Latest Articles

Open AccessReview
Catching Chances: The Movement to Be on the Ground and Research Ready before an Outbreak
Viruses 2018, 10(8), 439; https://doi.org/10.3390/v10080439 (registering DOI) -
Abstract
After more than 28,000 Ebola virus disease cases and at least 11,000 deaths in West Africa during the 2014–2016 epidemic, the world remains without a licensed vaccine or therapeutic broadly available and demonstrated to alleviate suffering. This deficiency has been felt acutely in
[...] Read more.
After more than 28,000 Ebola virus disease cases and at least 11,000 deaths in West Africa during the 2014–2016 epidemic, the world remains without a licensed vaccine or therapeutic broadly available and demonstrated to alleviate suffering. This deficiency has been felt acutely in the two, short, following years with two Ebola virus outbreaks in the Democratic Republic of Congo (DRC), and a Marburg virus outbreak in Uganda. Despite billions of U.S. dollars invested in developing medical countermeasures for filoviruses in the antecedent decades, resulting in an array of preventative, diagnostic, and therapeutic products, none are available on commercial shelves. This paper explores why just-in-time research efforts in the field during the West Africa epidemic failed, as well as some recent initiatives to prevent similarly lost opportunities. Full article
Open AccessArticle
Exploiting Inter- and Intra-Base Crossing with Multi-Mappings: Application to Environmental Data
Big Data Cogn. Comput. 2018, 2(3), 25; https://doi.org/10.3390/bdcc2030025 (registering DOI) -
Abstract
Environmental data are currently gaining more and more interest as they are required to understand global changes. In this context, sensor data are collected and stored in dedicated databases. Frameworks have been developed for this purpose and rely on standards, as for instance
[...] Read more.
Environmental data are currently gaining more and more interest as they are required to understand global changes. In this context, sensor data are collected and stored in dedicated databases. Frameworks have been developed for this purpose and rely on standards, as for instance the Sensor Observation Service (SOS) provided by the Open GeoSpatial Consortium (OGC), where all measurements are bound to a so-called Feature of Interest (FoI). These databases are used to validate and test scientific hypotheses often formulated as correlations and causality between variables, as for instance the study of the correlations between environmental factors and chlorophyll levels in the global ocean. However, the hypotheses of the correlations to be tested are often difficult to formulate as the number of variables that the user can navigate through can be huge. Moreover, it is often the case that the data are stored in such a manner that they prevent scientists from crossing them in order to retrieve relevant correlations. Indeed, the FoI can be a spatial location (e.g., city), but can also be any other object (e.g., animal species). The same data can thus be represented in several manners, depending on the point of view. The FoI varies from one representation to the other one, while the data remain unchanged. In this article, we propose a novel methodology including a crucial step to define multiple mappings from the data sources to these models that can then be crossed, thus offering multiple possibilities that could be hidden from the end-user if using the initial and single data model. These possibilities are provided through a catalog embedding the multiple points of view and allowing the user to navigate through these points of view through innovative OLAP-like operations. It should be noted that the main contribution of this work lies in the use of multiple points of view, as many other works have been proposed for manipulating, aggregating visualizing and navigating through geospatial information. Our proposal has been tested on data from an existing environmental observatory from Lebanon. It allows scientists to realize how biased the representations of their data are and how crucial it is to consider multiple points of view to study the links between the phenomena. Full article
Figures

