Pharmacokinetics of Schizandrin and Its Pharmaceutical Products Assessed Using a Validated LC–MS/MS Method
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of UPLC-MS/MS Conditions
2.2. Method Validation
2.3. Sample Preparation
2.4. Pharmacokinetic Applications
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Experimental Animals
3.3. Sample Preparation
3.4. LC-MS/MS
3.5. Method Validation
3.5.1. Accuracy, Precision and Linearity
3.5.2. Stability
3.5.3. Recovery and Matrix Effect
3.6. Pharmacokinetic Data Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lai, Q.; Wei, J.; Mahmoodurrahman, M.; Zhang, C.; Quan, S.; Li, T.; Yu, Y. Pharmacokinetic and nephroprotective benefits of using Schisandra chinensis extracts in a cyclosporine A-based immune-suppressive regime. Drug Des. Dev. Ther. 2015, 9, 4997–5018. [Google Scholar]
- Liu, K.T.; Cresteil, T.; Columelli, S.; Lesca, P. Pharmacological properties of dibenzo[a,c]cyclooctene derivatives isolated from Fructus Schizandrae chinensis II. Induction of phenobarbital-like hepatic monooxygen ases. Chem.-Biol. Interact. 1982, 39, 315–330. [Google Scholar] [CrossRef]
- Chen, X.; Huang, Y.; Feng, J.; Jiang, X.F.; Xiao, W.F.; Chen, X.X. Antioxidant and anti-inflammatory effects of Schisandra and Paeonia extracts in the treatment of asthma. Exp. Ther. Med. 2014, 8, 1479–1483. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Ahn, Y.T.; Kim, Y.S.; Cho, S.I.; An, W.G. Antiasthmatic effects of schizandrae fructus extract in mice with asthma. Pharmacogn. Mag. 2014, 10, S80–S85. [Google Scholar] [PubMed]
- Lee, K.P.; Kang, S.; Park, S.J.; Kim, J.M.; Lee, J.M.; Lee, A.Y.; Chung, H.Y.; Choi, Y.W.; Lee, Y.G.; Im, D.S. Anti-allergic effect of alpha-cubebenoate isolated from Schisandra chinensis using in vivo and in vitro experiments. J. Ethnopharmacol. 2015, 173, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Niu, J.; Xu, G.; Jiang, S.; Li, H.; Yuan, G. In Vitro Antioxidant activities and anti-diabetic effect of a polysaccharide from Schisandra sphenanthera in rats with type 2 diabetes. Int. J. Biol. Macromol. 2017, 94, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhao, X.; Mao, X.; Liu, A.; Liu, Z.; Li, X.; Bi, K.; Jia, Y. Pharmacological evaluation of sedative and hypnotic effects of schizandrin through the modification of pentobarbital-induced sleep behaviors in mice. Eur. J. Pharmacol. 2014, 744, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Zhang, L.; Wang, G.; He, Z.; Zhao, Y.; Xu, Y.; Gao, Y. Sedative and hypnotic effects of supercritical carbon dioxide fluid extraction from Schisandra chinensis in mice. J. Food Drug Anal. 2016, 24, 831–838. [Google Scholar] [CrossRef] [PubMed]
- Opletal, L.; Sovova, H.; Bartlova, M. Dibenzo[a,c]cyclooctadiene lignans of the genus Schisandra: Importance, isolation and determination. J. Chromatogr. B 2004, 812, 357–371. [Google Scholar] [CrossRef]
- Huang, H.; Shen, Z.; Geng, Q.; Wu, Z.; Shi, P.; Miao, X. Protective effect of Schisandra chinensis bee pollen extract on liver and kidney injury induced by cisplatin in rats. Biomed. Pharmacother. 2017, 95, 1765–1776. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Wang, Y.; Zhu, D.; Dong, F.; Chen, X. The protective effect of North Schisandra Lignans on vascular endothelial cell oxidation injuries. Technol. Health Care 2016, 24, S651–657. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.T.; Cresteil, T.; Le Provost, E.; Lesca, P. Specific evidence that schizandrins induce a phenobarbital-like cytochrome P-450 form separated from rat liver. Biochem. Biophys. Res. Commun. 1981, 103, 1131–1137. [Google Scholar] [CrossRef]
