In Vitro Antimicrobial, Antioxidant, Cytotoxicity and GC-MS Analysis of Mazus goodenifolius
Abstract
:1. Introduction
2. Results and Discussions
2.1. Phytochemical Analysis
2.2. GC-MS Analysis of Essential Oil
2.3. Antimicrobial Activity
2.4. Antioxidant Activity
2.5. Antioxidant Activity by DNA Protection Assay
2.6. Cytotoxicity Studies by Haemolytic Activity
3. Experimental
3.1. General
3.2. Phytochemical Analysis
3.3. Isolation of Essential Oil
3.4. GC-MS Analysis of Essential Oil
3.5. Identification of Compounds
3.6. Antimicrobial Activity
3.7. Antioxidant Activity
3.7.1. DPPH free Radical Scavenging Assay
3.7.2. Percentage Inhibition of Linoleic Acid Oxidation
3.7.3. Determination of Reducing Power
3.7.4. Antioxidant Activity by DNA Protection Assay
3.8. Cytotoxicity Studies
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Acknowledgements
References
- Choi, Y.; Jeong, H.S.; Lee, J. Antioxidant activity of methanolic extracts from some grains consumed in Korea. Food Chem. 2007, 103, 130–138. [Google Scholar] [CrossRef]
- Sokmen, M.; Serkedjieva, J.; Daferera, D.; Gulluce, M.; Polissiou, M.; Tepe, B. In vitro antioxidant, antimicrobial, and antiviral activities of the essential oil and various extracts from herbal parts and callus cultures of Origanum acutidens. J. Agric. Food Chem. 2004, 52, 3309–3312. [Google Scholar] [CrossRef] [PubMed]
- Sarker, S.D.; Nahar, L.; Kumarasamy, Y. Microtitre plate based antibacterial assay incorporating resazuriun as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 2007, 42, 321–324. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod. 2007, 70, 461–77. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization. Trade in Medicinal Plants, 1st ed.; Food and Agriculture Organization (FAO) United Nations: Rome, Italy, 2004; pp. 1–64. [Google Scholar]
- Ghani, A. Medicinal plants of Bangladesh with Chemical Constituents and Uses, 1st ed.; Asiatic Society of Bangladesh: Dhaka, Bangladesh, 2003; pp. 1–10. [Google Scholar]
- Duke, J.A.; Ayensu, E.S. Medicinal Plants of China; Reference Publications, Inc.: Clair River Aglonac, MI, USA, 1985. [Google Scholar]
- Kunkel, G. Plants for Human Consumption; Koeltz Scientific Books: Koenigstein, Germany, 1984. [Google Scholar]
- Miraliakbari, H.; Shahidi, F. Antioxidant activity of minor components of tree nut oils. Food Chem. 2008, 111, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Field, J.A.; Lettinga, G. Toxicity of tannic compounds to microorganisms. Plants polyphenols: Synthesis, properties, significance. Basic Life Sci. 1992, 59, 673–692. [Google Scholar]
- Hanif, M.A.; Al-maskari, M.Y.; Al-maskari, A.; Al-shukaili, A.; Al-maskari, A.Y.; Al-sabahi, J.N. Essential oil composition, antimicrobial and antioxidant activities of unexplored Omani basil. J. Med. Plants Res. 2011, 5, 751–757. [Google Scholar]
