosis in normal human lung fibroblasts; in addition, it decreased proliferation in fibroblasts stimulated with TGF-β. In vivo, NPPS-PE improved gas exchange and significantly reduced collagen deposition in bleomycin-treated mice. These findings suggest that NPPS-PE may be a promising therapeutic strategy for fibrosing lung diseases. Full article
(This article belongs to the Special Issue Molecular Pathways and Therapeutic Strategies for Fibrotic Conditions)
Show Figures

Figure 1

19 pages, 967 KiB  
Review
Hematologic and Immunologic Overlap Between COVID-19 and Idiopathic Pulmonary Fibrosis
by Gabriela Mara, Gheorghe Nini, Stefan Marian Frenț and Coralia Cotoraci
J. Clin. Med. 2025, 14(15), 5229; https://doi.org/10.3390/jcm14155229 - 24 Jul 2025
Viewed by 366
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrosing lung disease characterized by chronic inflammation, vascular remodeling, and immune dysregulation. COVID-19, caused by SARS-CoV-2, shares several systemic immunohematologic disturbances with IPF, including cytokine storms, endothelial injury, and prothrombotic states. Unlike general comparisons of viral [...] Read more.
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrosing lung disease characterized by chronic inflammation, vascular remodeling, and immune dysregulation. COVID-19, caused by SARS-CoV-2, shares several systemic immunohematologic disturbances with IPF, including cytokine storms, endothelial injury, and prothrombotic states. Unlike general comparisons of viral infections and chronic lung disease, this review offers a focused analysis of the shared hematologic and immunologic mechanisms between COVID-19 and IPF. Our aim is to better understand how SARS-CoV-2 infection may worsen disease progression in IPF and identify converging pathophysiological pathways that may inform clinical management. We conducted a narrative synthesis of the peer-reviewed literature from PubMed, Scopus, and Web of Science, focusing on clinical, experimental, and pathological studies addressing immune and coagulation abnormalities in both COVID-19 and IPF. Both diseases exhibit significant overlap in inflammatory and fibrotic signaling, particularly via the TGF-β, IL-6, and TNF-α pathways. COVID-19 amplifies coagulation disturbances and endothelial dysfunction already present in IPF, promoting microvascular thrombosis and acute exacerbations. Myeloid cell overactivation, impaired lymphocyte responses, and fibroblast proliferation are central to this shared pathophysiology. These synergistic mechanisms may accelerate fibrosis and increase mortality risk in IPF patients infected with SARS-CoV-2. This review proposes an integrative framework for understanding the hematologic and immunologic convergence of COVID-19 and IPF. Such insights are essential for refining therapeutic targets, improving prognostic stratification, and guiding early interventions in this high-risk population. Full article
(This article belongs to the Special Issue Chronic Lung Conditions: Integrative Approaches to Long-Term Care)
Show Figures

Figure 1

14 pages, 701 KiB  
Article
COVID-19 Organ Injury Pathology and D-Dimer Expression Patterns: A Retrospective Analysis
by Raluca Dumache, Camelia Oana Muresan, Sorina Maria Denisa Laitin, Nina Ivanovic, Adina Chisalita, Alexandra Herlo, Adelina Marinescu, Elena Voichita Lazureanu and Talida Georgiana Cut
Diagnostics 2025, 15(15), 1860; https://doi.org/10.3390/diagnostics15151860 - 24 Jul 2025
Viewed by 285
Abstract
Background and Objectives: Coronavirus Disease 2019 (COVID-19) may cause extensive multi-organ pathology, particularly in the lungs, heart, kidneys, and liver. While hypercoagulability—often signaled by elevated D-dimer—has been thoroughly investigated, the concurrent pathological findings across organs and their interrelation with distinct D-dimer levels remain [...] Read more.
Background and Objectives: Coronavirus Disease 2019 (COVID-19) may cause extensive multi-organ pathology, particularly in the lungs, heart, kidneys, and liver. While hypercoagulability—often signaled by elevated D-dimer—has been thoroughly investigated, the concurrent pathological findings across organs and their interrelation with distinct D-dimer levels remain incompletely characterized. This study aimed to evaluate the pathological changes observed in autopsied or deceased COVID-19 patients, focusing on the prevalence of organ-specific lesions, and to perform subgroup analyses based on three D-dimer categories. Methods: We conducted a retrospective review of 69 COVID-19 patients from a Romanian-language dataset, translating all clinical and pathological descriptions into English. Pathological findings (pulmonary microthrombi, bronchopneumonia, myocardial fibrosis, hepatic steatosis, and renal tubular necrosis) were cataloged. Patients were grouped into three categories by admission D-dimer: <500 ng/mL, 500–2000 ng/mL, and ≥2000 ng/mL. Laboratory parameters (C-reactive protein, fibrinogen, and erythrocyte sedimentation rate) and clinical outcomes (intensive care unit [ICU] admission, mechanical ventilation, and mortality) were also recorded. Intergroup comparisons were performed with chi-square tests for categorical data and one-way ANOVA or the Kruskal–Wallis test for continuous data. Results: Marked organ pathology was significantly more frequent in the highest D-dimer group (≥2000 ng/mL). Pulmonary microthrombi and bronchopneumonia increased stepwise across ascending D-dimer strata (p < 0.05). Myocardial and renal lesions similarly showed higher prevalence in patients with elevated D-dimer. Correlation analysis revealed that severe lung and heart pathologies were strongly associated with high inflammatory markers and a greater risk of ICU admission and mortality. Conclusions: Our findings underscore that COVID-19-related organ damage is magnified in patients with significantly elevated D-dimer. By integrating pathology reports with clinical and laboratory data, we highlight the prognostic role of hypercoagulability and systemic inflammation in the pathogenesis of multi-organ complications. Stratifying patients by D-dimer may inform more tailored management strategies, particularly in those at highest risk of severe pathology and adverse clinical outcomes. Full article
(This article belongs to the Special Issue Respiratory Diseases: Diagnosis and Management)
Show Figures

