Rate Optimization of Intelligent Reflecting Surface-Assisted Coal Mine Wireless Communication Systems
Abstract
:1. Introduction
2. System Model and Problem Formulation
2.1. Channel Modeling and System Model
2.2. Problem Formulation
3. A Three-Step Joint Optimization Algorithm
3.1. Optimizing Given and
Algorithm 1 Optimization Scheme for the Horizontal Position of IRS |
|
3.2. Three-Step Joint Optimization with , and
Algorithm 2 Alternate Joint Optimization Scheme |
|
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ranjany, A.; Misraz, P.; Dwivediz, B.; Sahuy, H.B. Channel modeling of wireless communication in underground coal mines. In Proceedings of the 8th International Conference on Communication Systems and Networks (COMSNETS), Bangalore, India, 5–10 January 2016; pp. 1–2. [Google Scholar]
- Ben Mabrouk, I.; Talbi, L.; Nedil, M.; Hettak, K. MIMO-UWB Channel Characterization Within an Underground Mine Gallery. IEEE Trans. Antennas Propag. 2012, 60, 4866–4874. [Google Scholar] [CrossRef]
- de Oliveira Gomes, P.H.; Guieiro, G.; de Almeida, E.P.L.; Garcia, L.G.U. Evaluation of Shadowing Caused by Mining Machinery in V2I Communications. In Proceedings of the IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Bologna, Italy, 9–12 September 2018; pp. 63–67. [Google Scholar]
- Játiva, P.P.; Azurdia-Meza, C.A.; Sánchez, I.; Seguel, F.; Zabala-Blanco, D.; Firoozabadi, A.D.; Gutiérrez, C.A.; Soto, I. A VLC Channel Model for Underground Mining Environments With Scattering and Shadowing. IEEE Access 2020, 8, 185445–185464. [Google Scholar] [CrossRef]
- ElMossallamy, M.A.; Zhang, H.; Song, L.; Seddik, K.G.; Han, Z.; Li, G.Y. Reconfigurable Intelligent Surfaces for Wireless Communications: Principles, Challenges, and Opportunities. IEEE Trans. Cogn. Commun. Netw. 2020, 6, 990–1002. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Mu, X.; Hou, T.; Xu, J.; Di Renzo, M.; Al-Dhahir, N. Reconfigurable Intelligent Surfaces: Principles and Opportunities. IEEE Commun. Surveys Tut. 2021, 23, 1546–1577. [Google Scholar] [CrossRef]
- Zhang, Z.; Dai, L.; Chen, X.; Liu, C.; Yang, F.; Schober, R.; Poor, H.V. Active RIS vs. Passive RIS: Which Will Prevail in 6G? IEEE Trans. Commun. 2023, 71, 1707–1725. [Google Scholar] [CrossRef]
- Wang, B.; Yuan, Z.; Lu, J.; Zhang, X. Multitask Collaborative Learning Neural Network for Radio Signal Classification. IEEE Trans. Commun. 2024, 1. [Google Scholar] [CrossRef]
- Yuan, X.; Zhang, Y.-J.A.; Shi, Y.; Yan, W.; Liu, H. Reconfigurable-Intelligent-Surface Empowered Wireless Communications: Challenges and Opportunities. IEEE Wirel. Commun. 2021, 28, 136–143. [Google Scholar] [CrossRef]
- Kisseleff, S.; Chatzinotas, S.; Ottersten, B. Reconfigurable Intelligent Surfaces in Challenging Environments: Underwater, Underground, Industrial and Disaster. IEEE Access 2021, 9, 150214–150233. [Google Scholar] [CrossRef]
- Cui, M.; Zhang, G.; Zhang, R. Secure Wireless Communication via Intelligent Reflecting Surface. IEEE Wireless Commun. Lett. 2019, 8, 1410–1414. [Google Scholar] [CrossRef]