- Jiang, Y.M.; Wang, Y.; Tan, H.S.; Yu, T.; Fan, X.M.; Chen, P.; Zeng, H.; Huang, M.; Bi, H.C. Schisandrol B protects against acetaminophen-induced acute hepatotoxicity in mice via activation of the NRF2/ARE signaling pathway. Acta Pharmacol. Sin. 2016, 37, 382–389. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.W.; Hattori, M.; Namba, T.; Chen, D.F.; Xu, G.J. Anti-lipid peroxidative effect of an extract of the stems of Kadsura heteroclita and its major constituent, kadsurin, in mice. Chem. Pharm. Bull. 1992, 40, 406–409. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.Y.; Wang, R.R.; Mu, H.X.; Li, Y.K.; Xiao, W.L.; Yang, L.M.; Pu, J.X.; Zheng, Y.T.; Sun, H.D. Neolignans from Schisandra wilsoniana and their anti-human immunodeficiency virus-1 activities. Chem. Pharm. Bull. 2011, 59, 1344–1347. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Grandi, N.; Del Vecchio, C.; Mandas, D.; Corona, A.; Piano, D.; Esposito, F.; Parolin, C.; Tramontano, E. From the traditional Chinese medicine plant Schisandra chinensis new scaffolds effective on HIV-1 reverse transcriptase resistant to non-nucleoside inhibitors. J. Microbiol. 2015, 53, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Poornima, B.; Siva, B.; Shankaraiah, G.; Venkanna, A.; Nayak, V.L.; Ramakrishna, S.; Venkat Rao, C.; Babu, K.S. Novel sesquiterpenes from Schisandra grandiflora: Isolation, cytotoxic activity and synthesis of their triazole derivatives using “click” reaction. Eur. J. Med. Chem. 2015, 92, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Venkanna, A.; Siva, B.; Poornima, B.; Vadaparthi, P.R.; Prasad, K.R.; Reddy, K.A.; Reddy, G.B.; Babu, K.S. Phytochemical investigation of sesquiterpenes from the fruits of Schisandra chinensis and their cytotoxic activity. Fitoterapia 2014, 95, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Li, X.N.; Cui, H.; Song, Y.Q.; Liang, Y.Z.; Chau, F.T. Analysis of volatile fractions of Schisandra chinensis (Turcz.) Baill. using GC-MS and chemometric resolution. Phytochem. Anal. 2003, 14, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Ono, H.; Matsuzaki, Y.; Wakui, Y.; Takeda, S.; Ikeya, Y.; Amagaya, S.; Maruno, M. Determination of schizandrin in human plasma by gas chromatography-mass spectrometry. J. Chromatogr. B Biomed. Sci. Appl. 1995, 674, 293–297. [Google Scholar] [CrossRef]
- Matsuzaki, Y.; Ishibashi, E.; Koguchi, S.; Wakui, Y.; Takeda, S.; Aburada, M.; Oyama, T. Determination of gomisin A (TJN-101) and its metabolite in rat serum by gas chromatography-mass spectrometry. Yakugaku Zasshi 1991, 111, 617–620. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.Y.; Shin, Y.J.; Kim, D.H.; Park, J.H.; Kim, S.H.; Han, S.B.; Sung, S.H. Micelle-mediated extraction of dibenzocyclooctadiene lignans from Schisandra chinensis with analysis by high-performance liquid chromatography. J. Chromatogr. Sci. 2014, 52, 745–750. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Xu, X.; Li, X.; Liu, C.; Shao, M.; Zhang, H.; Wang, Z.; Zhang, H.; Huan, Y. Determination of lignans in Wuweizi by using magnetic bar microextraction and HPLC. J. Sep. Sci. 2013, 36, 3527–3533. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Li, Q.; Li, H.; Li, Y.; Piao, Z. Quantitative analysis of six lignans in fruits with different colours of Schisandra chinensis by HPLC. Nat. Prod. Res. 2014, 28, 581–585. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Song, W.; Tong, Y. Identification of Schisardra by TLC-densitometry. Zhongguo Zhong Yao Za Zhi 1991, 16, 70–71. [Google Scholar] [PubMed]
