Celebrating Peer
Review Week
23–27 September Find out more
 
15 pages, 376 KiB  
Article
A Covariance-Free Strictly Complex-Valued Relevance Vector Machine for Reducing the Order of Linear Time-Invariant Systems
by Weixiang Xie and Jie Song
Mathematics 2024, 12(19), 2991; https://doi.org/10.3390/math12192991 (registering DOI) - 25 Sep 2024
Abstract
Multiple-input multiple-output (MIMO) linear time-invariant (LTI) systems exhibit enormous computational costs for high-dimensional problems. To address this problem, we propose a novel approach for reducing the dimensionality of MIMO systems. The method leverages the Takenaka–Malmquist basis and incorporates the strictly complex-valued relevant vector [...] Read more.
Multiple-input multiple-output (MIMO) linear time-invariant (LTI) systems exhibit enormous computational costs for high-dimensional problems. To address this problem, we propose a novel approach for reducing the dimensionality of MIMO systems. The method leverages the Takenaka–Malmquist basis and incorporates the strictly complex-valued relevant vector machine (SCRVM). We refer to this method as covariance-free maximum likelihood (CoFML). The proposed method avoids the explicit computation of the covariance matrix. CoFML solves multiple linear systems to obtain the required posterior statistics for covariance. This is achieved by exploiting the preconditioning matrix and the matrix diagonal element estimation rule. We provide theoretical justification for this approximation and show why our method scales well in high-dimensional settings. By employing the CoFML algorithm, we approximate MIMO systems in parallel, resulting in significant computational time savings. The effectiveness of this method is demonstrated through three well-known examples. Full article
(This article belongs to the Special Issue Applied Mathematics in Data Science and High-Performance Computing)
28 pages, 12022 KiB  
Article
Key Synchronization Method Based on Negative Databases and Physical Channel State Characteristics of Wireless Sensor Network
by Haoyang Pu, Wen Chen, Hongchao Wang and Shenghong Bao
Sensors 2024, 24(19), 6217; https://doi.org/10.3390/s24196217 (registering DOI) - 25 Sep 2024
Abstract
Due to their inherent openness, wireless sensor networks (WSNs) are vulnerable to eavesdropping attacks. Addressing the issue of secure Internet Key Exchange (IKE) in the absence of reliable third parties like CA/PKI (Certificate Authority/Public Key Infrastructure) in WSNs, a novel key synchronization method [...] Read more.
Due to their inherent openness, wireless sensor networks (WSNs) are vulnerable to eavesdropping attacks. Addressing the issue of secure Internet Key Exchange (IKE) in the absence of reliable third parties like CA/PKI (Certificate Authority/Public Key Infrastructure) in WSNs, a novel key synchronization method named NDPCS-KS is proposed in the paper. Firstly, through an initial negotiation process, both ends of the main channels generate the same initial key seeds using the Channel State Information (CSI). Subsequently, negotiation keys and a negative database (NDB) are synchronously generated at the two ends based on the initial key seeds. Then, in a second-negotiation process, the NDB is employed to filter the negotiation keys to obtain the keys for encryption. NDPCS-KS reduced the risk of information leakage, since the keys are not directly transmitted over the network, and the eavesdroppers cannot acquire the initial key seeds because of the physical isolation of their eavesdropping channels and the main channels. Furthermore, due to the NP-hard problem of reversing the NDB, even if an attacker obtains the NDB, deducing the initial key seeds is computationally infeasible. Therefore, it becomes exceedingly difficult for attackers to generate legitimate encryption keys without the NDB or initial key seeds. Moreover, a lightweight anti-replay and identity verification mechanism is designed to deal with replay attacks or forgery attacks. Experimental results show that NDPCS-KS has less time overhead and stronger randomness in key generation compared with other methods, and it can effectively counter replay, forgery, and tampering attacks. Full article
(This article belongs to the Section Sensor Networks)
13 pages, 2813 KiB  
Article
Geometry of Non-Diffusive Tracer Transport in Gridded Atmospheric Models
by Robert McGraw and Tamanna Subba
Atmosphere 2024, 15(10), 1151; https://doi.org/10.3390/atmos15101151 (registering DOI) - 25 Sep 2024
Abstract
A first-order linear and numerically non-diffusive Eulerian transport algorithm, minVAR, was recently developed for preservation of correlations between interrelated tracers during advective transport. The present study extends this work by: (1) providing further investigation of several interesting geometric constructions found in contours of [...] Read more.
A first-order linear and numerically non-diffusive Eulerian transport algorithm, minVAR, was recently developed for preservation of correlations between interrelated tracers during advective transport. The present study extends this work by: (1) providing further investigation of several interesting geometric constructions found in contours of constant minVAR, short for minimum variance, through extension to three coordinate dimensions. These contours capture point-by-point representations of thousands of individual atmospheric aerosol and/or cloud particles as they evolve and are rendered on Eulerian grids at a level of sub-grid resolution limited only by numerical precision; and (2) exploration of geometric similarities between the Arakawa C-grid, used to obtain interpolated values of the wind field at grid scale and minVAR. In particular, we consider interpolation of the u and v horizontal components of wind velocity from grid to sub-grid scales. The last results are motivated by recent applications of the Weather Research and Forecasting (WRF) model applied in the coastal Houston region, where the recent TRacking Aerosol Convection Interactions ExpeRiment (TRACER) field campaign was organized. A unique and fully consistent mapping is obtained between particles moving along meteorological wind trajectories and the non-diffusive, non-dispersive representation of such trajectories on an Eulerian grid. Full article
(This article belongs to the Special Issue Geometry in Meteorology and Climatology)
17 pages, 2794 KiB  
Article
Security Operations Centers: Use Case Best Practices, Coverage, and Gap Analysis Based on MITRE Adversarial Tactics, Techniques, and Common Knowledge
by Samir Achraf Chamkar, Yassine Maleh and Noreddine Gherabi
J. Cybersecur. Priv. 2024, 4(4), 777-793; https://doi.org/10.3390/jcp4040036 (registering DOI) - 25 Sep 2024
Abstract
The rising frequency and complexity of cybersecurity threats necessitate robust monitoring and rapid response capabilities to safeguard digital assets effectively. As a result, many organizations are increasingly establishing Security Operations Centers (SOCs) to actively detect and respond to cybersecurity incidents. This paper addresses [...] Read more.
The rising frequency and complexity of cybersecurity threats necessitate robust monitoring and rapid response capabilities to safeguard digital assets effectively. As a result, many organizations are increasingly establishing Security Operations Centers (SOCs) to actively detect and respond to cybersecurity incidents. This paper addresses the intricate process of setting up a SOC, emphasizing the need for careful planning, substantial resources, and a strategic approach. This study outlines the essential steps involved in defining the SOC’s objectives and scope, selecting appropriate technologies, recruiting skilled cybersecurity professionals, and developing processes throughout the SOC lifecycle. This paper aims to provide a comprehensive understanding of the SOC’s threat detection capabilities and use cases. It also highlights the importance of choosing technologies that integrate seamlessly with existing IT infrastructure to ensure broad coverage of SOC activities. Furthermore, this study offers actionable insights for organizations looking to enhance their SOC capabilities, including a technical overview of SOC use case coverage and a gap assessment of detection rules. This assessment is based on an alignment with the MITRE ATT&CK framework and an analysis of events generated by the company’s existing IT devices and products. The findings from this research elucidate the indispensable role that SOCs play in bolstering organizational cybersecurity and resilience. Full article
(This article belongs to the Special Issue Cybersecurity Risk Prediction, Assessment and Management)
Show Figures

