Simultaneous Determination of Four Tanshinones by UPLC-TQ/MS and Their Pharmacokinetic Application after Administration of Single Ethanol Extract of Danshen Combined with Water Extract in Normal and Adenine-Induced Chronic Renal Failure Rats
Abstract
:1. Introduction
2. Results and Discussion
2.1. Components Analysis of SMEE and SMWE
2.2. Optimization of Mass Spectrometry Conditions
2.3. Method Validation
2.3.1. Specificity
2.3.2. Linearity of Calibration Curves and LLOQs
2.3.3. Precision
2.3.4. Matrix Effect and Recovery
2.3.5. Stability
2.4. Determination of Biochemical Indicators in Adenine-Induced CRF Models
2.5. Pharmacokinetics Study
3. Materials and Methods
3.1. Instruments and Chemicals
3.2. Preparation and Determination of SMEE and SMWE
3.3. UPLC-TQ/MS Condition
3.4. Standard Solutions Preparation
3.5. Sample Preparation
3.6. Method Validation
3.6.1. Specificity
3.6.2. Linearity of Calibration Curves and Lower Limits of Quantification (LLOQ)
3.6.3. Precision
3.6.4. Extraction Recovery and Matrix Effect
3.6.5. Stability
3.6.6. Animals
3.6.7. Applications in Pharmacokinetic Studies
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Tanonaka, K.; Hirai, K.; Kawaguchi, K.; Ogawa, M.; Yagi, A.; Fujimoto, K. Beneficial effect of Tan-Shen, an extract from the root of salvia, on post-hypoxic recovery of cardiac contractile force. Biochem. Pharmacol. 1990, 40, 1137–1143. [Google Scholar]
- Li, Y.H.; Wang, F.Y.; Feng, C.Q.; Yang, X.F. Studies on the active constituents in radix salvia miltiorrhizae and their protective effects on cerebral ischemia reperfusion injury and its mechanism. Pharmacogn. Mag. 2015, 41, 69–73. [Google Scholar]
- Cheng, T.O. Danshen, a versatile Chinese herbal drug for the treatment of coronary heart disease. Int. J. Cardiol. 2006, 113, 437–438. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.N.; Cui, Y.L.; Wang, Q.S.; Wang, S.X. Amelioration of Danhong injection on the lipopolysaccharide-stimulated systemic acute inflammatory reaction via multi-target strategy. J. Ethnopharmacol. 2013, 149, 772–782. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.G.; Yun, Y.G.; Ryoo, J.H.; Lee, H.S. Anti-hypertensive effect of water extract of Danshen on renovascular hypertension through inhibition of the renin angiotensin system. Am. J. Chin. Med. 2002, 30, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Huang, S.H.; Tan, B.K.-H.; Whiteman, M.; Zhu, Y.C.; Wu, Y.J.; Ng, Y.; Duan, W.; Zhu, Y.Z. Effects of purified herbal extract of Salvia miltiorrhiza on ischemic rat myocardium after acute myocardial infarction. Life Sci. 2005, 76, 2849–2860. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.H.; Shi, M.Q.; Yang, W.Y.; Liu, G.Y.; Liu, D.D.; Deng, W.; Qin, H.L.; Chen, Z.F. Cardioprotective effects of aqueous extract of Salvia miltiorrhiza on heart failure is related to SDF-1/CXCR4 Axis and Bcl-2 Family Expressions. Adv. Mater. Res. 2014, 998–999, 200–205. [Google Scholar] [CrossRef]