- Hussain, A.I.; Anwar, F.; Tufail, S.; Sherazi, H.; Przybylski, R. Chemical composition, antioxidant and antimicrobial activities of basil (Ocimum basilicum) essential oils depends on seasonal variations. Food Chem. 2008, 108, 986–995. [Google Scholar] [CrossRef] [PubMed]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Giweli, A.; Dzamic, A.M.; Sokovic, M.; Ristic, M.S.; Marin, P.D. Antimicrobial and antioxidant activities of essential oils of Satureja thymbra growing wild in Libya. Molecules 2012, 17, 4836–4850. [Google Scholar] [CrossRef] [PubMed]
- Knoblock, K.; Pauli, A.; Lberl, B.; Weis, N.; Weigand, H. Antibacterial activity and antifungal properties of essential oil components. J. Essent. Oil Res. 1988, 1, 119–128. [Google Scholar] [CrossRef]
- Derwich, E.; Benziane, Z.; Chabir, R.; Taouil, R. Characterization of volatiles and evaluation of antioxidant activity of the flower essential oils of Myrtus communis L. from Morocco. Int. J. Curr. Pharma. Res. 2011, 3, 17–23. [Google Scholar]
- Undeger, U.; Basaran, A.; Degen, G.H.S.; Basaran, N. Antioxidant activities of major thyme ingredients and lack of (oxidative) DNA damage in V79 Chinese hamster lung fibroblast cells at low levels of carvacrol and thymol. Food Chem. Toxicol. 2009, 47, 2037–2043. [Google Scholar] [CrossRef] [PubMed]
- Siddhuraju, P.; Becker, K. Antioxidant properties of various extracts of total phenolic constituents from three different agro climatic origins of drumstick tree (Moringa oleifera Lam.) leaves. J. Agric. Food Chem. 2003, 51, 2144–2155. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, L.; Zu, Y.; Chen, X.; Wang, F.; Liu, F. Oxidative stability of sunflower oil by carnosic acid compared with synthetic antioxidants during accelerated storage. Food Chem. 2010, 118, 656–662. [Google Scholar] [CrossRef]
- Powell, W.A.; Catranis, C.M.; Maynard, C.A. Design of self-processing antimicrobial peptides for plant protection. Lett. Appl. Microbiol. 2000, 31, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Sharma, J.D. In vitro hemolysis of human erythrocytes by plant extracts with antiplasmodial activity. J. Ethnopharmacol. 2001, 74, 239–243. [Google Scholar] [CrossRef]
- Baillie, J.K.; Thompson, A.A.R.; Irving, J.B.; Bates, M.G.D.; Sutherland, A.I.; Macnee, W.; Maxwell, S.R.J.; Webb, D.J. Oral antioxidant supplementation does not prevent acute mountain sickness: double blind, randomized placebo-controlled trial. QJM-Int. J. Med. 2009, 102, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, P.; Kumar, B.; Kaur, M.; Kaur, G.; Kaur, H. Phytochemical screening and extraction: A Review. Int. Pharm. Sci. 2011, 1, 98–106. [Google Scholar]
- Zubair, M.; Rizwan, K.; Rasool, N.; Afshan, N.; Shahid, M. Antimicrobial potential of various extract and fractions of leaves of Solanum nigrum. Int. J. Phytomed. 2011, 3, 63–67. [Google Scholar]
- Edeoga, H.O.; Okwu, D.E.; Mbaebie, B.O. Phytochemical constituents of some Nigerian medicinal plants. J. Biotechnol. 2005, 4, 685–688. [Google Scholar]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy, 3rd ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2001; pp. 1–804. [Google Scholar]
- CLSI. Clinical and Laboratory Standards Institute Performance Standards for Antimicrobial Susceptibility Testing, M100-S11, 18th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008; pp. 1–50. [Google Scholar]