Figure 1

16 pages, 1031 KiB  
Article
Comprehensive Study on the Potential of Domesticated Clones of Rosemary (Salvia rosmarinus Spenn.): Implications for Large-Scale Production and Waste Recovery in the Development of Plant-Based Agrochemicals
by Gonzalo Ortiz de Elguea-Culebras, Enrique Melero-Bravo, Tamara Ferrando-Beneyto, María José Jordán, Gustavo Cáceres-Cevallos and Raúl Sánchez-Vioque
Agriculture 2024, 14(10), 1678; https://doi.org/10.3390/agriculture14101678 (registering DOI) - 25 Sep 2024
Abstract
Rosemary is a versatile Mediterranean shrub valued for its culinary and medicinal uses, also finding applications as a food additive (E-392). This study explores the potential of rosemary for large-scale cultivation as well as the valorization of its distillation residue, which constitutes more [...] Read more.
Rosemary is a versatile Mediterranean shrub valued for its culinary and medicinal uses, also finding applications as a food additive (E-392). This study explores the potential of rosemary for large-scale cultivation as well as the valorization of its distillation residue, which constitutes more than 95% of the total biomass. Rich in bioactive compounds, this solid waste represents a valuable opportunity to develop renewable plant-based products. This study monitored the agronomic adaptations of cultivated clones of rosemary and evaluated the essential oil and phenolic content. This study also evaluated the biological potential of the ethanolic extracts from the distilled residue as an antifungal, antioxidant, chelator, and biostimulant in model tests. Interestingly, the extracts showed substantial phenolic content, exhibiting strong antifungal activity, antioxidant capacity, and efficient metal chelation. Furthermore, all extracts also demonstrated promising biostimulant effects on rooting. Among the clones evaluated, Pina de Ebro stood out especially for its balanced adaptability, high essential oil yield, and outstanding phenolic content, along with uniform biological capacities among individual plants and plots. Therefore, this study highlights the potential of utilizing the entire rosemary plant, enhancing the overall profitability of the crop and meeting the growing demand for eco-friendly and renewable resources in the market. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

14 pages, 1424 KiB  
Article
A New Combination of Bifidobacterium Bifidum and Lactococcus Lactis Strains with Synergistic Effects Alleviates Colitis-Associated Colorectal Cancer
by Jiacui Shang, Lijun Liu, Shuo Yang, Bofan Duan, Shuiqi Xie and Xiangchen Meng
Foods 2024, 13(19), 3054; https://doi.org/10.3390/foods13193054 (registering DOI) - 25 Sep 2024
Abstract
C hronic inflammation is a factor in the development of cancer, and probiotics play a role in preventing or treating inflammation as an adjuvant therapy. To investigate potential probiotics for the prevention of colitis-associated colorectal cancer (CAC), Bifidobacterium bifidum H3-R2 and Lactococcus lactis KLDS4.0325 [...] Read more.
C hronic inflammation is a factor in the development of cancer, and probiotics play a role in preventing or treating inflammation as an adjuvant therapy. To investigate potential probiotics for the prevention of colitis-associated colorectal cancer (CAC), Bifidobacterium bifidum H3-R2 and Lactococcus lactis KLDS4.0325 were used to examine the effects on colon cancer cells and in an inflammation-related cancer animal model. The results revealed that B. bifidum H3-R2 in combination with L. lactis KLDS4.0325 caused apoptosis in colon cancer cells by increasing caspase-3 and caspase-9 protein levels, enhancing Bax expression, and lowering Bcl-2 expression. In addition, the combination of the two strains relieved the tissue damage; reduced proinflammatory cytokines, myeloperoxidase (MPO) activity, and hypoxia-inducible factor 1-alpha (HIF-1α) level; upregulated anti-inflammatory cytokines; increased colonic tight junction protein expression; regulated intestinal homeostasis by inhibiting NLRP3 inflammasome signaling pathway; and improved the imbalance of gut microbiota in animal models. Moreover, the combination of the two strains had a greater preventive impact than each strain alone. These findings are supportive of clinical studies and product development of multi-strain probiotic preparations for diseases associated with colitis. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Graphical abstract