- Wang, K.; Tong, Y.Y.; Song, W.Z. Determination of the active ingredients in Chinese drug wuweizi (Schisandra chinensis) by TLC-densitometry. Yao Xue Xue Bao 1990, 25, 49–53. [Google Scholar] [PubMed]
- He, X.G.; Lian, L.Z.; Lin, L.Z. Analysis of lignan constituents from Schisandra chinensis by liquid chromatography-electrospray mass spectrometry. J. Chromatogr. A 1997, 757, 81–87. [Google Scholar] [CrossRef]
- Zhu, L.; Li, B.; Liu, X.; Huang, G.; Meng, X. Purification of six lignans from the stems of Schisandra chinensis by using high-speed counter-current chromatography combined with preparative high-performance liquid chromatography. Food Chem. 2015, 186, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Li, B.; Liu, X.; Meng, X. Purification of two triterpenoids from Schisandra chinensis by macroporous resin combined with high-speed counter-current chromatography. J. Chromatogr. Sci. 2014, 52, 1082–1088. [Google Scholar] [CrossRef] [PubMed]
- Zhan, S.; Guo, W.; Shao, Q.; Fan, X.; Li, Z.; Cheng, Y. A pharmacokinetic and pharmacodynamic study of drug-drug interaction between ginsenoside Rg1, ginsenoside Rb1 and schizandrin after intravenous administration to rats. J. Ethnopharmacol. 2014, 152, 333–339. [Google Scholar] [CrossRef] [PubMed]
- McDowall, R.D. Sample preparation for biomedical analysis. J. Chromatogr. 1989, 11, 3–58. [Google Scholar] [CrossRef]
- Zhan, S.; Shao, Q.; Fan, X.; Li, Z. Development of a sensitive LC-MS/MS method for simultaneous quantification of eleven constituents in rat serum and its application to a pharmacokinetic study of a Chinese medicine Shengmai injection. Biomed. Chromatogr. 2015, 29, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Diehl, K.H.; Hull, R.; Morton, D.; Pfister, R.; Rabemampianina, Y.; Smith, D.; Vidal, J.M.; van de Vorstenbosch, C.; European Federation of Pharmaceutical Industries Association; European Centre for the Validation of Alternative Methods. A Good Practice Guide to the Administration of Substances and Removal of Blood, Including Routes and Volumes. J. Appl. Toxicol. 2001, 21, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.L.; Hu, J.P.; Tan, W.; Sheng, L.; Chen, H.; Li, Y. Simultaneous quantification of four active schisandra lignans from a traditional Chinese medicine Schisandra chinensis (Wuweizi) in rat plasma using liquid chromatography/mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2008, 865, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Feary, D.J.; Mama, K.R.; Wagner, A.E.; Thomasy, S. Influence of general anesthesia on pharmacokinetics of intravenous lidocaine infusion in horses. Am. J. Vet. Res. 2005, 66, 574–580. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Wang, G.; Xie, H.; Wang, R.; Wang, W.; Li, X.; Li, H.; Zhu, D.; Yue, L. Determination of schizandrin in rat plasma by high-performance liquid chromatography-mass spectrometry and its application in rat pharmacokinetic studies. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2005, 828, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Craik, D.J.; Fairlie, D.P.; Liras, S.; Price, D. The future of peptide-based drugs. Chem. Biol. Drug Des. 2013, 81, 136–147. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds schizandrine is available from the authors. |
