The Influence of Personalized AI on Users’ Intention to Continue Using Mobile Payments: A Contingency Perspective
Abstract
1. Introduction
2. Theoretical Background and Hypotheses Development
2.1. Personalized AI and the Continued Use of Mobile Payments
2.2. Mobile Payment Continuance: A Contingency Perspective
2.2.1. The Moderating Effect of Age
2.2.2. The Moderating Effect of Educational Level
2.2.3. The Moderating Role of Technological Diversity
2.2.4. The Moderating Role of Social Network
3. Data and Methods
3.1. Data Collection
3.2. Sample Characteristics
3.3. Estimation Methodology
3.4. Measurements
4. Results
4.1. Model Testing
4.2. Correlations and Descriptive Analysis
4.3. Hypotheses Testing Results
5. Discussion and Conclusions
5.1. Discussion
5.2. Theoretical Implications
5.3. Practical Implications
6. Limitations and Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
| Variables | Item | Reference |
|---|---|---|
| Personalized AI | When using personalized AI features in the mobile payment app I usually use, I feel satisfied. | Wu et al., 2018; Ahmed & Aziz, 2024 [6,70] |
| The personalized AI services in my mobile payment app—such as intelligent recommendations—provide me with a pleasant user experience. | ||
| I think the personalized AI functions in the mobile payment system I use have improved the quality of my digital interactions. | ||
| The personalized AI services integrated in my preferred mobile payment app meet my expectations for convenience and efficiency. | ||
| Social network | I think social networks are very useful. | Venkatesh et al., 2003; Carnabuci & Diószegi, 2015 [57,73] |
| I often check my social networks every day. | ||
| I like to follow my friends’ sharing on social media. | ||
| I usually check what my friends are doing on social networks. | ||
| Technological diversity | I will use different devices to make mobile payments. | Lee & Li, 2024 [41] |
| I can use mobile payments on different devices. | ||
| I will use different operating systems for mobile payments. | ||
| I can use different payment functions. | ||
| Intention to continue using mobile payment | I plan to increase my usage of mobile payments in the future. | Venkatesh et al., 2012; Liao & Lu, 2008 [71,72] |
| I will use mobile payments regularly in the future. | ||
| I will recommend to others. | ||
| I will continue to use mobile payments for transactions. |
References
- De Luna, I.R.; Liébana-Cabanillas, F.; Sánchez-Fernández, J.; Muñoz-Leiva, F. Mobile payment is not all the same: The adoption of mobile payment systems depending on the technology applied. Technol. Forecast. Soc. Change 2019, 146, 931–944. [Google Scholar] [CrossRef]
- Nash, K. Exploring the Impact of Self-Concept and IT Identity on Social Media Influencers’ Behavior: A Focus on Young Adult Technology Features Utilization. Int. J. Hum. Comput. Interact. 2023, 40, 6941–6952. [Google Scholar] [CrossRef]
- Zhou, T. An empirical examination of continuance intention of mobile payment services. Decis. Support Syst. 2013, 54, 1085–1091. [Google Scholar] [CrossRef]