Figure 1

27 pages, 1201 KiB  
Review
Non-Viral Therapy in COVID-19: Where Are We Standing? How Our Experience with COVID May Help Us Develop Cell Therapies for Long COVID Patients
by Aitor Gonzaga, Gema Martinez-Navarrete, Loreto Macia, Marga Anton-Bonete, Gladys Cahuana, Juan R. Tejedo, Vanessa Zorrilla-Muñoz, Eduardo Fernandez-Jover, Etelvina Andreu, Cristina Eguizabal, Antonio Pérez-Martínez, Carlos Solano, Luis Manuel Hernández-Blasco and Bernat Soria
Biomedicines 2025, 13(8), 1801; https://doi.org/10.3390/biomedicines13081801 - 23 Jul 2025
Viewed by 467
Abstract
Objectives: COVID-19, caused by the SARS-CoV-2 virus, has infected over 777 million individuals and led to approximately 7 million deaths worldwide. Despite significant efforts to develop effective therapies, treatment remains largely supportive, especially for severe complications like acute respiratory distress syndrome (ARDS). [...] Read more.
Objectives: COVID-19, caused by the SARS-CoV-2 virus, has infected over 777 million individuals and led to approximately 7 million deaths worldwide. Despite significant efforts to develop effective therapies, treatment remains largely supportive, especially for severe complications like acute respiratory distress syndrome (ARDS). Numerous compounds from diverse pharmacological classes are currently undergoing preclinical and clinical evaluation, targeting both the virus and the host immune response. Methods: Despite the large number of articles published and after a preliminary attempt was published, we discarded the option of a systematic review. Instead, we have done a description of therapies with these results and a tentative mechanism of action. Results: Preliminary studies and early-phase clinical trials have demonstrated the potential of Mesenchymal Stem Cells (MSCs) in mitigating severe lung damage in COVID-19 patients. Previous research has shown MSCs to be effective in treating various pulmonary conditions, including acute lung injury, idiopathic pulmonary fibrosis, ARDS, asthma, chronic obstructive pulmonary disease, and lung cancer. Their ability to reduce inflammation and promote tissue repair supports their potential role in managing COVID-19-related complications. This review demonstrates the utility of MSCs in the acute phase of COVID-19 and postulates the etiopathogenic role of mitochondria in Long-COVID. Even more, their combination with other therapies is also analyzed. Conclusions: While the therapeutic application of MSCs in COVID-19 is still in early stages, emerging evidence suggests promising outcomes. As research advances, MSCs may become an integral part of treatment strategies for severe COVID-19, particularly in addressing immune-related lung injury and promoting recovery. However, a full pathogenic mechanism may explain or unify the complexity of signs and symptoms of Long COVID and Post-Acute Sequelae (PASC). Full article
(This article belongs to the Section Gene and Cell Therapy)
Show Figures

Figure 1

Back to TopTop