- Iqbal, S.; Bhanger, M.I.; Anwar, F. Antioxidant properties and components of some commercially available varieties of rice bran in Pakistan. Food Chem. 2005, 93, 265–272. [Google Scholar] [CrossRef]
- Yen, G.C.; Duh, P.D.; Chuang, D.Y. Antioxidant activity of anthraquinones and anthrone. Food Chem. 2000, 70, 437–441. [Google Scholar] [CrossRef]
- Kalpana, K.B.; Srinivasan, M.; Menon, V.P. Evaluation of antioxidant activity of hesperidin and its protective effect on H2O2 induced oxidative damage on pBR322 DNA and RBC cellular membrane. Mol. Cell Biochem. 2009, 314, 95–103. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the plant extrat, fractions and essential oil are available from the authors. |
Compounds | Retention Index (RI) | Area percentage (%) |
---|---|---|
α-Thujene | 933 | 0.33 |
α-Pinene | 940 | 1.79 |
α-Fenchone | 951 | 2.62 |
Camphene | 953 | 0.48 |
β-Pinene | 970 | 6.43 |
p-Cymene | 1025 | 1.53 |
Limonene | 1028 | 2.13 |
1,8-Cineole | 1030 | 8.41 |
β-Phellandrene | 1033 | 2.02 |
β-ocimene | 1049 | 3.82 |
γ-Terpinene | 1058 | 5.46 |
Linalool | 1098 | 9.61 |
Carveol | 1138 | 10.06 |
Verbenone | 1204 | 2.67 |
Thymol | 1291 | 15.16 |
2-Undecanone | 1293 | 1.58 |
Carvacrol | 1297 | 2.73 |
Geranic acid | 1365 | 1.97 |
α-Copaene | 1411 | 0.44 |
β-Caryophyllene | 1417 | 9.96 |
α-Guaiene | 1439 | 0.7 |
α-Humulene | 1451 | 0.73 |
Germacrene D | 1483 | 9.37 |
Extract, fractions and essential oil | |||||||
---|---|---|---|---|---|---|---|
Abs. MeOH | n-Butanol | Chloroform | Ethyl acetate | n-Hexane | Essential oil | Standard † | |
Bacterial strains | |||||||
E. coli | 12.4 ± 0.11 c | N.D. *g | 9.4 ± 0.08 e | 10.2 ± 0.09 d | 8.2 ± 0.07 f | 16.2 ± 0.15 b | 28.3 ± 0.15 a |
P. multocida | 14.3 ± 0.12 c | 8.2 ± 0.07 f | 10.2 ± 0.09 e | 13.2 ± 0.11 d | N.D. g | 19.5 ± 0.17 b | 27.2 ± 0.21 a |
S. aureus | 16.7 ± 0.12 c | N.D. e | N.D. e | 12.4 ± 0.09 d | N.D. e | 22.9 ± 0.17 b | 30.1 ± 0.16 a |
B. subtilis | 13.2 ± 0.12 c | 9.2 ± 0.07 e | N.D. g | 12.3 ± 0.09 d | 8.2 ± 0.06 f | 17.2 ± 0.14 b | 29.2 ± 0.15 a |
Fungal strains | |||||||
A. flavus | 10.2 ± 0.09 c | 7.8 ± 0.06 f | 8.7 ± 0.05 e | 9.5 ± 0.11 d | N.D. g | 14.2 ± 0.12 b | 22.5 ± 0.18 a |
A. alternata | 12.3 ± 0.11 c | 8.8 ± 0.07 f | N.D. g | 11.3 ± 0.12 d | 9.4 ± 0.08 e | 16.2 ± 0.14 b | 24.6 ± 0.23 a |
R. solani | 15.9 ± 0.12 c | N.D. g | 11.1 ± 0.13 e | 12.2 ± 0.09 d | 8.4 ± 0.07 f | 18.5 ± 0.13 b | 29.7 ± 0.21 a |
A. niger | 14.3 ± 0.13 c | 8.6 ± 0.07 e | N.D. g | 11.4 ± 0.06 d | 7.8 ± 0.05 f | 17.9 ± 0.15 b | 28.1 ± 0.26 a |
Extract, fractions and essential oil | |||||||
---|---|---|---|---|---|---|---|
Abs. MeOH | n-Butanol | Chloroform | Ethyl acetate | n-Hexane | Essential oil | Standard † | |
Bacterial strains | |||||||
E. coli | 25.1 ± 0.21 c | 16.3 ± 0.21 f | 19.2 ± 0.18 e | 20.1 ± 0.15 d | 15.2 ± 0.13 g | 30.2 ± 0.27 a | 28.3 ± 0.15 b |
P. multocida | 28.1 ± 0.21 c | 15.2 ± 0.17 f | 19.3 ± 0.14 e | 26.2 ± 0.19 d | 12.2 ± 0.10 g | 32.2 ± 0.26 a | 27.2 ± 0.21 b |