14 pages, 1752 KiB  
Article
Pediatric Respiratory Hospitalizations in the Pre-COVID-19 Era: The Contribution of Viral Pathogens and Comorbidities to Clinical Outcomes, Valencia, Spain
by Valérie Bosch Castells, Ainara Mira-Iglesias, Francisco Xavier López-Labrador, Beatriz Mengual-Chuliá, Mario Carballido-Fernández, Miguel Tortajada-Girbés, Joan Mollar-Maseres, Joan Puig-Barberà, Javier Díez-Domingo and Sandra S. Chaves
Viruses 2024, 16(10), 1519; https://doi.org/10.3390/v16101519 (registering DOI) - 25 Sep 2024
Abstract
Viral respiratory diseases place a heavy burden on the healthcare system, with children making up a significant portion of related hospitalizations. While comorbidities increase the risk of complications and poor outcomes, many hospitalized children lack clear risk factors. As new vaccines for respiratory [...] Read more.
Viral respiratory diseases place a heavy burden on the healthcare system, with children making up a significant portion of related hospitalizations. While comorbidities increase the risk of complications and poor outcomes, many hospitalized children lack clear risk factors. As new vaccines for respiratory viral diseases emerge, this study examined pediatric respiratory hospitalizations, focusing on viral etiology, complication rates, and the impact of comorbidities to guide future policy. Data were analyzed from eight pre-COVID influenza seasons (2011/2012–2018/2019) involving patients under 18 years hospitalized with respiratory complaints across 4–10 hospitals in Valencia, Spain. Respiratory specimens were tested for eight viral targets using multiplex real-time reverse-transcription polymerase chain reaction. Demographics, clinical outcomes, discharge diagnoses, and laboratory results were examined. Among the hospitalized children, 26% had at least one comorbidity. These children had higher rates of pneumonia, asthma exacerbation, and pneumothorax, and were twice as likely to require ICU admission, though mechanical ventilation and length of stay were similar to those without comorbidities. Respiratory syncytial virus (RSV) was the most common virus detected (23.1%), followed by rhinovirus/enterovirus (9.5%) and influenza (7.2%). Viral codetection decreased with age, occurring in 4.6% of cases. Comorbidities increase the risk of complications in pediatric respiratory illnesses, however, healthcare utilization is driven largely by otherwise healthy children. Pediatric viral vaccines could reduce this burden and should be further evaluated. Full article
Show Figures

Figure 1

18 pages, 1016 KiB  
Article
Evaluation of the Bioactive Compounds of Apis mellifera Honey Obtained from the Açai (Euterpe oleracea) Floral Nectar
by Sara R. L. Ferreira, Jéssica L. Araújo, Marly S. Franco, Camilla M. M. de Souza, Daniel S. Pereira, Cláudia Q. da Rocha, Hervé L. G. Rogez and Nilton A. Muto
Molecules 2024, 29(19), 4567; https://doi.org/10.3390/molecules29194567 (registering DOI) - 25 Sep 2024
Abstract
The biodiversity of Brazil provides an excellent climate and favorable pollination conditions for Apis mellifera L., especially in the Eastern Amazon region, which boasts vast floral wealth, including an abundance of açaí (Euterpe oleracea) flowers and fruits. In the present study, [...] Read more.
The biodiversity of Brazil provides an excellent climate and favorable pollination conditions for Apis mellifera L., especially in the Eastern Amazon region, which boasts vast floral wealth, including an abundance of açaí (Euterpe oleracea) flowers and fruits. In the present study, seven types of honey were evaluated: three containing floral nectar from açaí (Açaí honey) collected in the Eastern Amazon region (Açaí honey from Breu Branco (AH1 and AH2) and Açaí honey from Santa Maria (AH3), both from the state of Pará, Brazil) and four honeys from different regions of Brazil (Aroeira honey from Minas Gerais, Cipó-Uva honey from Distrito Federal, Mangue honey from Pará, and Timbó honey from Rio Grande do Sul). The characteristics of these honeys were evaluated by examining their physicochemical properties, melissopalynological aspects, color, antioxidant potential, and their constituent compounds, which were confirmed through GC-MS analysis. Açaí floral nectar honeys presented physicochemical results similar to those of other honeys, aligning with Brazilian legislation norms, but differed in their high values of free acidity, apparent sugars, and lower reducing sugars, which are directly related to their botanical origin. These differences correlate with unique flavor and distinct aroma characteristics. Melissopalynological analysis confirmed the botanical origin of the honeys containing açaí floral nectar, which had a color range from amber to dark amber. The three açaí honeys demonstrated high antioxidant capacity and superior flavonoid and polyphenol content compared to other honeys, particularly the açaí honey from Breu Branco (AH1), which had four times the content to combat free radicals compared to the honey with the highest potential (Aroeira honey). GC-MS analysis confirmed the presence of antioxidant properties as well as potential anti-inflammatory, antibacterial, antimicrobial, and antitumor capabilities in açaí honeys, which have not yet been fully studied. Full article
Show Figures