- Li, H.Q.; Shi, L.J.; Wei, J.; Zhang, C.P.; Zhou, Z.T. Cellular uptake and anticancer activity of salvianolic acid B phospholipid complex loaded nanoparticles in head and neck cancer and precancer cells. Colloids Surf. B Biointerfaces 2016, 147, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.J.; Li, Y.; Yin, W.Q.; Shan, W.Q.; Dai, J.F.; Yang, Y.; Li, L. Combination of chlorogenic acid and salvianolic acid B protects against polychlorinated biphenyls-induced oxidative stress through Nrf2. Environ. Toxicol. Pharmacol. 2016, 46, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.H.; Ma, D.H.; Gong, Y.; Yu, T.M.; Yao, G. Salvianolic acid B ameliorates CNS autoimmunity by suppressing Th1 responses. Neurosci. Lett. 2016, 619, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Sun, K.; Liu, Y.Y.; Xu, X.S.; Wang, C.S.; Zhao, K.S.; Huang, Q.B.; Han, J.Y. Effect of salvianolic acid B on TNF-α induced cerebral microcirculatory changes in a micro-invasive mouse model. Chin. J. Traumatol. 2016, 19, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Teng, F.K.; Yin, Y.; Cui, Y.J.; Deng, Y.P.; Lie, D.F.; Cho, K.K.; Zhang, G.; Lu, A.P.; Wu, W.Y.; Yang, M.; et al. Salvianolic acid A inhibits endothelial dysfunction and vascular remodeling in spontaneously hypertensive rats. Life Sci. 2016, 144, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.L.; Zhang, D.W.; Lou, H.X.; Sun, L.R.; Ji, J.B. Evaluation of the anti-inflammatory activities of tanshinones isolated from Salvia miltiorrhiza var. Alba roots in THP-1 macrophages. J. Ethnopharmacol. 2016, 188, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.S.; Zhang, F.J.; Li, H.; Liu, Y.; Du, G.Y.; Huang, Y.H. Tanshinone IIA inhibits human esophageal cancer cell growth through miR-122-mediated PKM2 downregulation. Arch. Biochem. Biophys. 2016, 598, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yan, J.; Feng, J. Treatment with tanshinone IIA suppresses disruption of the blood-brain barrier and reduces expression of adhesion molecules and chemokines in experimental autoimmune encephalomyelitis. Eur. J. Pharmacol. 2016, 771, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.Y.; He, H.Y.; Ji, H.; Gao, L.L.; Mao, J.W.; Liu, J.; Lin, H.L.; Wu, T.H. Tanshinone IIA ameliorates bleomycin-induced pulmonary fibrosis and inhibits transforming growth factor-beta-β-dependent epithelial to mesenchymal transition. J. Surg. Res. 2015, 197, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Ren, B.; Zhang, Y.X.; Zhou, H.X.; Sun, F.W.; Zhang, Z.F.; Wei, Z.F.; Zhang, C.Y.; Si, D.W. Tanshinone IIA prevents the loss of nigrostriatal dopaminergic neurons by inhibiting NADPH oxidase and iNOS in the MPTP model of Parkinson’s disease. J. Neurol. Sci. 2015, 348, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Q.; Deng, W.; Li, B.; Shi, W.; Wu, J.Y.; Xiang, C.C.; Lv, D.N.; Xie, L.P. Effects of Salvia Miltiorrhiza Extract on Signal Transduction of TSP-1 VEGF and TGF-β1 in renal Interstitial Fibrosis Tissues of rats. Guangxi Med. J. 2013, 35, 1582–1585. [Google Scholar]
- Shao, M.H.; Wang, C.; Yang, J.; He, L.Q. Effects of Salvianolate on Renal Function and Renal Oxygen Consumption in Rats with Chronic Renal Failure. Acad. J. Shanghai Univ. Tradit. Chin. Med. 2012, 26, 66–69. [Google Scholar]
- Wang, Q.L.; Yuan, J.L.; Tao, Y.Y.; Hu, Y.Y.; Liu, C.H. Effect of salvianolic acid B on renal interstitial fibrosis rat induced by HgCl2. Pharmacol. Clin. Chin. Mater. Med. 2008, 24, 12–15. [Google Scholar]
- Wang, X.L.; Gao, W.; Sun, M. Pharmacokinetic investigation on interaction between hydrophilic lithospermic acid B and lipophilic tanshinone IIA in rats, an experimental study. J. Tradit. Chin. Med. 2015, 35, 206–210. [Google Scholar]
- Wang, J.; Hu, R. Effects of Tanshinone IIA on Renal Nephrin and Transforming Growth Factor-β1 of Adriamycin Nephritic Rats. Chin. J. Exp. Tradit. Med. Formula 2011, 17, 245–249. [Google Scholar]