Figure 1

Open AccessReview
Drosophila as a Model for Assessing the Function of RNA-Binding Proteins during Neurogenesis and Neurological Disease
J. Dev. Biol. 2018, 6(3), 21; https://doi.org/10.3390/jdb6030021 (registering DOI) -
Abstract
An outstanding question in developmental neurobiology is how RNA processing events contribute to the regulation of neurogenesis. RNA processing events are increasingly recognized as playing fundamental roles in regulating multiple developmental events during neurogenesis, from the asymmetric divisions of neural stem cells, to
[...] Read more.
An outstanding question in developmental neurobiology is how RNA processing events contribute to the regulation of neurogenesis. RNA processing events are increasingly recognized as playing fundamental roles in regulating multiple developmental events during neurogenesis, from the asymmetric divisions of neural stem cells, to the generation of complex and diverse neurite morphologies. Indeed, both asymmetric cell division and neurite morphogenesis are often achieved by mechanisms that generate asymmetric protein distributions, including post-transcriptional gene regulatory mechanisms such as the transport of translationally silent messenger RNAs (mRNAs) and local translation of mRNAs within neurites. Additionally, defects in RNA splicing have emerged as a common theme in many neurodegenerative disorders, highlighting the importance of RNA processing in maintaining neuronal circuitry. RNA-binding proteins (RBPs) play an integral role in splicing and post-transcriptional gene regulation, and mutations in RBPs have been linked with multiple neurological disorders including autism, dementia, amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), Fragile X syndrome (FXS), and X-linked intellectual disability disorder. Despite their widespread nature and roles in neurological disease, the molecular mechanisms and networks of regulated target RNAs have been defined for only a small number of specific RBPs. This review aims to highlight recent studies in Drosophila that have advanced our knowledge of how RBP dysfunction contributes to neurological disease. Full article
Figures

Figure 1

Open AccessArticle
Magnetron Sputtered AlN Layers on LTCC Multilayer and Silicon Substrates
Coatings 2018, 8(8), 289; https://doi.org/10.3390/coatings8080289 (registering DOI) -
Abstract
This work compares the deposition of aluminum nitride by magnetron sputtering on silicon to multilayer ceramic substrates. The variation of sputter parameters in a wide range following a fractional factorial experimental design generates diverse crystallographic properties of the layers. Crystal growth, composition, and
[...] Read more.
This work compares the deposition of aluminum nitride by magnetron sputtering on silicon to multilayer ceramic substrates. The variation of sputter parameters in a wide range following a fractional factorial experimental design generates diverse crystallographic properties of the layers. Crystal growth, composition, and stress are distinguished because of substrate morphology and thermal conditions. The best c-axis orientation of aluminum nitride emerges on ceramic substrates at a heater temperature of 150 °C and sputter power of 400 W. Layers deposited on ceramic show stronger c-axis texture than those deposited on silicon due to higher surface temperature. The nucleation differs significantly dependent on the substrate. It is demonstrated that a ceramic substrate material with an adapted coefficient of thermal expansion to aluminum nitride allows reducing the layer stress considerably, independent on process temperature. Layers sputtered on silicon partly peeled off, while they adhere well on ceramic without crack formation. Direct deposition on ceramic enables thus the development of optimized layers, avoiding restrictions by stress compensating needs affecting functional properties. Full article
Figures

Graphical abstract

Open AccessArticle
Using Network Analysis and BIM to Quantify the Impact of Design for Disassembly
Buildings 2018, 8(8), 113; https://doi.org/10.3390/buildings8080113 (registering DOI) -
Abstract
Design for Disassembly (DfD) is a promising design strategy to improve resource efficiency in buildings. To facilitate its application in design and construction practice, specific assessment tools are currently being developed. By reviewing the literature on DfD, including criteria and assessment methods, and
[...] Read more.
Design for Disassembly (DfD) is a promising design strategy to improve resource efficiency in buildings. To facilitate its application in design and construction practice, specific assessment tools are currently being developed. By reviewing the literature on DfD, including criteria and assessment methods, and with an explorative research approach on simple examples, we have developed a new method called Disassembly Network Analysis (DNA) to quantify the impact of DfD and link it to specific design improvements. The impact of DfD is measured in material flows generated during the disassembly of a building element. The DNA method uses network analysis and Building Information Modeling to deliver information about flows of recovered and lost materials and disassembly time. This paper presents the DNA method and two illustrative examples. Although DNA is still at a preliminary stage of development, it already shows the potential to compare assemblies and supports better-informed decisions during the design process by detecting potential points of improvements regarding waste generation and time needed to disassemble an element. Full article
Figures