Nominal Concentration (ng/mL) | Observed Concentration (ng/mL) | Precision RSD (%) | Accuracy Bias (%) |
---|---|---|---|
Intra-assay | |||
5 | 5.01 ± 0.12 | 1.65 | 0.19 |
10 | 10.22 ± 0.08 | 2.83 | 2.16 |
50 | 50.23 ± 0.29 | 0.67 | 0.45 |
100 | 99.55 ± 0.21 | 0.21 | −0.45 |
500 | 499.87 ± 0.80 | 0.16 | −0.03 |
Inter-assay | |||
5 | 5.42 ± 0.82 | 15.16 | 8.40 |
10 | 10.62 ± 0.38 | 3.55 | 6.20 |
50 | 51.05 ± 2.21 | 4.33 | 2.10 |
100 | 101.99 ± 2.82 | 2.76 | 1.99 |
500 | 501.83 ± 2.33 | 0.46 | 0.37 |
Nominal Concentration (ng/mL) | Peak Areas | Matrix Effect (%) | Recovery (%) | ||
---|---|---|---|---|---|
SET1 | SET2 | SET3 | |||
Schizandrin | |||||
5 | 6862 ± 268 | 6279 ± 682 | 6118 ± 403 | 91.5 ± 8.3 | 97.4 ± 5.8 |
50 | 72,483 ± 1267 | 70,910 ± 3084 | 70,723 ± 7279 | 97.8 ± 2.8 | 99.6 ± 7.1 |
500 | 624,413 ± 25,318 | 572,304 ± 50,936 | 519,150 ± 31,359 | 91.6 ± 4.3 | 90.8 ± 2.7 |
Average | 93.6 ± 5.1 | 96.1 ± 5.2 | |||
Methyl yellow | 62,710 ± 2132 | 72,097 ± 2293 | 67,947 ± 2912 | 115.0 ± 4.0 | 94.4 ± 6.2 |
Blood Concentration (ng/mL) | Short-Term Stability | Autosampler Stability | Freeze-Thaw Stability | Long-Term Stability |
---|---|---|---|---|
5 | −1.63 ± 8.36 | −1.78 ± 2.25 | −8.04 ± 3.19 | −0.56 ± 0.39 |
50 | 5.70 ± 4.52 | 3.17 ± 3.19 | −5.16 ± 3.83 | −9.02 ± 0.40 |
500 | 0.64 ± 0.08 | 0.43 ± 0.12 | −0.63 ± 0.30 | −6.75 ± 6.39 |
Parameter | Schizandrin | Schisandra chinensis | ||
---|---|---|---|---|
10 mg/kg, i.v. | 10 mg/kg, p.o. | 3 g/kg, p.o. | 10 g/kg, p.o. | |
Cmax (µg/mL) | 0.06 ± 0.03 | 0.08 ± 0.07 | 0.15 ± 0.09 a | |
AUC (min ng/mL) | 43.11 ± 5.62 | 6.71 ± 4.51 | 17.58 ± 12.31 | 28.03 ± 14.29 a |
t1/2 (min) | 42.25 ± 14.84 | 74.69 ± 33.56 | 68.20 ± 23.93 | 51.97 ± 12.35 |
Tmax (min) | 22.50 ± 12.55 | 185.00 ± 101.14 a | 200.00 ± 45.17 a | |
CL (L/min/kg) | 0.24 ± 0.03 | 0.34 ± 1.24 | 0.33 ± 0.24 | 0.30 ± 0.46 |
MRT (min) | 34.80 ± 7.53 | 113.42 ± 41.65 | 206.07 ± 41.97 a | 213.63 ± 32.00 a |
F (%) | 15.56 ± 10.47 | 78.42 ± 54.91 a | 37.59 ± 19.16 a |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.-L.; Cheng, Y.-Y.; Hsieh, C.-H.; Tsai, T.-H. Pharmacokinetics of Schizandrin and Its Pharmaceutical Products Assessed Using a Validated LC–MS/MS Method. Molecules 2018, 23, 173. https://doi.org/10.3390/molecules23010173
Li C-L, Cheng Y-Y, Hsieh C-H, Tsai T-H. Pharmacokinetics of Schizandrin and Its Pharmaceutical Products Assessed Using a Validated LC–MS/MS Method. Molecules. 2018; 23(1):173. https://doi.org/10.3390/molecules23010173
Chicago/Turabian StyleLi, Chi-Lin, Yung-Yi Cheng, Chen-Hsi Hsieh, and Tung-Hu Tsai. 2018. "Pharmacokinetics of Schizandrin and Its Pharmaceutical Products Assessed Using a Validated LC–MS/MS Method" Molecules 23, no. 1: 173. https://doi.org/10.3390/molecules23010173
APA StyleLi, C.-L., Cheng, Y.-Y., Hsieh, C.-H., & Tsai, T.-H. (2018). Pharmacokinetics of Schizandrin and Its Pharmaceutical Products Assessed Using a Validated LC–MS/MS Method. Molecules, 23(1), 173. https://doi.org/10.3390/molecules23010173