- Xu, Y.P.; Huang, K.X.; Pan, Y.; Wang, X.Q.; Yan, P.C.; Ren, Y.P.; Xiang, Z. A rapid UFLC–MS/MS method for simultaneous determination of formononetin, cryptotanshinone, tanshinone IIA and emodin in rat plasma and its application to a pharmacokinetic study of Bu Shen Huo Xue formula. J. Chromatogr. B 2013, 932, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.Y.; Huang, C.F.; Huang, H.Z.; Li, L.X.; Liang, Y.F.; Guo, B.H.; Li, N. Study on pharmacokinetics of cryptotanshinone and tanshinone IIA from the liposoluble extract of Salvia miltiorrhiza in rats. J. Guangdong Pharm. Univ. 2014, 30, 399–402. [Google Scholar]
- Liu, Y.; Li, X.R.; Li, Y.H.; Wang, L.J.; Xue, M. Simultaneous determination of danshensu, rosmarinic acid, cryptotanshinone, tanshinone IIA, tanshinone I and dihydrotanshinone I by liquid chromatographic–mass spectrometry and the application to pharmacokinetics in rats. J. Pharm. Biomed. Anal. 2010, 53, 698–704. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.T. Real-Time Quantitative PCR Analysis of Intestinal Lactobacillus Species in Type 2 Diabetic Patients. Ph.D. Thesis, Southern Medical University, Guangzhou, China, 2012. [Google Scholar]
- Song, M.; Hang, T.J.; Zhang, Z.X. Comparative study on pharmacokinetics of cryptotanshinone and tanshinones extract of Salvia miltiorrhiza Bge. in rats. Chin. Pharmacol. J. 2008, 43, 51–54. [Google Scholar]
- Song, M.; Hang, T.J.; Zhang, Z.X. Comparative study on pharmacokinetics of Pharmacokinetic interactions between the main components in the extracts of Salvia miltiorrhiza Bge. in rat. Acta Pharm. Sin. 2007, 42, 301–307. [Google Scholar]
- Song, M.; Hang, T.J.; Zhang, Z.X.; Chen, H.Y. Effects of the coexisting diterpenoid tanshinones on the pharmacokinetics of cryptotanshinone and tanshinone IIA in rat. Eur. J. Pharmacol. Sci. 2007, 32, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Ren, H.; Qian, D.W.; Su, S.L.; Guan, H.L.; Zhang, W.; Shang, E.X.; Duan, J.A. Simultaneous determination of tanshinones and polyphenolics in rat plasma by UPLC-TQ/MS and its application to the pharmacokinetic interaction between them. Drug Test Anal. 2016, 8, 744–754. [Google Scholar] [CrossRef] [PubMed]
- Park, E.J.; Ji, H.Y.; Kim, N.J.; Song, W.Y.; Kim, Y.H.; Kim, Y.C.; Sohn, D.H.; Lee, H.S. Simultaneous determination of tanshinone I, dihydrotanshinone I, tanshinone IIA and cryptotanshinone in rat plasma by liquid chromatography-tandem mass spectrometry: Application to a pharmacokinetic study of a standardized fraction of Salvia miltiorrhiza, PF2401-SF. Biomed. Chromatogr. 2008, 22, 548–555. [Google Scholar] [PubMed]
- Zhang, X.J. Protect Effect and Mechanism of Salvianolic Acids on the Blood-Brain Barrier Permeability on Mice with Acute Focal Cerebral Ischemia Injury. Ph.D. Thesis, Hebei Medical University, Shijiazhuang, China, 30 March 2015. [Google Scholar]
- Xie, S. The Structural Shifts of Gut Micro Biota in Development of Chronic Kidney Disease. Ph.D. Thesis, Southern Medical University, Guangzhou, China, 30 March 2014. [Google Scholar]
- Bansal, S.; Arnold, M.; Garofolo, F. International harmonization of bioanalytical guidance. Bioanalysis 2010, 2, 685–687. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Samples of ethanol extract and water extract of Danshen and the compounds including tanshinone IIA, cryptotanshinone, dihydrotanshinone I, tanshinone I, danshensu, rosmarinic acid, lithospermic acid, salvianoli acid A, salvianoli acid B are available from the authors.