- Ozturk, A.B.; Bilgihan, A.; Nusair, K.; Okumus, F. What keeps the mobile hotel booking users loyal? Investigating the roles of self-efficacy, compatibility, perceived ease of use, and perceived convenience. Int. J. Inf. Manag. 2016, 36, 1350–1359. [Google Scholar] [CrossRef]
- Dahlberg, T.; Mallat, N.; Ondrus, J.; Zmijewska, A. Past, present and future of mobile payments research: A literature review. Electron. Commer. Res. Appl. 2008, 7, 165–181. [Google Scholar] [CrossRef]
- Ahmed, S.; Aziz, N.A. Impact of AI on Customer Experience in Video Streaming Services: A Focus on Personalization and Trust. Int. J. Hum. Comput. Interact. 2024, 41, 7726–7745. [Google Scholar] [CrossRef]
- Zhou, T.; Lu, Y.; Wang, B. Integrating TTF and UTAUT to explain mobile banking user adoption. Comput. Hum. Behav. 2010, 26, 760–767. [Google Scholar] [CrossRef]
- Qatawneh, N.; Al-Okaily, A.; Al-Okaily, M.; Ur Rehman, S. Exploring the antecedent factors of continuous intention to use mobile money: Insights from emerging markets. Digit. Policy Regul. Gov. 2025, 27, 175–200. [Google Scholar] [CrossRef]
- Baryannis, G.; Validi, S.; Dani, S.; Antoniou, G. Supply chain risk management and artificial intelligence: State of the art and future research directions. Int. J. Prod. Res. 2019, 57, 2179–2202. [Google Scholar] [CrossRef]
- Nigam, A.; Pasricha, R.; Singh, T.; Churi, P. A systematic review on AI-based proctoring systems: Past, present and future. Educ. Inf. Technol. 2021, 26, 6421–6445. [Google Scholar] [CrossRef]
- Marchiori, D.M.; Mainardes, E.W.; Rodrigues, R.G. Do Individual Characteristics Influence the Types of Technostress Reported by Workers? Int. J. Hum. Comput. Interact. 2018, 35, 218–230. [Google Scholar] [CrossRef]
- Bhattacherjee, A. An empirical analysis of the antecedents of electronic commerce service continuance. Decis. Support Syst. 2001, 32, 201–214. [Google Scholar] [CrossRef]
- Goldstein, I.; Jiang, W.; Karolyi, G.A. To FinTech and beyond. Rev. Financ. Stud. 2019, 32, 1647–1661. [Google Scholar] [CrossRef]
- PwC. It’s time for a consumer-centered metric: Introducing ‘return on experience’. In Global Consumer Insights Survey; PwC: London, UK, 2019. [Google Scholar]
- Rubin, A.M. Ritualized and instrumental television viewing. J. Commun. 1984, 34, 67–77. [Google Scholar] [CrossRef]
- Rosengren, K.E. Uses and gratifications: A paradigm outlined. Uses Mass Commun. Curr. Perspect. Gratif. Res. 1974, 3, 269–286. [Google Scholar]
- Wei, D.; Chan, L.S.; Du, N.; Hu, X.; Huang, Y.T. Gratification and its associations with problematic internet use: A systematic review and meta-analysis using Use and Gratification theory. Addict. Behav. 2024, 155, 108044. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Cho, C.H. Uses and gratifications of smart speakers: Modelling the effectiveness of smart speaker advertising. Int. J. Advert. 2020, 39, 1150–1171. [Google Scholar] [CrossRef]
- Jang, S.; Kitchen, P.J.; Kim, J. The effects of gamified customer benefits and characteristics on behavioral engagement and purchase: Evidence from mobile exercise application uses. J. Bus. Res. 2018, 92, 250–259. [Google Scholar] [CrossRef]
- Aoki, K.; Downes, E.J. An analysis of young people’s use of and attitudes toward cell phones. Telemat. Inform. 2003, 20, 349–364. [Google Scholar] [CrossRef]