- Song, Y.; Khandaker, M.R.A.; Tariq, F.; Wong, K.-K.; Toding, A. Truly Intelligent Reflecting Surface-Aided Secure Communication Using Deep Learning. In Proceedings of the IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland, 25–28 April 2021; pp. 1–6. [Google Scholar]
- Kumar, V.; Flanagan, M.F.; Kwan Ng, D.W.; Tran, L.-N. On the Secrecy Rate under Statistical QoS Provisioning for RIS-assisted MISO Wiretap Channel. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 7–11 December 2021; pp. 1–6. [Google Scholar]
- Wu, Q.; Zhang, S.; Zheng, B.; You, C.; Zhang, R. Intelligent Reflecting Surface-Aided Wireless Communications: A Tutorial. IEEE Trans. Commun. 2021, 69, 3313–3351. [Google Scholar] [CrossRef]
- Ren, Y.; Zhou, R.; Teng, X.; Meng, S.; Zhou, M.; Tang, W.; Li, X.; Li, C.; Jin, S. On Deployment Position of RIS in Wireless Communication Systems: Analysis and Experimental Results. IEEE Wirel. Commun. Lett. 2023, 12, 1756–1760. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Zhang, Y.; Gong, H.; Jiang, T.; Liu, G. How to Extend 3-D GBSM to Integrated Sensing and Communication Channel With Sharing Feature? IEEE Wirel. Commun. Lett. 2024, 13, 2045–2049. [Google Scholar] [CrossRef]
- Ji, X.; Wang, C.-X.; Chang, H. A Novel MIMO Channel Model for Underground Mine Communications. In Proceedings of the IEEE/CIC International Conference on Communications in China (ICCC), Dalian, China, 10–12 August 2023; pp. 1–5. [Google Scholar]
- Gong, H.; Zhang, J.; Zhang, Y.; Zhou, Z.; Liu, G. How to Extend 3-D GBSM to RIS Cascade Channel With Non-Ideal Phase Modulation? IEEE Wirel. Commun. Lett. 2024, 13, 555–559. [Google Scholar] [CrossRef]
- Zhou, C. Ray Tracing and Modal Methods for Modeling Radio Propagation in Tunnels With Rough Walls. IEEE Trans. Antennas Propag. 2017, 65, 2624–2634. [Google Scholar] [CrossRef] [PubMed]
- Gangwar, K.; Chen, G.C.Y.; Chan, K.K.M.; Gangwar, R.K.; Rambabu, K. Antenna System for Communication in Underground Mining Environment to Ensure Miners Safety. IEEE Access 2021, 9, 150162–150171. [Google Scholar] [CrossRef]
System Parameters | Value |
---|---|
Number of BS antennas, K | 4 |
Number of IRS reflection elements, | |
ME coordinate, | [145 m, 0, 0] |
User coordinate, | [150 m, 0, 0] |
IRS vertical coordinate, | 5 m |
Normalized path loss, | −30 dB |
Noise standard deviation, | −80 dBm |
Carrier frequency, | 1.2 GHz |
Working frequency, f | 915 MHz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Yang, Z.; Wang, B.; Xu, Y. Rate Optimization of Intelligent Reflecting Surface-Assisted Coal Mine Wireless Communication Systems. Entropy 2024, 26, 880. https://doi.org/10.3390/e26100880
Liu Y, Yang Z, Wang B, Xu Y. Rate Optimization of Intelligent Reflecting Surface-Assisted Coal Mine Wireless Communication Systems. Entropy. 2024; 26(10):880. https://doi.org/10.3390/e26100880
Chicago/Turabian StyleLiu, Yang, Zhao Yang, Bin Wang, and Yanhong Xu. 2024. "Rate Optimization of Intelligent Reflecting Surface-Assisted Coal Mine Wireless Communication Systems" Entropy 26, no. 10: 880. https://doi.org/10.3390/e26100880
APA StyleLiu, Y., Yang, Z., Wang, B., & Xu, Y. (2024). Rate Optimization of Intelligent Reflecting Surface-Assisted Coal Mine Wireless Communication Systems. Entropy, 26(10), 880. https://doi.org/10.3390/e26100880