S. aureus | 31.7 ± 0.12 b | 10.6 ± 0.08 d | 14.1 ± 0.12 d | 23.1 ± 0.29 c | N.D. d | 35.2 ± 0.19 a | 30.1 ± 0.16 c |
B. subtilis | 25.4 ± 0.21 c | 17.2 ± 0.16 e | 15.7 ± 0.08 f | 23.3 ± 0.17 d | 11.2 ± 0.14 g | 32.2 ± 0.26 a | 29.2 ± 0.15 b |
Fungal strains | |||||||
A. flavus | 19.0 ± 0.13 c | 14.8 ± 0.11 f | 17.2 ± 0.13 e | 18.6 ± 0.14 d | N.D. g | 29.2 ± 0.27 a | 22.5 ± 0.18 b |
A. alternata | 23.1 ± 0.21 c | 15.6 ± 0.14 e | 12.7 ± 0.07 f | 20.3 ± 0.22 d | 11.4 ± 0.17 g | 30.4 ± 0.24 a | 24.6 ± 0.23 b |
R. solani | 30.1 ± 0.23 b | N.D. g | 19.1 ± 0.21 e | 22.3 ± 0.17 d | 15.2 ± 0.16 f | 32.4 ± 0.31 a | 29.7 ± 0.21 c |
A. niger | 28.6 ± 0.21 b | 14.6 ± 0.14 e | N.D. g | 20.2 ± 0.21 d | 13.2 ± 0.12 f | 31.8 ± 0.30 a | 28.1 ± 0.26 c |
Extract, fractions and essential oil | |||||||
---|---|---|---|---|---|---|---|
Abs. MeOH | n-Butanol | Chloroform | Ethyl acetate | n-Hexane | Essential oil | Standard † | |
Bacterial strains | |||||||
E. coli | 1175.0 ± 9.2 e | 3000.0 ± 15.4 a | 2000.0 ± 14.1 c | 1250.0 ± 8.5 d | 2500.0 ± 16.7 b | 187.0 ± 1.49 f | 75.0 ± 0.29 g |
P. multocida | 875.0 ± 6.7 e | 1750.0 ± 10.7 b | 1500.0 ± 2.8 c | 1150.0 ± 11.4 d | 2000.0 ± 11.9 a | 156.0 ± 1.4 f | 125.0 ± 1.2 g |
S. aureus | 750.0 ± 6.9 d | 2500.0 ± 9.2 a | 1500.0 ± 7.2 b | 1000.0 ± 8.2 c | N.D. g | 62.0 ± 0.53 e | 25 ± 0.13 f |
B. subtilis | 1000.0 ± 8.4 d | 1500.0 ± 10.8 c | 2000.0 ± 12.1 a | 1250.0 ± 11.4 d | 1750.0 ± 18.2 b | 78.0 ± 0.62 f | 62.5 ± 0.59 g |
Fungal strains | |||||||
A. flavus | 1750.0 ± 17.2 d | 3000.0 ± 15.2 a | 2500.0 ± 16.4 b | 2000.0 ± 16.8 c | N.D. g | 125.0 ± 1.14 e | 100.0 ± 1.04 f |
A. alternata | 1250.0 ± 13.7 e | 2500.0 ± 12.4 b | 3000.0 ± 16.6 a | 1500.0 ± 19.2 d | 1750.0 ± 21.4 c | 93.5 ± 0.84 f | 62.5 ± 0.54 g |
R. solani | 1150.0 ± 10.4 d | N.D. g | 1500.0 ± 11.6 b | 1250.0 ± 13.7 c | 1750.0 ± 14.3 a | 25.0 ± 0.22 e | 15.5 ± 0.12 f |
A. niger | 1750.0 ± 12.4 d | 2250.0 ± 15.6 b | N.D. g | 2000.0 ± 14.2 c | 3000.0 ± 17.6 a | 78.0 ± 0.68 e | 50.0 ± 0.48 f |
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Riaz, M.; Rasool, N.; Bukhari, I.H.; Shahid, M.; Zubair, M.; Rizwan, K.; Rashid, U. In Vitro Antimicrobial, Antioxidant, Cytotoxicity and GC-MS Analysis of Mazus goodenifolius. Molecules 2012, 17, 14275-14287. https://doi.org/10.3390/molecules171214275
Riaz M, Rasool N, Bukhari IH, Shahid M, Zubair M, Rizwan K, Rashid U. In Vitro Antimicrobial, Antioxidant, Cytotoxicity and GC-MS Analysis of Mazus goodenifolius. Molecules. 2012; 17(12):14275-14287. https://doi.org/10.3390/molecules171214275
Chicago/Turabian StyleRiaz, Muhammad, Nasir Rasool, Iftikhar Hussain Bukhari, Muhammad Shahid, Muhammad Zubair, Komal Rizwan, and Umer Rashid. 2012. "In Vitro Antimicrobial, Antioxidant, Cytotoxicity and GC-MS Analysis of Mazus goodenifolius" Molecules 17, no. 12: 14275-14287. https://doi.org/10.3390/molecules171214275
APA StyleRiaz, M., Rasool, N., Bukhari, I. H., Shahid, M., Zubair, M., Rizwan, K., & Rashid, U. (2012). In Vitro Antimicrobial, Antioxidant, Cytotoxicity and GC-MS Analysis of Mazus goodenifolius. Molecules, 17(12), 14275-14287. https://doi.org/10.3390/molecules171214275