Figure 1

11 pages, 1293 KiB  
Case Report
The Aggravation of Neuropsychiatric Symptoms in the Offspring of a Korean Family with Intellectual Disability and Developmental Delay Caused by a Novel ARX p.Lys385Ter Variant
by Ji Yoon Han, Tae Yun Kim, Jin Gwack and Joonhong Park
Int. J. Mol. Sci. 2024, 25(19), 10327; https://doi.org/10.3390/ijms251910327 (registering DOI) - 25 Sep 2024
Abstract
The ARX mutations encompass a nearly continuous spectrum of neurodevelopmental disorders (NDDs), ranging from lissencephaly to Proud syndrome, as well as infantile spasms without brain malformations, and including both syndromic and non-syndromic intellectual disabilities (IDs). We describe worsening neuropsychiatric symptoms in the offspring [...] Read more.
The ARX mutations encompass a nearly continuous spectrum of neurodevelopmental disorders (NDDs), ranging from lissencephaly to Proud syndrome, as well as infantile spasms without brain malformations, and including both syndromic and non-syndromic intellectual disabilities (IDs). We describe worsening neuropsychiatric symptoms in the offspring of a Korean family with ID/developmental delay (DD) caused by a novel ARX p.Lys385Ter variant. Sequential genetic testing was performed to investigate the ID, DD, agenesis of the corpus callosum (ACC), and developmental epileptic encephalopathy (DEE) observed in the proband. A comprehensive trio clinical exome sequencing approach using a Celemics G-Mendeliome Clinical Exome Sequencing Panel was employed. Given the clinical manifestations observed in the proband, gene panel sequencing identified a heterozygous ARX variant, c.1153A>T/p.Lys385Ter (Reference transcript ID: NM_139058.3), as the most likely cause of ID, DD, ACC, and DEE in the proband. Sanger sequencing confirmed the segregation of the ARX variant, c.1153A>T/p.Lys385Ter, with the phenotype and established the maternally inherited dominant status of the heterozygous variant in the patient, as well as in her grandmother, mother, and aunt. Our case report adds to the understanding of the female phenotype in ARX-related disorders caused by loss-of-function variants in the ARX gene. Genetic counseling for ARX families should proceed with caution, as female carriers can exhibit a wide range of phenotypes, from normal cognitive development to ID/DD, ACC, and DEE. Full article
(This article belongs to the Special Issue Molecular Research in Epilepsy and Epileptogenesis)
14 pages, 5223 KiB  
Article
Model Predictive Control with Powertrain Delay Consideration for Longitudinal Speed Tracking of Autonomous Electric Vehicles
by Junhee Lee and Kichun Jo
World Electr. Veh. J. 2024, 15(10), 433; https://doi.org/10.3390/wevj15100433 (registering DOI) - 25 Sep 2024
Abstract
Accurate longitudinal control is crucial in autonomous driving, but inherent delays and lag in electric vehicle powertrains hinder precise control. This paper presents a two-stage design for a longitudinal speed controller to enhance speed tracking performance in autonomous electric vehicles. The first stage [...] Read more.
Accurate longitudinal control is crucial in autonomous driving, but inherent delays and lag in electric vehicle powertrains hinder precise control. This paper presents a two-stage design for a longitudinal speed controller to enhance speed tracking performance in autonomous electric vehicles. The first stage involves designing a Model Predictive Control (MPC) system that accounts for powertrain signal delay and response lag using a First Order Plus Dead Time (FOPDT) model integrated with the vehicle’s longitudinal dynamics. The second stage employs lookup tables for the drive motor and brake system to convert control signals into actual vehicle inputs, ensuring precise throttle/brake pedal values for the desired driving torque. The proposed controller was validated using the CarMaker simulator and real vehicle tests with a Hyundai IONIQ5. In real vehicle tests, the proposed controller achieved a mean speed error of 0.54 km/h, outperforming conventional PID and standard MPC methods that do not account for powertrain delays. It also eliminated acceleration and deceleration overshoots and demonstrated real-time performance with an average computation time of 1.32 ms. Full article
18 pages, 1383 KiB  
Article
TLR4 as a Potential Target of Me-PFOSA-AcOH Leading to Cardiovascular Diseases: Evidence from NHANES 2013–2018 and Molecular Docking
by Zhilei Mao, Yanling Chen, Haixin Li, Qun Lu and Kun Zhou
Toxics 2024, 12(10), 693; https://doi.org/10.3390/toxics12100693 (registering DOI) - 25 Sep 2024
Abstract
Background: Concerns have been raised regarding the effects of perfluoroalkyl substance (PFAS) exposure on cardiovascular diseases (CVD), but clear evidence linking PFAS exposure to CVD is lacking, and the mechanism remains unclear. Objectives: To study the association between PFASs and CVD in U.S. [...] Read more.
Background: Concerns have been raised regarding the effects of perfluoroalkyl substance (PFAS) exposure on cardiovascular diseases (CVD), but clear evidence linking PFAS exposure to CVD is lacking, and the mechanism remains unclear. Objectives: To study the association between PFASs and CVD in U.S. population, and to reveal the mechanism of PFASs’ effects on CVD. Methods: To assess the relationships between individual blood serum PFAS levels and the risk of total CVD or its subtypes, multivariable logistic regression analysis and partial least squares discriminant analysis (PLS-DA) were conducted on all participants or subgroups among 3391 adults from the National Health and Nutrition Examination Survey (NHANES). The SuperPred and GeneCards databases were utilized to identify potential targets related to PFAS and CVD, respectively. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of intersection genes were performed using Metascape. Protein interaction networks were generated, and core targets were identified with STRING. Molecular docking was achieved using Autodock Vina 1.1.2. Results: There was a positive association between Me-PFOSA-AcOH and CVD (OR = 1.28, p = 0.022), especially coronary heart disease (CHD) (OR = 1.47, p = 0.007) and heart attack (OR = 1.58, p < 0.001) after adjusting for all potential covariates. Me-PFOSA-AcOH contributed the most to distinguishing between individuals in terms of CVD and non-CVD. Significant moderating effects for Me-PFOSA-AcOH were observed in the subgroup analysis stratified by sex, ethnicity, education level, PIR, BMI, smoking status, physical activity, and hypertension (p < 0.05). The potential intersection targets were mainly enriched in CVD-related pathways, including the inflammatory response, neuroactive ligand–receptor interaction, MAPK signaling pathway, and arachidonic acid metabolism. TLR4 was identified as the core target for the effects of Me-PFOSA-AcOH on CVD. Molecular docking results revealed that the binding energy of Me-PFOSA-AcOH to the TLR4-MD-2 complex was −7.2 kcal/mol, suggesting that Me-PFOSA-AcOH binds well to the TLR4-MD-2 complex. Conclusion: Me-PFOSA-AcOH exposure was significantly associated with CVD. Network toxicology and molecular docking uncovered novel molecular targets, such as TLR4, and identified the inflammatory and metabolic mechanisms underlying Me-PFOSA-AcOH-induced CVD. Full article
(This article belongs to the Section Human Toxicology and Epidemiology)
15 pages, 2369 KiB  
Article
Functions of Hemp-Induced Exosomes against Periodontal Deterioration Caused by Fine Dust
by Eunhee Kim, Yoonjin Park, Mihae Yun and Boyong Kim
Int. J. Mol. Sci. 2024, 25(19), 10331; https://doi.org/10.3390/ijms251910331 (registering DOI) - 25 Sep 2024
Abstract
Although fine dust is linked to numerous health issues, including cardiovascular, neurological, respiratory, and cancerous diseases, research on its effects on oral health remains limited. In this study, we investigated the protective effects of mature hemp stem extract-induced exosomes (MSEIEs) on periodontal cells [...] Read more.
Although fine dust is linked to numerous health issues, including cardiovascular, neurological, respiratory, and cancerous diseases, research on its effects on oral health remains limited. In this study, we investigated the protective effects of mature hemp stem extract-induced exosomes (MSEIEs) on periodontal cells exposed to fine dust. Using various methods, including microRNA profiling, PCR, flow cytometry, immunocytochemistry, ELISA, and Alizarin O staining, we found that MSE treatment upregulated key microRNAs, such as hsa-miR-122-5p, hsa-miR-1301-3p, and hsa-let-7e-5p, associated with vital biological functions. MSEIEs exhibited three primary protective functions: suppressing inflammatory genes while activating anti-inflammatory ones, promoting the differentiation of periodontal ligament stem cells (PDLSCs) into osteoblasts and other cells, and regulating LL-37 and MCP-1 expression. These findings suggest that MSEIEs have potential as functional biomaterials for applications in pharmaceuticals, cosmetics, and food industries. Full article
22 pages, 29632 KiB  
Article
Influence of Heat Treatment Temperature on Microstructure, Hardness and Sensitization of UNS S32205 Duplex Stainless Steel
by Pedro Victorio Caetano Abrantes Quadros, Jomar José Knaip Ribeiro, Bruna Corina Emanuely Schibicheski Kurelo, Oriana Palma Calabokis, Yamid E. Nuñez de la Rosa, Alba Regina Turin and Paulo César Borges
Materials 2024, 17(19), 4715; https://doi.org/10.3390/ma17194715 (registering DOI) - 25 Sep 2024
Abstract
Improper thermal cycles on duplex stainless steels can lead to the formation of detrimental phases or alter the proportion of ferrite and austenite phases, thus influencing the material’s mechanical properties and corrosion resistance. Therefore, this study aimed to evaluate the effect of aging [...] Read more.
Improper thermal cycles on duplex stainless steels can lead to the formation of detrimental phases or alter the proportion of ferrite and austenite phases, thus influencing the material’s mechanical properties and corrosion resistance. Therefore, this study aimed to evaluate the effect of aging (at 850 and 950 °C) and solubilization (at 1000 and 1150 °C) thermal treatments on microstructure, indentation hardness, elasticity modulus, and susceptibility to intergranular corrosion of UNS S32205 duplex stainless steel. The sigma phase (σ) formation in the aged samples, with hardness values between 8 and 10 GPa, was confirmed. Furthermore, the pieces treated from 1000 °C upwards showed that increased temperature favored the formation of more equiaxial grains and the ferrite fraction growth. The thermal treatments barely affected the elasticity modulus of austenite and ferrite grains, increasing the hardness of ferrite. The effect of sulfuric acid concentration in the intergranular corrosion was evaluated. Also, the deconvolution of the corrosion curves permits the determination of the influence of the different phases in the corrosion performance. These tests revealed sensitization only at the σ phase grain boundaries in the samples treated at 850 °C in electrolytes containing H2SO4 2.5 mol/L and HCl 1 mol/L. Although the treatment at 950 °C led to the σ phase formation, its higher corrosion resistance was ascribed to the lower volumetric fraction of this phase, its morphology, and its increased Cr mobility compared to the 850 °C treatment. Therefore, it was shown that the σ characteristics and the sulfuric acid concentrations are determining factors in the UNS S32205 intergranular corrosion resistance. Full article
Show Figures