Analytes | tR (min) | Precursor Ion (m/z) | Product Ion (m/z) | DP (V) | CE (eV) |
---|---|---|---|---|---|
Tanshinone IIA | 10.87 | 295.1 | 190.8 | 32 | 44 |
Dihydrotanshinone I | 9.80 | 279.2 | 189.9 | 28 | 34 |
Cryptotanshinone | 10.34 | 297.1 | 251.1 | 36 | 26 |
Tanshinone I | 10.36 | 277.2 | 178.0 | 30 | 36 |
Clarithromycin (IS) | 7.56 | 748.6 | 82.9 | 24 | 46 |
Analytes | Regression Equation | R2 | Linearity Range (ng/mL) | LLOQ (ng/mL) | CV ‰ of Calibration Slopes |
---|---|---|---|---|---|
Tanshinone IIA | y = 0.0195x + 0.0258 | 0.9990 | 0.540–108 | 0.540 | 0.500 |
Dihydrotanshinone I | y = 0.0119x + 0.0073 | 0.9993 | 0.570–114 | 0.570 | 0.350 |
Cryptotanshinone | y = 0.0224x + 0.0317 | 0.9993 | 0.555–111 | 0.555 | 0.350 |
Tanshinone I | y = 0.0107x + 0.0305 | 0.9974 | 0.535–107 | 0.535 | 1.301 |
Analytes | Spiked Conc. (ng/mL) | Intra-Day | Inter-Day | ||
---|---|---|---|---|---|
Measured Conc. (ng/mL) | RSD (%) | Measured Conc. (ng/mL) | RSD (%) | ||
Tanshinone IIA | 4.32 | 4.07 ± 0.07 | 1.75 | 4.09 ± 0.14 | 3.49 |
21.6 | 19.14 ± 0.57 | 3.00 | 19.57 ± 0.67 | 3.40 | |
108 | 90.75 ± 1.27 | 1.41 | 91.95 ± 4.32 | 4.70 | |
Cryptotanshinone | 4.44 | 3.89 ± 0.23 | 6.01 | 3.93 ± 0.31 | 7.80 |
22.2 | 19.93 ± 1.17 | 5.87 | 20.52 ± 1.17 | 5.69 | |
111 | 89.45 ± 2.03 | 2.20 | 94.20 ± 1.15 | 3.35 | |
Dihydrotanshinone I | 4.56 | 4.23 ± 0.30 | 7.19 | 4.22 ± 0.25 | 5.93 |
22.8 | 20.82 ± 0.44 | 2.12 | 20.91 ± 1.14 | 5.46 | |
114 | 99.7 ± 4.37 | 4.38 | 97.8 ± 3.72 | 3.80 | |
Tanshinone I | 4.28 | 4.01 ± 0.20 | 4.92 | 4.00 ± 0.18 | 4.63 |
21.4 | 19.87 ± 0.75 | 3.78 | 19.82 ± 0.85 | 4.29 | |
107 | 94.88 ± 3.77 | 3.98 | 97.57 ± 3.94 | 4.03 |
Analytes | Spiked Conc. (ng/mL) | Recovery (%) | RSD (%) | Matrix Effects (%) | RSD (%) |
---|---|---|---|---|---|
Tanshinone IIA | 4.32 | 93.19 ± 3.56 | 3.82 | −13.8 | 8.99 |
21.6 | 90.35 ± 2.46 | 2.72 | −10.12 | 5.71 | |
108 | 84.80 ± 3.57 | 6.45 | −12.83 | 7.89 | |
Cryptotanshinone | 4.44 | 89.98 ± 6.93 | 7.71 | −12.08 | 7.52 |
22.2 | 92.72 ± 4.67 | 5.03 | −8.75 | 6.52 | |
111 | 86.52 ± 2.79 | 3.22 | −11.23 | 6.58 | |
Dihydrotanshinone I | 4.56 | 92.17 ± 3.05 | 3.30 | −12.8 | 7.46 |
22.8 | 89.51 ± 5.14 | 5.74 | 10.88 | 6.34 | |
114 | 86.28 ± 2.79 | 3.23 | 8.64 | 6.13 | |
Tanshinone I | 4.28 | 94.16 ± 2.29 | 2.43 | 11.68 | 6.68 |
21.4 | 94.51 ± 4.01 | 4.24 | 7.05 | 5.80 | |
107 | 91.02 ± 3.77 | 4.14 | 14.34 | 8.35 |
Analytes | Spiked Conc. (ng/mL) | Room-Temperature Stability | Freeze-Thaw Stability | ||
---|---|---|---|---|---|
Measured Conc. (ng/mL) | RSD (%) | Measured Conc. (ng/mL) | RSD (%) | ||
