Topic Editors

Meteorology Laboratory, CIRA Italian Aerospace Research Center, 81043 Capua, CE, Italy
Centro Italiano Ricerche Aerospaziali (CIRA), Via Maiorise, 81043 Capua, CE, Italy

Numerical Models and Weather Extreme Events

Abstract submission deadline
25 November 2023
Manuscript submission deadline
25 January 2024
Viewed by

Topic Information

Dear Colleagues,

This Topic comprises several interdisciplinary research areas that cover the main aspects of numerical weather predictions. Every year, there are hurricanes, extreme heat waves, tornadoes, and other extreme weather events, resulting in thousands of deaths and billions of dollars in damage. The prediction of extreme weather further in advance and with increased accuracy could allow targeted regions to be better prepared in order to reduce loss of life and property damage. It is evident that climate change is increasing the intensity and frequency of extreme weather events; thus, their prompt prediction has never been more important. The development of accurate local forecasts is notoriously difficult due to the complex physics driving heavy precipitation and intense winds. Weather forecasting requires supercomputers and trained local practitioners, thus narrowing its accessibility to wealthy governments and communities. Moreover, traditional weather forecasts with a predictive scope of several days in advance are very coarse in terms of resolution and, therefore, do not capture local extreme events. One alternative developed in recent years is the usage of local observations to forecast weather up to a couple of hours in advance. In this regard, next-generation satellites bring great opportunities to further improve short-term forecasting. Artificial intelligence and machine-learning breakthroughs are changing weather forecasting such that resource-heavy, regional weather models might soon be completely replaced by machine-learning approaches. Such innovative approaches use specific networks (GANs) trained via global weather forecasts to correct for the biases that exist in current weather models. The new model downscales global forecasts to be as accurate as a local forecast, without requiring the vast amounts of computational, financial, and human resources previously required for such a small scale. Manuscripts addressing these exciting areas can be submitted.

Some examples of related subjects include:

  • Current challenging areas in weather models;
  • The assessment of a weather model’s ability to represent extreme weather events;
  • Supercomputing applied to Weather Forecasting;
  • Ensemble modeling;
  • Monte Carlo simulations;
  • Stochastic weather generators;
  • The monitoring of weather and climate from space.

Dr. Edoardo Bucchignani
Dr. Andrea Mastellone
Topic Editors

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Applied Sciences
2.838 3.7 2011 14.9 Days 2300 CHF Submit
3.110 3.7 2010 14.7 Days 2000 CHF Submit
- 4.7 2013 13.9 Days 1600 CHF Submit
- - 2022 15.0 days * 1000 CHF Submit
Remote Sensing
5.349 7.4 2009 19.7 Days 2500 CHF Submit

* Median value for all MDPI journals in the second half of 2022.

Preprints is a platform dedicated to making early versions of research outputs permanently available and citable. MDPI journals allow posting on preprint servers such as prior to publication. For more details about reprints, please visit

Published Papers

This Topic is now open for submission.
Back to TopTop