- Boden, J.; Maier, E.; Wilken, R. The effect of credit card versus mobile payment on convenience and consumers’ willingness to pay. J. Retail. Consum. Serv. 2020, 52, 101910. [Google Scholar] [CrossRef]
- Ansari, A.; Mela, C.F. E-customization. J. Mark. Res. 2003, 40, 131–145. [Google Scholar] [CrossRef]
- Tong, S.; Luo, X.; Xu, B. Personalized mobile marketing strategies. J. Acad. Mark. Sci. 2020, 48, 64–78. [Google Scholar] [CrossRef]
- Xin, H.; Techatassanasoontorn, A.A.; Tan, F.B. Antecedents of consumer trust in mobile payment adoption. J. Comput. Inf. Syst. 2015, 55, 1–10. [Google Scholar] [CrossRef]
- Zarifis, A.; Fu, S. Re-evaluating trust and privacy concerns when purchasing a mobile app: Re-calibrating for the increasing role of artificial intelligence. Digital 2023, 3, 286–299. [Google Scholar] [CrossRef]
- Kourouthanassis, P.; Boletsis, C.; Bardaki, C.; Chasanidou, D. Tourists responses to mobile augmented reality travel guides: The role of emotions on adoption behavior. Pervasive Mob. Comput. 2015, 18, 71–87. [Google Scholar] [CrossRef]
- Dwyer, F.R.; Schurr, P.H.; Oh, S. Developing buyer-seller relationships. J. Mark. 1987, 51, 11–27. [Google Scholar] [CrossRef]
- Lee, S.; Kim, K.J.; Sundar, S.S. Customization in location-based advertising: Effects of tailoring source, locational congruity, and product involvement on ad attitudes. Comput. Hum. Behav. 2015, 51, 336–343. [Google Scholar] [CrossRef]
- Nguyen, G.D.; Dao, T.H.T. Factors influencing continuance intention to use mobile banking: An extended expectation-confirmation model with moderating role of trust. Humanit. Soc. Sci. Commun. 2024, 11, 276. [Google Scholar] [CrossRef]
- Polak, P.; Nelischer, C.; Guo, H.; Robertson, D.C. “Intelligent” finance and treasury management: What we can expect. Ai Soc. 2020, 35, 715–726. [Google Scholar] [CrossRef]
- Sunikka, A.; Bragge, J. Applying text-mining to personalization and customization research literature–Who, what and where? Expert Syst. Appl. 2012, 39, 10049–10058. [Google Scholar] [CrossRef]
- Montgomery, A.L.; Smith, M.D. Prospects for Personalization on the Internet. J. Interact. Mark. 2009, 23, 130–137. [Google Scholar] [CrossRef]
- Song, Y.W.; Lim, H.S.; Oh, J. “We think you may like this”: An investigation of electronic commerce personalization for privacy-conscious consumers. Psychol. Mark. 2021, 38, 1723–1740. [Google Scholar] [CrossRef]
- Tam, K.Y.; Ho, S.Y. Web personalization as a persuasion strategy: An elaboration likelihood model perspective. Inf. Syst. Res. 2005, 16, 271–291. [Google Scholar] [CrossRef]
- Riegger, A.S.; Merfeld, K.; Klein, J.F.; Henkel, S. Technology-enabled personalization: Impact of smart technology choice on consumer shopping behavior. Technol. Forecast. Soc. Change 2022, 181, 121752. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, X.; Sun, Y. The privacy–personalization paradox in mHealth services acceptance of different age groups. Electron. Commer. Res. Appl. 2016, 16, 55–65. [Google Scholar] [CrossRef]
- Komiak, S.Y.; Benbasat, I. The effects of personalization and familiarity on trust and adoption of recommendation agents. MIS Q. 2006, 30, 941–960. [Google Scholar] [CrossRef]
- Yang, J.M. The impact of perceived value and trust on mobile payment reuse intention: The mediating role of user satisfaction. Int. J. Mob. Commun. 2025, 25, 62–83. [Google Scholar] [CrossRef]
- Mark, K.P.; Vogel, D.R. An Exploratory Study of Personalization and Learning Systems Continuance. In Proceedings of the PACIS 2009 Proceedings, Hyderabad, India, 10–12 July 2009; p. 34. [Google Scholar]
- Donaldson, L. The Contingency Theory of Organizations; Sage: Thousand Oaks, CA, USA, 2001. [Google Scholar]
- Lee, E.T.; Li, X. Breaking status-quo inertial use of incumbent payment to adopt mobile payment: A contingency perspective. Int. J. Hum. Comput. Interact. 2024, 40, 4275–4287. [Google Scholar] [CrossRef]
- Hernandez-Ortega, B.; Serrano-Cinca, C.; Gomez-Meneses, F. The firm’s continuance intentions to use inter-organizational ICTs: The influence of contingency factors and perceptions. Inf. Manag. 2014, 51, 747–761. [Google Scholar] [CrossRef]
- Lin, W.S.; Wang, C.H. Antecedences to continued intentions of adopting e-learning system in blended learning instruction: A contingency framework based on models of information system success and task-technology fit. Comput. Educ. 2012, 58, 88–99. [Google Scholar] [CrossRef]
- Cavdar Aksoy, N.; Tumer Kabadayi, E.; Yilmaz, C.; Kocak Alan, A. A typology of personalisation practices in marketing in the digital age. J. Mark. Manag. 2021, 37, 1091–1122. [Google Scholar] [CrossRef]
- Dzogbenuku, R.K.; Amoako, G.K.; Kumi, D.K.; Bonsu, G.A. Digital payments and financial wellbeing of the rural poor: The moderating role of age and gender. J. Int. Consum. Mark. 2022, 34, 113–136. [Google Scholar] [CrossRef]
- Liébana-Cabanillas, F.; Sánchez-Fernández, J.; Muñoz-Leiva, F. Antecedents of the adoption of the new mobile payment systems: The moderating effect of age. Comput. Hum. Behav. 2014, 35, 464–478. [Google Scholar] [CrossRef]
- Xu, W.; Liang, H.N.; Yu, K.; Wen, S.; Baghaei, N.; Tu, H. Acceptance of virtual reality exergames among Chinese older adults. Int. J. Hum. Comput. Interact. 2023, 39, 1134–1148. [Google Scholar] [CrossRef]
- Huang, T.; Wang, G.; Huang, C. What promotes the mobile payment behavior of the elderly? Humanit. Soc. Sci. Commun. 2024, 11, 1501. [Google Scholar] [CrossRef]
- Cham, T.H.; Cheah, J.H.; Cheng, B.L.; Lim, X.J. I Am too old for this! Barriers contributing to the non-adoption of mobile payment. Int. J. Bank Mark. 2022, 40, 1017–1050. [Google Scholar] [CrossRef]
- Eze, S.C.; Awa, H.O.; Chinedu-Eze, V.C.; Bello, A.O. Demographic determinants of mobile marketing technology adoption by small and medium enterprises (SMEs) in Ekiti State, Nigeria. Humanit. Soc. Sci. Commun. 2021, 8, 82. [Google Scholar] [CrossRef]
- Strzelecki, A. To use or not to use ChatGPT in higher education? A study of students’ acceptance and use of technology. Interact. Learn. Environ. 2024, 32, 5142–5155. [Google Scholar] [CrossRef]
- Goodnow, W.E. The contingency theory of education. Int. J. Lifelong Educ. 1982, 1, 341–352. [Google Scholar] [CrossRef]
- Riddell, W.C.; Song, X. The role of education in technology use and adoption: Evidence from the Canadian workplace and employee survey. ILR Rev. 2017, 70, 1219–1253. [Google Scholar] [CrossRef]
- Xue, L.; Ray, G.; Sambamurthy, V. Efficiency or Innovation: How Do Industry Environments Moderate the Effects of Firms’ IT Asset Portfolios? MIS Q. 2012, 36, 509–528. [Google Scholar] [CrossRef]
- Chursin, A.A.; Dubina, I.N.; Carayannis, E.G.; Tyulin, A.E.; Yudin, A.V. Technological platforms as a tool for creating radical innovations. J. Knowl. Econ. 2021, 13, 264–275. [Google Scholar] [CrossRef]
- Jun, J.; Cho, I.; Park, H. Factors influencing continued use of mobile easy payment service: An empirical investigation. Total Qual. Manag. Bus. Excell. 2018, 29, 1043–1057. [Google Scholar] [CrossRef]
- Carnabuci, G.; Diószegi, B. Social networks, cognitive style, and innovative performance: A contingency perspective. Acad. Manag. J. 2015, 58, 881–905. [Google Scholar] [CrossRef]
- Sledgianowski, D.; Kulviwat, S. Using social network sites: The effects of playfulness, critical mass and trust in a hedonic context. J. Comput. Inf. Syst. 2009, 49, 74–83. [Google Scholar] [CrossRef]
- Wang, X.; Xu, X.; Zhang, Y.; Hao, S.; Jie, W. Exploring the impact of artificial intelligence application in personalized learning environments: Thematic analysis of undergraduates’ perceptions in China. Humanit. Soc. Sci. Commun. 2024, 11, 1644. [Google Scholar] [CrossRef]
- Wellman, B. Designing the Internet for a networked society. Commun. ACM 2002, 45, 91–96. [Google Scholar] [CrossRef]
- Yang, S.; Lu, Y.; Gupta, S.; Cao, Y.; Zhang, R. Mobile payment services adoption across time: An empirical study of the effects of behavioral beliefs, social influences, and personal traits. Comput. Hum. Behav. 2012, 28, 129–142. [Google Scholar] [CrossRef]
- Karahanna, E.; Straub, D.W.; Chervany, N.L. Information technology adoption across time: A cross-sectional comparison of pre-adoption and post-adoption beliefs. MIS Q. 1999, 23, 183–213. [Google Scholar] [CrossRef]
- Karahanna, E.; Xu, S.X.; Xu, Y.; Zhang, N. The needs–affordances–features perspective for the use of social media. MIS Q. 2018, 42, 737-A23. [Google Scholar] [CrossRef]
- Wang, W.; Gong, H. From Seeking to Sharing: Pathways of Environmental Risk Information on Social Media and the Roles of Outcome Expectations, Efficacy, and AI-Generated Content. Int. J. Hum. Comput. Interact. 2025, 41, 11378–11391. [Google Scholar] [CrossRef]
- Preece, J. Online Communities: Designing Usability and Supporting Socialbilty; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2000. [Google Scholar]
- Huang, J.; Zhao, L.; Hu, C. The mechanism through which members with reconstructed identities become satisfied with a social network community: A contingency model. Inf. Manag. 2019, 56, 103144. [Google Scholar] [CrossRef]
- West, M.A. Sparkling fountains or stagnant ponds: An integrative model of creativity and innovation implementation in work groups. Appl. Psychol. 2002, 51, 355–387. [Google Scholar] [CrossRef]
- Su, X.; Yan, X.; Tsai, C.L. Linear regression. Wiley Interdiscip. Rev. Comput. Stat. 2012, 4, 275–294. [Google Scholar] [CrossRef]
- Westland, J.C. Structural equation models. Stud. Syst. Decis. Control 2015, 22, 152. [Google Scholar]
- Wu, W.; Chen, L.; Zhao, Y. Personalizing recommendation diversity based on user personality. User Model. User-Adapt. Interact. 2018, 28, 237–276. [Google Scholar] [CrossRef]
- Liao, H.L.; Lu, H.P. The role of experience and innovation characteristics in the adoption and continued use of e-learning websites. Comput. Educ. 2008, 51, 1405–1416. [Google Scholar] [CrossRef]
- Venkatesh, V.; Thong, J.Y.L.; Xu, X. Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Q. 2012, 36, 157–178. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User acceptance of information technology: Toward a unified view. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Hu, L.T.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. A Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Bleier, A.; Harmeling, C.M.; Palmatier, R.W. Creating effective online customer experiences. J. Mark. 2019, 83, 98–119. [Google Scholar] [CrossRef]
- Friedkin, N.E. Structural Bases of Interpersonal Influence in Groups: A Longitudinal Case Study. Am. Sociol. Rev. 1993, 58, 861–872. [Google Scholar] [CrossRef]
- Ho, S.Y.; Bodoff, D. The effects of web personalization on user attitude and behavior. MIS Q. 2014, 38, 497–520. [Google Scholar] [CrossRef]





| Variables | Items | Cronbach’s Alpha | Composite Reliability | Average Variance Extracted |
|---|---|---|---|---|
| Personalized AI | Personalized AI 1 | 0.897 | 0.899 | 0.691 |
| Personalized AI 2 | ||||
| Personalized AI 3 | ||||
| Personalized AI 4 | ||||
| Social network | Social network1 | 0.874 | 0.875 | 0.637 |
| Social network2 | ||||
| Social network3 | ||||
| Social network4 | ||||
| Technological diversity | Technological diversity 1 | 0.881 | 0.883 | 0.654 |
| Technological diversity 2 | ||||
| Technological diversity 3 | ||||
| Technological diversity 4 | ||||
| Intention to continue using mobile payment | Continue using 1 | 0.863 | 0.865 | 0.615 |
| Continue using 2 | ||||
| Continue using 3 | ||||
| Continue using 4 |
| Mean | SD | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1. Continue using | 3.737 | 0.813 | 1.000 | ||||||||
| 2. Age | 3.05 | 1.365 | −0.201 ** | 1.000 | |||||||
| 3. Gender | 0.50 | 0.500 | 0.107 * | −0.079 | 1.000 | ||||||
| 4. Educational level | 3.02 | 1.273 | 0.304 ** | 0.086 | −0.026 ** | 1.000 | |||||
| 5. Occupation | 2.30 | 0.976 | −0.048 | −0.662 | −0.022 | 0.218 ** | 1.000 | ||||
| 6. Income level | 2.56 | 1.353 | 0.142 ** | 0.254 ** | −0.021 | 0.282 ** | 0.132 ** | 1.000 | |||
| 7. Personalized AI | 3.640 | 1.032 | 0.472 ** | −0.258 ** | 0.137 ** | 0.287 ** | −0.104 * | 0.068 ** | 1.000 | ||
| 8. Social network | 3.542 | 0.895 | 0.345 ** | −0.373 ** | 0.051 | 0.371 ** | −0.179 ** | 0.012 | 0.289 ** | 1.000 | |
| 9. Technological diversity | 3.437 | 0.963 | 0.250 ** | −0.051 | 0.034 | 0.030 | −0.055 | −0.031 | 0.200 ** | 0.207 ** | 1.000 |
| Variables | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 |
|---|---|---|---|---|---|---|
| Constant | 3.322 *** (0.121) | 2.363 *** (0.156) | 2.361 *** (0.150) | 2.330 *** (0.151) | 1.798 *** (0.177) | 1.815 *** (0.176) |
| Age | −0.179 *** (0.033) | −0.111 *** (0.032) | −0.122 *** (0.031) | −0.102 ** (0.031) | −0.099 *** (0.029) | −0.114 *** (0.031) |
| Gender | 0.155 * (0.066) | 0.082 (0.062) | 0.044 (0.060) | 0.064 (0.060) | 0.065 (0.053) | 0.083 (0.059) |
| Educational level | 0.178 *** (0.028) | 0.110 *** (0.027) | 0.121 *** (0.026) | 0.124 *** (0.026) | 0.084 ** (0.025) | 0.106 *** (0.026) |
| Occupation | 0.062 (0.046) | 0.052 (0.043) | 0.032 (0.042) | 0.029 (0.042) | 0.045 (0.037) | 0.059 (0.041) |
| Income level | 0.079 * (0.026) | 0.065 * (0.024) | 0.063 ** (0.024) | 0.047 (0.024) | 0.072 ** (0.021) | 0.077 ** (0.024) |
| Personalized AI | 0.289 *** (0.033) | 0.295 *** (0.032) | 0.295 *** (0.032) | 0.294 *** (0.028) | 0.279 *** (0.032) | |
| Social network | 0.141 *** (0.035) | |||||
| Technological diversity | 0.154 *** (0.031) | |||||
| Personalized AI × Age | −0.142 *** (0.022) | |||||
| Personalized AI ×Educational level | 0.135 *** (0.023) | |||||
| Personalized AI × Social network | 0.365 *** (0.029) | |||||
| Personalized AI × Technological diversity | 0.144 *** (0.029) | |||||
| R 2 | 0.171 | 0.281 | 0.328 | 0.328 | 0.468 | 0.342 |
| Adjusted R 2 | 0.163 | 0.272 | 0.337 | 0.318 | 0.460 | 0.332 |
| F-test | 20.952 *** | 33.079 *** | 36.856 *** | 35.295 *** | 55.674 *** | 32.865 *** |
| Moderator & Level | Effect | SE | T-Value | p Value | 95% Bca-CIs | |
|---|---|---|---|---|---|---|
| Lower Bound | Upper Bound | |||||
| Age | ||||||
| Low (Mean − 1 SD) | 0.587 | 0.552 | 10.628 | 0.000 | 0.4785 | 0.695 |
| Medium (Mean) | 0.302 | 0.031 | 9.598 | 0.000 | 0.241 | 0.365 |
| High (Mean + 1 SD) | 0.019 | 0.052 | 0.363 | 0.716 | −0.083 | 0.121 |
| Educational level | ||||||
| Low (Mean − 1 SD) | 0.158 | 0.387 | 4.079 | 0.000 | 0.082 | 0.234 |
| Medium (Mean) | 0.293 | 0.032 | 9.233 | 0.000 | 0.231 | 0.355 |
| High (Mean + 1 SD) | 0.428 | 0.394 | 10.861 | 0.000 | 0.351 | 0.506 |
| Social network | ||||||
| Low (Mean − 1 SD) | −0.086 | 0.040 | −0.212 | 0.346 | −0.165 | −0.062 |
| Medium (Mean) | 0.279 | 0.028 | 9.848 | 0.000 | 0.223 | 0.3347 |
| High (Mean + 1 SD) | 0.064 | 0.040 | 15.942 | 0.000 | 0.564 | 0.723 |
| Technological diversity | ||||||
| Low (Mean − 1 SD) | 0.108 | 0.044 | 2.431 | 0.0154 | 0.021 | 0.195 |
| Medium (Mean) | 0.289 | 0.325 | 8.860 | 0.000 | 0.224 | 0.352 |
| High (Mean + 1 SD) | 0.433 | 0.474 | 9.132 | 0.000 | 0.340 | 0.526 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, N.; Lee, E.T. The Influence of Personalized AI on Users’ Intention to Continue Using Mobile Payments: A Contingency Perspective. J. Theor. Appl. Electron. Commer. Res. 2025, 20, 346. https://doi.org/10.3390/jtaer20040346
Liang N, Lee ET. The Influence of Personalized AI on Users’ Intention to Continue Using Mobile Payments: A Contingency Perspective. Journal of Theoretical and Applied Electronic Commerce Research. 2025; 20(4):346. https://doi.org/10.3390/jtaer20040346
Chicago/Turabian StyleLiang, Na, and Eunmi Tatum Lee. 2025. "The Influence of Personalized AI on Users’ Intention to Continue Using Mobile Payments: A Contingency Perspective" Journal of Theoretical and Applied Electronic Commerce Research 20, no. 4: 346. https://doi.org/10.3390/jtaer20040346
APA StyleLiang, N., & Lee, E. T. (2025). The Influence of Personalized AI on Users’ Intention to Continue Using Mobile Payments: A Contingency Perspective. Journal of Theoretical and Applied Electronic Commerce Research, 20(4), 346. https://doi.org/10.3390/jtaer20040346