Graphical abstract

12 pages, 1838 KiB  
Article
Transgenic Drosophila Expressing Active Human LH Receptor in the Gonads Exhibit a Decreased Fecundity: Towards a Platform to Identify New Orally Active Modulators of Gonadotropin Receptor Activity
by Amir Mahamid and David Ben-Menahem
Pharmaceuticals 2024, 17(10), 1267; https://doi.org/10.3390/ph17101267 (registering DOI) - 25 Sep 2024
Abstract
Background/Objectives: The gonadotropins luteinizing hormone (LH) and follicle-stimulating hormone (FSH) and their receptors are major regulators of reproduction in mammals and are absent in insects. We previously established transgenic Drosophila lines expressing a constitutively active human LH receptor variant (LHRD578Y) and [...] Read more.
Background/Objectives: The gonadotropins luteinizing hormone (LH) and follicle-stimulating hormone (FSH) and their receptors are major regulators of reproduction in mammals and are absent in insects. We previously established transgenic Drosophila lines expressing a constitutively active human LH receptor variant (LHRD578Y) and the wild-type receptor (LHRwt; inactive in the absence of an agonist). That study showed that ubiquitously expression of LHRD578Y—but not of LHRwt—resulted in pupal lethality, and targeted expression in midline cells resulted in thorax/bristles defects. To further study the Drosophila model for an in vivo drug screening platform, we investigated here whether expressing LHRD578Y in the fly gonads alters reproduction, as shown in a transgenic mice model. Methods: The receptor was expressed in somatic cells of the gonads using the tissue-specific traffic jam-Gal4 driver. Western blot analysis confirmed receptor expression in the ovaries. Results: A fecundity assay indicated that the ectopic expression of LHRD578Y resulted in a decrease in egg laying compared to control flies carrying, but not expressing the transgene (~40% decrease in two independent fly lines, p < 0.001). No significant reduction in the number of laid eggs was seen in flies expressing the LHRWT (<10% decrease compared to non-driven flies, p > 0.05). The decreased egg laying demonstrates a phenotype of the active receptor in the fly gonads, the prime target organs of the gonadotropins in mammals. We suggest that this versatile Drosophila model can be used for the pharmacological search for gonadotropin modulators. Conclusions: This is expected to provide: (a) new mimetic drug candidates (receptor-agonists/signaling-activators) for assisted reproduction treatment, (b) blockers for potential fertility regulation, and (c) leads relevant for the purpose of managing extra gonadotropic reported activities. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