Figure 1

Open AccessArticle
Impact of Rainwater Harvesting on the Drainage System: Case Study of a Condominium of Houses in Curitiba, Southern Brazil
Water 2018, 10(8), 1100; https://doi.org/10.3390/w10081100 (registering DOI) -
Abstract
The objective of this work is to assess the impact of rainwater use in single-family houses on drinking water consumption and on the urban drainage system by means of a case study of a condominium of houses in the city of Curitiba, southern
[...] Read more.
The objective of this work is to assess the impact of rainwater use in single-family houses on drinking water consumption and on the urban drainage system by means of a case study of a condominium of houses in the city of Curitiba, southern Brazil. A quantitative evaluation of the rainwater volume used and spilled in the recovery system was carried out using two methods for sizing the rainwater tank capacity. Using daily rainfall data and three demand scenarios of water consumption, it was possible to verify the efficiency and reliability of the adopted systems. Furthermore, in order to verify the impact on drainage, the greatest rainfall in the series was assessed and then it was possible to measure it by comparing the hydrograph peak flows with and without the rainwater harvesting systems in the watershed outfall, corresponding to the storage tanks (concrete boxes) in the condominium. It was concluded that there was a decrease in the peak flow of 4.9% and 4.4%, respectively, in the two storage tanks evaluated when the rainwater tank capacities were estimated using the method based on the German Practical Method. Full article
Figures

Figure 1

Open AccessArticle
Analysis of Irrigation Canal System Characteristics in Heilongjiang Province and the Influence on Irrigation Water Use Efficiency
Water 2018, 10(8), 1101; https://doi.org/10.3390/w10081101 (registering DOI) -
Abstract
Irrigation water use efficiency is a primary evaluation index that links economic production development with the efficient use of water resources. Canal water conveyance is an important part of irrigation, and the distribution characteristics of canal systems have an important influence on irrigation
[...] Read more.
Irrigation water use efficiency is a primary evaluation index that links economic production development with the efficient use of water resources. Canal water conveyance is an important part of irrigation, and the distribution characteristics of canal systems have an important influence on irrigation water use efficiency. In this paper, 75 irrigated districts in Heilongjiang Province in 2015 were selected as the study objects. The main, branch, lateral, and sublateral canals were graded into first-, second-, third-, and fourth-order classes, respectively. The irrigation districts were divided into three classes, that is, four-order, three-order, and two-order, according to the canal orders that the irrigation districts contained. The canal system framework was described by Horton’s law. The fractal dimension of the canal system was calculated based on the bifurcation ratio and length ratio of the canals. The relationships between fractal dimensions and irrigation water use efficiency were evaluated. The results showed that the irrigation water use efficiency of the four-order and three-order irrigation districts initially increased and then decreased with increases in the fractal dimension (D). In the irrigation districts, an irrigation water use efficiency of more than 10 × 103 hm2 and less than 0.67 × 103 hm2 was proportional to the increase in the fractal dimension, whereas the opposite result was found for districts with (0.67–10) × 103 hm2. The irrigation water use efficiency of the four-order and two-order irrigation districts with less than 3.3 × 103 hm2 had the greatest potential to increase the water use efficiency. Therefore, canal system reconstruction suggestions for different irrigation districts were provided. The results have important theoretical significance and practical value for the improvement of irrigation construction and the promotion of irrigation water efficiency planning. Full article
Figures

Figure 1

Institutional Open Access Program (IOAP)

IOAP participants benefit from discounts and convenient payment options.

Feedback

We are keen to hear what you think about MDPI. To leave us your feedback, suggestions or questions please click here.

See what our authors and guest editors say about us.

About MDPI

MDPI.com is a platform for peer-reviewed, scientific open-access journals operated by MDPI, based in Basel, Switzerland. Additional offices are located in Beijing and Wuhan (China) as well as in Barcelona (Spain).

Back to Top