Tanshinone IIA | 4.32 | 4.05 ± 0.24 | 5.98 | 4.11 ± 0.24 | 5.77 |
21.6 | 19.58 ± 0.57 | 2.90 | 19.62 ± 0.37 | 1.83 | |
108 | 90.39 ± 4.07 | 4.51 | 92.15 ± 4.40 | 4.77 | |
Cryptotanshinone | 4.44 | 3.91 ± 0.30 | 7.56 | 3.86 ± 0.24 | 6.20 |
22.2 | 20.47 ± 0.86 | 4.21 | 20.27 ± 1.17 | 5.75 | |
111 | 96.75 ± 4.09 | 4.22 | 96.55 ± 3.31 | 3.43 | |
Dihydrotanshinone I | 4.56 | 4.12 ± 0.18 | 4.32 | 4.1 ± 0.16 | 3.79 |
22.8 | 20.4 ± 0.88 | 4.35 | 19.67 ± 1.48 | 1.89 | |
114 | 96.79 ± 2.51 | 2.59 | 94.75 ± 3.25 | 3.43 | |
Tanshinone I | 4.28 | 3.9 ± 0.24 | 6.13 | 3.91 ± 0.24 | 5.41 |
21.4 | 20.05 ± 0.89 | 4.44 | 20.24 ± 0.89 | 3.69 | |
107 | 92.98 ± 3.73 | 4.01 | 91.54 ± 3.73 | 2.56 |
Parameters | Tanshinone IIA | Cryptotanshinone | Dihydrotanshinone I | Tanshinone I | |
---|---|---|---|---|---|
Cmax (μg/L) | C-E | 79.341 ± 13.96 | 156.57 ± 6.34 | 45.66 ± 1.68 | 25.54 ± 1.27 |
M-E | 25.46 ± 8.44 *** | 47.64 ± 14.34 *** | 50.29 ± 24.78 | 11.22 ± 0.97 *** | |
C-EW | 16.61 ± 1.10 ### | 44.32 ± 4.66 ### | 14.46 ± 3.42 ### | 12.29 ± 1.29 ### | |
M-EW | 31.10 ± 3.64 +,∆∆∆ | 94.02 ± 12.89 +++,∆∆ | 49.17 ± 24.37 ∆∆ | 16.55 ± 0.94 +++,∆∆ | |
Tmax (h) | C-E | 1.17 ± 0.76 | 0.67 ± 0.29 | 2.00 | 1.75 ± 0.5 |
M-E | 2.00 | 2.00 *** | 2.00 | 2.00 | |
C-EW | 0.50 | 0.50 | 2.00 | 2.00 | |
M-EW | 7.33 ± 1.16 +++,∆∆∆ | 7.33 ± 1.56 +++,∆∆∆ | 6.67 ± 1.16 +++,∆∆∆ | 6.00 +++,∆∆∆ | |
T1/2 (h) | C-E | 10.218 ± 5.43 | 5.83 ± 2.54 | 7.63 ± 0.29 | 16.15 ± 5.78 |
M-E | 9.42 ± 0.69 | 5.49 ± 2.05 | 8.31 ± 2.33 | 10.51 ± 2.80 * | |
C-EW | 21.03 ± 0.83 ## | 8.20 ± 2.08 # | 11.81 ± 1.39 ## | 4.92 ± 2.17 ## | |
M-EW | 7.14 ± 3.00 ∆∆∆ | 3.96 ± 0.98 ∆∆ | 6.83 ± 1.90 ∆∆∆ | 11.59 ± 3.63 ∆∆ | |
AUC0–t (μg·h/L) | C-E | 534.968 ± 139.63 | 1036.80 ± 203.01 | 432.46 ± 53.53 | 222.23 ± 56.62 |
M-E | 236.93 ± 58.16 ** | 283.44 ± 131.47 *** | 350.24 ± 9.31 ** | 88.05 ± 15.81 *** | |
C-EW | 189.11 ± 1.05 ### | 324.95 ± 17.25 ### | 158.90 ± 9.86 ### | 121.73 ± 16.19 ### | |
M-EW | 409.46 ± 4.74 ++,∆∆∆ | 984.76 ± 22.52 +++,∆∆∆ | 502.33 ± 145.21 +,∆∆ | 208.89 ± 12.22 +++,∆∆∆ | |
AUC0–∞ (μg·h/L) | C-E | 633.761 ± 165.01 | 1069.96 ± 183.93 | 479.38 ± 57.15 | 301.17 ± 83.46 |
M-E | 283.16 ± 60.67 ** | 297.17 ± 137.96 *** | 382.88 ± 16.74 * | 111.17 ± 30.66 ** | |
C-EW | 339.91 ± 9.52 ### | 372.06 ± 40.33 ### | 208.57 ± 3.43 ### | 128.00 ± 22.18 ## | |
M-EW | 470.04 ± 44.32 +,∆∆ | 1016.17 ± 18.84 +++,∆∆∆ | 599.14 ± 220.73 +,∆ | 292.26 ± 52.21 ++,∆∆ | |
MRT0–t h | C-E | 7.27 ± 0.26 | 5.36 ± 0.63 | 7.86 ± 0.04 | 9.17 ± 0.23 |