18 pages, 3665 KiB  
Article
Consumer Acceptance of Novel Lucuma Fruit Ice Cream in the US Market
by Gaganpreet Singh, Rajesh Kumar and Martin J. Talavera
Foods 2024, 13(19), 3055; https://doi.org/10.3390/foods13193055 (registering DOI) - 25 Sep 2024
Abstract
This study explored the use of lucuma fruit powder in an ice cream formulation for the US market. Six ice cream prototypes were developed using five different lucuma fruit powder variants. A central location test was conducted with frequent ice cream consumers ( [...] Read more.
This study explored the use of lucuma fruit powder in an ice cream formulation for the US market. Six ice cream prototypes were developed using five different lucuma fruit powder variants. A central location test was conducted with frequent ice cream consumers (n = 106) to assess acceptance, attribute intensity rating, ideal intensity levels, and purchase intent against a control sample with caramel flavor. The mean overall liking score for all lucuma ice creams was moderate. The overall, aroma, and flavor liking scores were significantly higher (p < 0.05) for lucuma ice cream samples, whereas the control sample was liked significantly more for texture. The Terrasoul variant of lucuma ice cream was the most liked among all samples, and the control was liked the least. Only the Terrasoul ice cream sample was successful in delivering significantly strong caramel, fruit, and sweet flavor levels; the other lucuma ice cream samples were more comparable to the control. The inclusion of lucuma powder increased powdery mouthfeel perception, negatively impacting texture liking. Consumers perceived all ice cream samples to be weak in flavor and fell short of delivering ideal levels. The US consumers had low–moderate food neophobia scores for lucuma fruit, with 57% showing interest in buying lucuma ice creams. Full article
(This article belongs to the Section Sensory and Consumer Sciences)
Show Figures

Figure 1

17 pages, 4850 KiB  
Article
Delamination and Evaluation of Multilayer PE/Al/PET Packaging Waste Separated Using a Hydrophobic Deep Eutectic Solvent
by Adamantini Loukodimou, Christopher Lovell, George Theodosopoulos, Kranthi Kumar Maniam and Shiladitya Paul
Polymers 2024, 16(19), 2718; https://doi.org/10.3390/polym16192718 (registering DOI) - 25 Sep 2024
Abstract
This research concerns the development and implementation of ground-breaking strategies for improving the sorting, separation, and recycling of common flexible laminate packaging materials. Such packaging laminates incorporate different functional materials in order to achieve the desired mechanical performance and barrier properties. Common components [...] Read more.
This research concerns the development and implementation of ground-breaking strategies for improving the sorting, separation, and recycling of common flexible laminate packaging materials. Such packaging laminates incorporate different functional materials in order to achieve the desired mechanical performance and barrier properties. Common components include poly(ethylene) (PE), poly(propylene) (PP), and poly(ethylene terephthalate) (PET), as well as valuable barrier materials such as poly(vinyl alcohol) (PVOH) and aluminium (Al) foils. Although widely used for the protection and preservation of food produce, such packaging materials present significant challenges for established recycling infrastructure and, therefore, to our future ambitions for a circular economy. Experience from the field of ionic liquids (ILs) and deep eutectic solvents (DESs) has been leveraged to develop novel green solvent systems that delaminate multilayer packaging materials to facilitate the separation and recovery of high-purity commodity plastics and aluminium. This research focuses on the development of a hydrophobic DES and the application of a Design of Experiments (DoE) methodology to investigate the effects of process parameters on the delamination of PE/Al/PET laminate packaging films. Key variables including temperature, time, loading, flake size, and perforations were assessed at laboratory scale using a 1 L filter reactor vessel. The results demonstrate that efficient separation of PE, Al, and PET can be achieved with high yields for material and solvent recovery. Recovered plastic films were subsequently characterised via Fourier-transform infra-red (FTIR) spectroscopy, Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA) to qualify the quality of plastics for reuse. Full article
(This article belongs to the Section Circular and Green Polymer Science)
Show Figures

