Pressure Tensor of Nanoscopic Liquid Drops
Abstract
:1. Introduction
2. Theory
2.1. Mechanical Equilibrium
2.2. Results of Density Functional Theory
3. Results and Discussion
3.1. Microscopic Derivation of the Laplace Equation
4. Results for Mixtures
5. Comparison with Previous Studies
5.1. Pressure Tensor in a Squared Laplacian Model
5.2. Irvin–Kirkwood Pressure Tensor
6. Conclusions
Acknowledgments
Appendix
A. Simplifications on the Second Order Contribution of the Pressure Difference
Author Contributions
Conflicts of Interest
References
- Evans, R. The nature liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids. Adv. Phys 1979, 28, 143–200. [Google Scholar]
- Varea, C.; Robledo, A. Theory of interfacial bending constants. J. Phys. Condens. Matter 2001, 13, 9075–9088. [Google Scholar]
- Hadjiagapiou, I. Density functional theory for spherical drops. J. Phys. Condens. Matter 1994, 6, 5303–5322. [Google Scholar]
- Block, B.J.; Das, S.K.; Oettel, M.; Virnau, P.; Binder, K. Curvature dependence of surface free energy of liquids drops and bubbles: A simulation study. J. Chem. Phys. 2010, 133, 154702. [Google Scholar]
- Malijevsky, A.; Jackson, G. A perspective on the interfacial properties of nanoscopic liquids drops. J. Phys. Condens. Matter 2012, 24, 464121. [Google Scholar]
- Young, T. An Essay on the Cohession of Fluids. Phil. Trans. R. Soc. Lond 1805, 95, 65–87. [Google Scholar]
- Laplace, P.S. Traité de Mécanique Céleste; Supplément au Dixieme Livre, Sur L’ Action Capillaire; Courcier: Paris, France, 1806; In French. [Google Scholar]
- Gibbs, J.W. The Collected Works; Dover: New York, NY, USA, 1961; Volume 2. [Google Scholar]
- Tolman, R.C. The Effect of Droplet Size on SurfaceTension. J. Chem. Phys 1949, 17, 333–337. [Google Scholar]
- Rowlinson, J.S.; Widom, B. Molecular Theory of Capillarity; Clarendon: Oxford, UK, 1982. [Google Scholar]
- Rowlinson, J.S. A drop of liquid. Phys. Condens. Matter 1994, 6, A1–A8. [Google Scholar]
- Blokhuis, E.M.; van Giessen, A.E. Density functional theory of a curved liquid-vapour interface: Evaluation of the rigidity constants. J. Phys. Condens. Matter 2013, 25, 225003. [Google Scholar]
- Yang, A.J.M.; Fleming, P.D.; Gibbs, J.H. Molecular theory of surface tension. J. Chem. Phys 1976, 64, 3732–3747. [Google Scholar]
- Carmen Varea, V.R.-R.; Robledo, A. Stress tensor of curved interfase. Mol. Phys 1993, 80, 821–832. [Google Scholar]
- Romero-Rochín, V.; Varea, C.; Robledo, A. Microscopic expresions for interfacial bending constants and spontaneous curvature. Phys. Rev. A 1991, 44, 8417–8420. [Google Scholar]
- Segovia-López, J.G.; Zamora, A.; Santiago, J.A. Mean field theory of inhomogeneous fluid mixtures. Rev. Mex. Phys 2013, 59, 236–247. [Google Scholar]
- Rowlinson, J.S. Preceding Comment. Phys. Rev. Lett 1991, 67, 406. [Google Scholar]
- Baus, M.; Lovett, R. Generalization of the stress tensor to nonuniform fluids and solids and its relation to Saint-Venant’s strain compatibility conditions. Phys. Rev. Lett 1990, 65. [Google Scholar] [CrossRef]
- Bauss, M.; Lovett, R. Preceding Reply. Phys. Rev. Lett 1991, 67, 407. [Google Scholar]
- Helfrich, W. Elastic properties of lipid bilayers—Theory and possible experiments. Z. Naturfoschung 1973, 28, 693–703. [Google Scholar]
- Robledo, A.; Varea, C. Can the Helfrich free energy for curved interfaces be derived from first principles. Physica A 1996, 231, 178–190. [Google Scholar]
- Blokhuis, E.M.; Kuipers, J. Thermodynamic expressions for the Tolman length. J. Chem. Phys. 2006, 124, 074701. [Google Scholar]
- Percus, J.K. Stress tensor for nonlocal field equations. J. Math. Phys 1996, 37, 1259–1267. [Google Scholar]
- Romero-Rochín, V.; Percus, J.K. Stress tensor of liquid vapour states of inhomogeneous fluids. Phys. Rev. E 1996, 53, 5130–5136. [Google Scholar]
- Blokhuis, E.M.; Bedeaux, D. Pressure tensor of a spherical interface. J. Chem. Phys 1992, 97, 3576–3586. [Google Scholar]
- Varea, C.; Robledo, A. Bending rigidities and spontaneous curvature for a spherical interface. Physica A 1995, 220, 33–47. [Google Scholar]
- Hiester, T.; Dietrich, S.; Mecke, K. Microscopic theory for interface fluctuations in binary liquid mixture. J. Chem. Phys. 2006, 125, 184701. [Google Scholar]
- Fisher, M.P.A.; Wortis, M. Curvature corrections to the surface tension of fluids drops: Landau theory and a scaling hypothesis. Phys. Rev. B 1984, 29, 6252–6260. [Google Scholar]
- Van Giessen, A.E.; Blokhuis, E.M.; Bukman, D.J. Mean field curvature corrections to the surface tension. J. Chem. Phys 1998, 108, 1148–1156. [Google Scholar]
- Blokhuis, E.M.; Bedeaux, D. Derivation of microscopic expressions for the rigidity constants of a simple liquid-vapor interface. Physica A 1992, 184, 42–70. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
G. Segovia-López, J.; Carbajal-Domínguez, A. Pressure Tensor of Nanoscopic Liquid Drops. Entropy 2015, 17, 1916-1935. https://doi.org/10.3390/e17041916
G. Segovia-López J, Carbajal-Domínguez A. Pressure Tensor of Nanoscopic Liquid Drops. Entropy. 2015; 17(4):1916-1935. https://doi.org/10.3390/e17041916
Chicago/Turabian StyleG. Segovia-López, José, and Adrian Carbajal-Domínguez. 2015. "Pressure Tensor of Nanoscopic Liquid Drops" Entropy 17, no. 4: 1916-1935. https://doi.org/10.3390/e17041916
APA StyleG. Segovia-López, J., & Carbajal-Domínguez, A. (2015). Pressure Tensor of Nanoscopic Liquid Drops. Entropy, 17(4), 1916-1935. https://doi.org/10.3390/e17041916