M-E | 8.02 ± 0.49 * | 6.01 ± 0.91 | 7.44 ± 1.08 | 8.50 ± 1.00 | |
C-EW | 9.0 ± 1.45 # | 7.24 ± 0.81 # | 8.87 ± 1.33 # | 8.55 ± 0.92 | |
M-EW | 9.17 ± 0.60 + | 8.14 ± 0.49 + | 10.22 ± 0.88 + | 10.68 ± 0.30 +,∆ | |
MRT0–∞ h | C-E | 12.51 ± 4.38 | 6.34 ± 0.15 | 10.53 ± 0.15 | 18.42 ± 7.10 |
M-E | 12.97 ± 1.47 | 7.18 ± 1.95 | 11.14 ± 3.74 | 18.02 ± 6.94 | |
C-EW | 22.81 ± 11.75 # | 10.83 ± 2.99 # | 21.87 ± 10.31 # | 9.63 ± 2.23 # | |
M-EW | 12.49 ± 3.41 ∆ | 8.82 ± 1.00 | 13.67 ± 3.04 ∆ | 19.23 ± 4.71 ∆ | |
CLz/F | C-E | 54.39 ± 14.99 | 108.47 ± 19.36 | 56.24 ± 6.29 | 57.00 ± 16.87 |
M-E | 119.37 ± 23.90 *** | 440.76 ± 194.22 * | 65.09 ± 8.53 | 128.26 ± 50.49 ** | |
C-EW | 132.76 ± 62.56 ## | 308.13 ± 35.06 ## | 106.97 ± 36.68 # | 129.61 ± 23.74 ## | |
M-EW | 70.27 ± 6.43 +++,∆∆∆ | 111.89 ± 0.21 ++,∆∆∆ | 49.39 ± 19.75 ∆∆ | 56.73 ± 9.83 ++,∆∆ |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, H.-D.; Su, S.-L.; Li, Y.; Zhu, Z.; Guo, J.; Zhu, Y.; Guo, S.; Qian, D.; Duan, J. Simultaneous Determination of Four Tanshinones by UPLC-TQ/MS and Their Pharmacokinetic Application after Administration of Single Ethanol Extract of Danshen Combined with Water Extract in Normal and Adenine-Induced Chronic Renal Failure Rats. Molecules 2016, 21, 1630. https://doi.org/10.3390/molecules21121630
Cai H-D, Su S-L, Li Y, Zhu Z, Guo J, Zhu Y, Guo S, Qian D, Duan J. Simultaneous Determination of Four Tanshinones by UPLC-TQ/MS and Their Pharmacokinetic Application after Administration of Single Ethanol Extract of Danshen Combined with Water Extract in Normal and Adenine-Induced Chronic Renal Failure Rats. Molecules. 2016; 21(12):1630. https://doi.org/10.3390/molecules21121630
Chicago/Turabian StyleCai, Hong-Die, Shu-Lan Su, Yonghui Li, Zhenhua Zhu, Jianming Guo, Yue Zhu, Sheng Guo, Dawei Qian, and Jinao Duan. 2016. "Simultaneous Determination of Four Tanshinones by UPLC-TQ/MS and Their Pharmacokinetic Application after Administration of Single Ethanol Extract of Danshen Combined with Water Extract in Normal and Adenine-Induced Chronic Renal Failure Rats" Molecules 21, no. 12: 1630. https://doi.org/10.3390/molecules21121630
APA StyleCai, H.-D., Su, S.-L., Li, Y., Zhu, Z., Guo, J., Zhu, Y., Guo, S., Qian, D., & Duan, J. (2016). Simultaneous Determination of Four Tanshinones by UPLC-TQ/MS and Their Pharmacokinetic Application after Administration of Single Ethanol Extract of Danshen Combined with Water Extract in Normal and Adenine-Induced Chronic Renal Failure Rats. Molecules, 21(12), 1630. https://doi.org/10.3390/molecules21121630