Figure 1

40 pages, 2105 KiB  
Systematic Review
Biologic Brachytherapy: Genetically Modified Surgical Flap as a Therapeutic Tool—A Systematic Review of Animal Studies
by Wiktor Pascal, Mateusz Gotowiec, Antoni Smoliński, Michał Suchecki, Michał Kopka, Adriana M. Pascal and Paweł K. Włodarski
Int. J. Mol. Sci. 2024, 25(19), 10330; https://doi.org/10.3390/ijms251910330 (registering DOI) - 25 Sep 2024
Abstract
Surgical flaps are rudimentary tools in reconstructive surgery, especially following extensive solid tumour resections. They cover skin and soft tissue defects but are prone to ischaemia and necrosis. Since their primary aim is reconstruction, they rarely exhibit a therapeutic activity against the treated [...] Read more.
Surgical flaps are rudimentary tools in reconstructive surgery, especially following extensive solid tumour resections. They cover skin and soft tissue defects but are prone to ischaemia and necrosis. Since their primary aim is reconstruction, they rarely exhibit a therapeutic activity against the treated disease. Attempts have been made to develop a new therapeutic strategy—biologic brachytherapy, which uses genetically engineered surgical flaps as a drug delivery vehicle, allowing the flap tissue to act as a “biologic pump”. This systematic review summarizes the preclinical evidence on using genetically modified surgical flaps. A literature search was conducted in PubMed, EMBASE, Scopus and Web of Science. The initial literature search yielded 714 papers, and, eventually, seventy-seven studies were included in qualitative analysis. The results show that genetic enhancement of flaps has been used as a local or systemic therapy for numerous disease models. Frequently, it has been used to increase flap survival and limit ischaemia or promote flap survival in a non-ischemic context, with some studies focusing on optimizing the technique of such gene therapy. The results show that genetically modified flaps can be successfully used in a variety of contexts, but we need more studies to implement this research into specific clinical scenarios. Full article
(This article belongs to the Special Issue Novel Insights into Regenerative Medicine)
16 pages, 1380 KiB  
Article
Analyzing the Impact of Deep Excavation on Retaining Structure Deformation Based on Element Tracking
by Wen Tan, Zhenyu Lei, Yanhong Wang, Jinsong Liu, Pengbang Lai, Yuan Mei, Wenzhan Liu and Dongbo Zhou
Buildings 2024, 14(10), 3069; https://doi.org/10.3390/buildings14103069 (registering DOI) - 25 Sep 2024
Abstract
In the simulation of foundation pit excavation, the traditional element birth–death method commonly used tends to encounter issues such as uncoordinated deformation and changes in the constitutive model, affecting the accuracy of the prediction results. To address these issues, this study proposes the [...] Read more.
In the simulation of foundation pit excavation, the traditional element birth–death method commonly used tends to encounter issues such as uncoordinated deformation and changes in the constitutive model, affecting the accuracy of the prediction results. To address these issues, this study proposes the use of element tracking. By duplicating elements for temporary supports or structures requiring changes in material properties and appropriately activating or deactivating them at the right moments, the simulation of the foundation pit excavation process can be achieved more precisely. Using the construction process of the Tangxi Passenger Transport Station’s comprehensive transportation hub foundation pit as an example, this study applied the proposed simulation method and compared the results with actual measurements, demonstrating its effectiveness. This research offers a more accurate approach for simulating foundation pit excavation and provides a reference for similar numerical simulation problems. Full article
20 pages, 7015 KiB  
Review
Recent Advances in Propylene-Based Elastomers Polymerized by Homogeneous Catalysts
by Chengkai Li, Guoqiang Fan, Gang Zheng, Rong Gao and Li Liu
Polymers 2024, 16(19), 2717; https://doi.org/10.3390/polym16192717 (registering DOI) - 25 Sep 2024
Abstract
Propylene-based elastomers (PBEs) have received widespread attention and research in recent years due to their structural diversity and excellent properties, and are also an important area for leading chemical companies to compete for layout, but efficient synthesis of PBEs remains challenging. In this [...] Read more.
Propylene-based elastomers (PBEs) have received widespread attention and research in recent years due to their structural diversity and excellent properties, and are also an important area for leading chemical companies to compete for layout, but efficient synthesis of PBEs remains challenging. In this paper, we review the development of PBEs and categorize them into three types, grounded in their unique chain structures, including homopolymer propylene-based elastomers (hPBEs), random copolymer propylene-based elastomers (rPBEs), and block copolymer propylene-based elastomers (bPBEs). The successful synthesis of these diverse PBEs is largely credited to the relentless innovative advancements in homogeneous catalysts (metallocene catalysts, constrained geometry catalysts, and non-metallocene catalysts). Consequently, we summarize the catalytic performance of various homogeneous catalysts employed in PBE synthesis and delve into their effect on molecular weight, molecular weight distribution, and chain structures of the resulting PBEs. In the end, based on the current academic research and industrialization status of PBEs, an outlook on potential future research directions for PBEs is provided. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

15 pages, 4746 KiB  
Review
Assessment of Microvascular Function Based on Flowmotion Monitored by the Flow-Mediated Skin Fluorescence Technique
by Andrzej Marcinek, Joanna Katarzynska, Katarzyna Cypryk, Agnieszka Los-Stegienta, Jolanta Slowikowska-Hilczer, Renata Walczak-Jedrzejowska, Jacek Zielinski and Jerzy Gebicki
Biosensors 2024, 14(10), 459; https://doi.org/10.3390/bios14100459 (registering DOI) - 25 Sep 2024
Abstract
This review summarizes studies dedicated to the assessment of microvascular function based on microcirculatory oscillations monitored by the Flow-Mediated Skin Fluorescence (FMSF) technique. Two approaches are presented. The first approach uses oscillatory parameters measured under normoxic conditions, expressed as flowmotion (FM), vasomotion (VM), [...] Read more.
This review summarizes studies dedicated to the assessment of microvascular function based on microcirculatory oscillations monitored by the Flow-Mediated Skin Fluorescence (FMSF) technique. Two approaches are presented. The first approach uses oscillatory parameters measured under normoxic conditions, expressed as flowmotion (FM), vasomotion (VM), and the normoxia oscillatory index (NOI). These parameters have been used for the identification of impaired microcirculatory oscillations associated with intense physical exercise, post-COVID syndrome, psychological stress, and erectile dysfunction. The second approach involves characterization of the microcirculatory response to hypoxia based on the measurement of hypoxia sensitivity (HS). The HS parameter is used to characterize microvascular complications in diabetes, such as diabetic kidney disease and diabetic foot ulcers. Based on research conducted by the authors of this review, the FMSF parameter ranges characterizing microvascular function are presented. The diagnostic approach to assessing microvascular function based on flowmotion monitored by the FMSF technique has a wide range of applications and the potential to be integrated into widespread medical practice. Full article
(This article belongs to the Section Biosensors and Healthcare)
18 pages, 547 KiB  
Review
The Impact of Gastrointestinal Hormones on Human Adipose Tissue Function
by Marcelina Radziszewska, Lucyna Ostrowska and Joanna Smarkusz-Zarzecka
Nutrients 2024, 16(19), 3245; https://doi.org/10.3390/nu16193245 (registering DOI) - 25 Sep 2024
Abstract
Background: Obesity is a global issue, the development of which depends on many interacting factors. Among these, hormones secreted in the gastrointestinal tract play an important role. The aim of this review was to assess the impact of these hormones on the functions [...] Read more.
Background: Obesity is a global issue, the development of which depends on many interacting factors. Among these, hormones secreted in the gastrointestinal tract play an important role. The aim of this review was to assess the impact of these hormones on the functions of adipose tissue. Methods: The analysis was based on the latest research concerning both adipose tissue and gastrointestinal hormones. Results: It was found that these hormones can significantly affect adipose tissue, both directly and indirectly. Some hormones, when secreted in excess, can stimulate adipose tissue formation processes, while others can inhibit them. The impact of hormones depends on the location and type of adipose tissue as well as the physiological state of the body. It should also be noted that no hormone acts in isolation but in close cooperation with other factors. Conclusions: The relationship between gastrointestinal hormones and adipose tissue, and their role in obesity, is a complex and evolving field of study. Further research is necessary, particularly into the interactions between hormones and other factors, as well as their mutual interactions. Full article
(This article belongs to the Section Nutrition and Metabolism)
12 pages, 3054 KiB  
Communication
Design and Assembly of a Miniature Catheter Imaging System for In Vivo Heart Endoscopic Imaging
by Walter Messina, Lorenzo Niemitz, Simon Sorensen, Claire O’Dowling, Piotr Buszman, Stefan Andersson-Engels and Ray Burke
Sensors 2024, 24(19), 6216; https://doi.org/10.3390/s24196216 (registering DOI) - 25 Sep 2024
Abstract
In this paper, we present the design and fabrication of a novel chip-on-tip catheter, which uses a microcamera and optical fibres to capture in vivo images in a beating porcine heart thanks to a saline flush to clear the blood field. Here, we [...] Read more.
In this paper, we present the design and fabrication of a novel chip-on-tip catheter, which uses a microcamera and optical fibres to capture in vivo images in a beating porcine heart thanks to a saline flush to clear the blood field. Here, we demonstrate the medical utility and mechanical robustness of this catheter platform system, which could be used for other optical diagnostic techniques, surgical guidance, and clinical navigation. We also discuss some of the challenges and system requirements associated with developing a miniature prototype for such a study and present assembly instructions. Methods of clearing the blood field are discussed, including an integrated flush channel at the distal end. This permits the capture of images of the endocardial walls. The device was navigated under fluoroscopic guiding, through a guiding catheter to various locations of the heart, where images were successfully acquired. Images were captured at the intra-atrial septum, in the left atrium after a trans-septal cross procedure, and in the left ventricle, which are, to the best of our knowledge, the first images captured in an in vivo beating heart using endoscopic techniques. Full article
(This article belongs to the Special Issue Sensing Functional Imaging Biomarkers and Artificial Intelligence)
19 pages, 1099 KiB  
Article
In Silico Modeling of Fabry Disease Pathophysiology for the Identification of Early Cellular Damage Biomarker Candidates
by Javier Gervas-Arruga, Miguel Ángel Barba-Romero, Jorge Julián Fernández-Martín, Jorge Francisco Gómez-Cerezo, Cristina Segú-Vergés, Giacomo Ronzoni and Jorge J. Cebolla
Int. J. Mol. Sci. 2024, 25(19), 10329; https://doi.org/10.3390/ijms251910329 (registering DOI) - 25 Sep 2024
Abstract
Fabry disease (FD) is an X-linked lysosomal disease whose ultimate consequences are the accumulation of sphingolipids and subsequent inflammatory events, mainly at the endothelial level. The outcomes include different nervous system manifestations as well as multiple organ damage. Despite the availability of known [...] Read more.
Fabry disease (FD) is an X-linked lysosomal disease whose ultimate consequences are the accumulation of sphingolipids and subsequent inflammatory events, mainly at the endothelial level. The outcomes include different nervous system manifestations as well as multiple organ damage. Despite the availability of known biomarkers, early detection of FD remains a medical need. This study aimed to develop an in silico model based on machine learning to identify candidate vascular and nervous system proteins for early FD damage detection at the cellular level. A combined systems biology and machine learning approach was carried out considering molecular characteristics of FD to create a computational model of vascular and nervous system disease. A data science strategy was applied to identify risk classifiers by using 10 K-fold cross-validation. Further biological and clinical criteria were used to prioritize the most promising candidates, resulting in the identification of 36 biomarker candidates with classifier abilities, which are easily measurable in body fluids. Among them, we propose four candidates, CAMK2A, ILK, LMNA, and KHSRP, which have high classification capabilities according to our models (cross-validated accuracy ≥ 90%) and are related to the vascular and nervous systems. These biomarkers show promise as high-risk cellular and tissue damage indicators that are potentially applicable in clinical settings, although in vivo validation is still needed. Full article
17 pages, 10452 KiB  
Article
Experimental Study of Sinkhole Propagation Induced by a Leaking Pipe Using Fibre Bragg Grating Sensors
by Josué Yumba, Maria Ferentinou and Michael Grobler
Sensors 2024, 24(19), 6215; https://doi.org/10.3390/s24196215 (registering DOI) - 25 Sep 2024
Abstract
Sinkhole formation caused by leaking pipes in karst soluble rocks is a significant concern, leading to infrastructure damage and safety risks. In this paper, an experiment was conducted to investigate sinkhole formation in dense sand induced by a leaking pipe. Fibre Bragg grating [...] Read more.
Sinkhole formation caused by leaking pipes in karst soluble rocks is a significant concern, leading to infrastructure damage and safety risks. In this paper, an experiment was conducted to investigate sinkhole formation in dense sand induced by a leaking pipe. Fibre Bragg grating (FBG) sensors were used to record the strain. A balloon was gradually deflated within a bed of wet silica sand to create an underground cavity. Eighteen FBG sensors, with a wavelength range between 1550 nm and 1560 nm, were embedded horizontally and vertically in the physical model at different levels to monitor deformation at various locations. A leaking pipe was installed to induce the collapse of the formed arch above the cavity. The strain measurements suggested the following four phases in the sinkhole formation process: (1) cavity formation, (2) progressive weathering and erosion, (3) catastrophic collapse, and (4) subsequent equilibrium conditions. The results showed differences in the strain signatures and distributions between the horizontal and vertical measurements. During the critical phase of the sinkhole collapse, the horizontal measurements primarily showed tension, while the vertical measurements indicated compression. This investigation demonstrates the effectiveness of FBGs as advanced monitoring tools for sinkhole precursor identification. The study also suggests using FBGs in geotechnical monitoring applications to improve the understanding and mitigation of sinkholes and related geohazards. Full article
(This article belongs to the Special Issue Optical Fiber Sensors Used for Civil Engineering)
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop