Impact of Multi-Bias on the Performance of 150 nm GaN HEMT for High-Frequency Applications
Abstract
1. Introduction
2. Fabrication and Measurements
3. Results and Analysis
3.1. DC Behavior with Biasing
3.2. Equivalent Circuit Parameters with Biasing
4. Discussions and Future Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Islam, N.; Mohamed, M.F.P.; Khan, M.F.A.J.; Falina, S.; Kawarada, H.; Syamsul, M. Reliability, Applications and Challenges of GaN HEMT Technology for Modern Power Devices: A Review. Crystals 2022, 12, 1581. [Google Scholar] [CrossRef]
- Wu, N.; Xing, Z.; Li, S.; Luo, L.; Zeng, F.; Li, G. GaN-based power high-electron-mobility transistors on Si substrates: From materials to devices. Semicond. Sci. Technol. 2023, 38, 063002. [Google Scholar] [CrossRef]
- Fletcher, A.S.A.; Nirmal, D. A survey of Gallium Nitride HEMT for RF and high power applications. Superlattices Microstruct. 2017, 109, 519–537. [Google Scholar] [CrossRef]
- Zeng, F.; An, J.X.; Zhou, G.; Li, W.; Wang, H.; Duan, T.; Jiang, L.; Yu, H. A Comprehensive Review of Recent Progress on GaN High Electron Mobility Transistors: Devices, Fabrication and Reliability. Electronics 2018, 7, 377. [Google Scholar] [CrossRef]
- Pengelly, R.S.; Wood, S.M.; Milligan, J.W.; Sheppard, S.T.; Pribble, W.L. A review of GaN on SiC high electron-mobility power transistors and MMICs. IEEE Trans. Microw. Theory Tech. 2012, 60, 1764–1783. [Google Scholar] [CrossRef]
- Jarndal, A. AlGaN/GaN HEMTs on SiC and Si substrates: A review from the small-signal-modeling’s perspective. Int. J. RF Microw. Comput. -Aided Eng. 2014, 24, 389–400. [Google Scholar] [CrossRef]
- Chuang, T.P.; Tumilty, N.; Yu, C.H.; Horng, R.H. Comparison of Performance in GaN-HEMTs on thin SiC substrate and Sapphire substrates. Chin. J. Phys. 2024, 90, 1117–1124. [Google Scholar] [CrossRef]
- Treu, M.; Rupp, R.; Sölkner, G. Reliability of SiC power devices and its influence on their commercialization-review, status, and remaining issues. In Proceedings of the 2010 IEEE International Reliability Physics Symposium, Anaheim, CA, USA, 2–6 May 2010; pp. 156–161. [Google Scholar]
- Chen, J.T.; Bergsten, J.; Lu, J.; Janzén, E.; Thorsell, M.; Hultman, L.; Rorsman, N.; Kordina, O. A GaN–SiC hybrid material for high-frequency and power electronics. Appl. Phys. Lett. 2018, 113, 041605. [Google Scholar] [CrossRef]
- Roccaforte, F.; Fiorenza, P.; Greco, G.; Nigro, R.L.; Giannazzo, F.; Iucolano, F.; Saggio, M. Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices. Microelectron. Eng. 2018, 187, 66–77. [Google Scholar] [CrossRef]
- Yadav, Y.K.; Upadhyay, B.B.; Jha, J.; Ganguly, S.; Saha, D. Impact of relative gate position on DC and RF characteristics of high performance AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 2020, 67, 4141–4146. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, Y.; Zhu, J.; Cai, Y.; Lau, K.M.; Chen, K.J. DC and RF characteristics of AlGaN/GaN/InGaN/GaN double-heterojunction HEMTs. IEEE Trans. Electron Devices 2006, 54, 2–10. [Google Scholar] [CrossRef]
- Wang, X.L.; Wang, C.M.; Hu, G.X.; Wang, J.X.; Chen, T.S.; Jiao, G.; Li, J.; Zeng, Y.; Li, J.M. Improved DC and RF performance of AlGaN/GaN HEMTs grown by MOCVD on sapphire substrates. Solid-State Electron. 2005, 49, 1387–1390. [Google Scholar] [CrossRef]
- Lu, W.; Kumar, V.; Schwindt, R.; Piner, E.; Adesida, I. DC, RF, and microwave noise performances of AlGaN/GaN HEMTs on sapphire substrates. IEEE Trans. Microw. Theory Tech. 2002, 50, 2499–2504. [Google Scholar] [CrossRef]
- Toprak, A.; Osmanoğlu, S.; Öztürk, M.; Yılmaz, D.; Cengiz, Ö.; Şen, Ö.; Bütün, B.; Özcan, Ş.; Özbay, E. Effect of gate structures on the DC and RF Performance of AlGaN/GaN HEMTs. Semicond. Sci. Technol. 2018, 33, 125017. [Google Scholar] [CrossRef]
- Luo, B.; Johnson, J.W.; Ren, F.; Allums, K.K.; Abernathy, C.R.; Pearton, S.J.; Dwivedi, R.; Fogarty, T.N.; Wilkins, R.; Dabiran, A.M.; et al. DC and RF Performance of proton-irradiated AlGaN/GaN high electron mobility transistors. Appl. Phys. Lett. 2001, 79, 2196–2198. [Google Scholar] [CrossRef]
- Arivazhagan, L.; Nirmal, D.; Godfrey, D.; Ajayan, J.; Prajoon, P.; Fletcher, A.A.; Jone, A.A.A.; Kumar, J.R. Improved RF and DC Performance in AlGaN/GaN HEMT by P-type doping in GaN buffer for millimetre-wave applications. AEU-Int. J. Electron. Commun. 2019, 108, 189–194. [Google Scholar] [CrossRef]
- Gassoumi, M.; Helali, A.; Maaref, H.; Gassoumi, M. DC and RF characteristics optimization of AlGaN/GaN/BGaN/GaN/Si HEMT for microwave-power and high temperature application. Results Phys. 2019, 12, 302–306. [Google Scholar] [CrossRef]
- Yang, L.; Hou, B.; Jia, F.; Zhang, M.; Wu, M.; Niu, X.; Lu, H.; Shi, C.; Mi, M.; Zhu, Q.; et al. The DC performance and RF characteristics of GaN-based HEMTs improvement using graded AlGaN back barrier and Fe/C Co-doped buffer. IEEE Trans. Electron Devices 2022, 69, 4170–4174. [Google Scholar] [CrossRef]
- Wang, X.; Huang, S.; Zheng, Y.; Wei, K.; Chen, X.; Zhang, H.; Liu, X. Effect of GaN channel layer thickness on DC and RF performance of GaN HEMTs with composite AlGaN/GaN buffer. IEEE Trans. Electron Devices 2014, 61, 1341–1346. [Google Scholar] [CrossRef]
- Visvkarma, A.K.; Sehra, K.; Laishram, R.; Malik, A.; Sharma, S.; Kumar, S.; Rawal, D.S.; Vinayak, S.; Saxena, M. Impact of gamma radiations on static, pulsed I–V, and RF performance parameters of AlGaN/GaN HEMT. IEEE Trans. Electron Devices 2022, 69, 2299–2306. [Google Scholar] [CrossRef]
- Ranjan, K.; Arulkumaran, S.; Ng, G.I.; Sandupatla, A. Investigation of self-heating effect on DC and RF performances in AlGaN/GaN HEMTs on CVD-diamond. IEEE J. Electron Devices Soc. 2019, 7, 1264–1269. [Google Scholar] [CrossRef]
- Lin, H.K.; Huang, F.H.; Yu, H.L. DC and RF characterization of AlGaN/GaN HEMTs with different gate recess depths. Solid-State Electron. 2010, 54, 582–585. [Google Scholar] [CrossRef]
- Chu, R.; Shen, L.; Fichtenbaum, N.; Chen, Z.; Keller, S.; DenBaars, S.P.; Mishra, U.K. Correlation between DC–RF dispersion and gate leakage in deeply recessed GaN/AlGaN/GaN HEMTs. IEEE Electron Device Lett. 2008, 29, 303–305. [Google Scholar]
- Charbonniaud, C.; Xiong, A.; Dellier, S.; Jardel, O.; Quéré, R. A non linear power HEMT model operating in multi-bias conditions. In Proceedings of the 5th European Microwave Integrated Circuits Conference, Paris, France, 27–28 September 2010; pp. 134–137. [Google Scholar]
- Ahsan, S.A.; Ghosh, S.; Khandelwal, S.; Chauhan, Y.S. Physics-based multi-bias RF large-signal GaN HEMT modeling and parameter extraction flow. IEEE J. Electron Devices Soc. 2017, 5, 310–319. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, Y.; Wang, C.; Wen, Z.; Xu, R. Design of Ku-band GaN HEMT power amplifier based on multi-bias statistical model. Int. J. Numer. Model. Electron. Netw. Devices Fields 2017, 30, e2130. [Google Scholar] [CrossRef]
- Gibiino, G.P.; Santarelli, A.; Filicori, F. A Procedure for GaN HEMT Charge Functions Extraction from Multi-Bias S-Parameters. In Proceedings of the 2018 13th European Microwave Integrated Circuits Conference (EuMIC), Madrid, Spain, 23–25 September 2018; pp. 65–68. [Google Scholar]
- Alim, M.A.; Rezazadeh, A.A.; Gaquiere, C. Multibias and thermal behavior of microwave GaN and GaAs based HEMTs. Solid-State Electron. 2016, 126, 67–74. [Google Scholar] [CrossRef]
- Pampori, A.U.H.; Ahsan, S.A.; Dangi, R.; Goyal, U.; Tomar, S.K.; Mishra, M.; Chauhan, Y.S. Modeling of bias-dependent effective velocity and its impact on saturation transconductance in AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 2021, 68, 3302–3307. [Google Scholar] [CrossRef]
- Xiao, D.; Schreurs, D.; De Raedt, W.; Derluyn, J.; Germain, M.; Nauwelaers, B.; Borghs, G. Detailed analysis of parasitic loading effects on power performance of GaN-on-silicon HEMTs. Solid-State Electron. 2009, 53, 185–189. [Google Scholar] [CrossRef]
- Malbert, N.; Labat, N.; Curutchet, A.; Sury, C.; Hoel, V.; de Jaeger, J.C.; Defrance, N.; Douvry, Y.; Dua, C.; Oualli, M.; et al. Characterisation and modelling of parasitic effects and failure mechanisms in AlGaN/GaN HEMTs. Microelectron. Reliab. 2009, 49, 1216–1221. [Google Scholar] [CrossRef]
- Meneghesso, G.; Meneghini, M.; Bisi, D.; Silvestri, R.; Zanandrea, A.; Hilt, O.; Bahat-Treidel, E.; Brunner, F.; Knauer, A.; Wuerfl, J.; et al. GaN-based power HEMTs: Parasitic, reliability and high field issues. ECS Trans. 2013, 58, 187. [Google Scholar] [CrossRef]
- Axelsson, O.; Thorsell, M.; Andersson, K.; Rorsman, N. The effect of forward gate bias stress on the noise performance of mesa isolated GaN HEMTs. IEEE Trans. Device Mater. Reliab. 2014, 15, 40–46. [Google Scholar] [CrossRef]
- Lei, P.; Yan, P.; Xinyu, L.; Liang, W.; Jian, L. Noise performance in AlGaN/GaN HEMTs under high drain bias. J. Semicond. 2009, 30, 084004. [Google Scholar] [CrossRef]
- Alim, M.A.; Gaquiere, C.; Crupi, G. An experimental and systematic insight into the temperature sensitivity for a 0.15-µm gate-length HEMT based on the GaN technology. Micromachines 2021, 12, 549. [Google Scholar] [CrossRef] [PubMed]
- Mishra, U.K.; Singh, J.; Mishra, U.K.; Singh, J. Field effect transistors. In Semiconductor Device Physics and Design; Springer: Dordrecht, The Netherlands, 2008; pp. 356–432. [Google Scholar]
- Sedra, A.S.; Smith, K.C. Microelectronic Circuits, 7th ed.; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Jia, Y.; Wen, Z.; Chen, Y.; Xie, C.C.; Guo, Y.X.; Xu, Y. A threshold voltage model for charge trapping effect of AlGaN/GaN HEMTs. IEEE Access 2019, 7, 120638–120647. [Google Scholar] [CrossRef]
- Nuo, M.; Wei, J.; Wang, M.; Yang, J.; Wu, Y.; Hao, Y.; Shen, B. Gate/drain coupled barrier lowering effect and negative threshold voltage shift in Schottky-type p-GaN gate HEMT. IEEE Trans. Electron Devices 2022, 69, 3630–3635. [Google Scholar] [CrossRef]
- Ando, Y.; Takahashi, H.; Makisako, R.; Wakejima, A.; Suda, J. Improvement of Gate Length Dependence in Electrical Characteristics of AlGaN/GaN Dual-Gate HEMTs. IEEE Trans. Electron Devices 2024, 71, 5280–5288. [Google Scholar] [CrossRef]
- Pratiyush, A.S.; Dolmanan, S.B.; Tripathy, S.; Muralidharan, R.; Nath, D.N. UV detector based on InAlN/GaN-on-Si HEMT stack with photo-to-dark current ratio> 107. Appl. Phys. Lett. 2017, 111, 251103. [Google Scholar]
- Li, N.; Lassiter, B.E.; Lunt, R.R.; Wei, G.; Forrest, S.R. Open circuit voltage enhancement due to reduced dark current in small molecule photovoltaic cells. Appl. Phys. Lett. 2009, 94, 023307. [Google Scholar] [CrossRef]
- Alim, M.A.; Rezazadeh, A.A.; Gaquiere, C. Temperature Effect on DC and Equivalent Circuit Parameters of 0.15 µm Gate Length GaN/SiC HEMT for Microwave Applications. IEEE Trans. Microw. Theory Tech. 2016, 64, 3483–3491. [Google Scholar] [CrossRef]
- Alim, M.A.; Rezazadeh, A.A.; Gaquiere, C.; Crupi, G. Extrinsic capacitance extraction for GaAs and GaN FETs from low to high temperatures. Semicond. Sci. Technol. 2018, 33, 085007. [Google Scholar] [CrossRef]
- Sahoo, J.; Mahapatra, R. Effect of Dummy Gate Bias on Breakdown Voltage and Gate Charge of a Novel In 0.53 Ga 0.47 As/InP Trench-Gate Pentode Power Device. IEEE Trans. Device Mater. Reliab. 2023, 23, 269–275. [Google Scholar] [CrossRef]
- Koley, K.; Dutta, A.; Saha, S.K.; Sarkar, C.K. Effect of source/drain lateral straggle on distortion and intrinsic Performance of asymmetric underlap DG-MOSFETs. IEEE J. Electron Devices Soc. 2014, 2, 135–144. [Google Scholar] [CrossRef]
- Dubey, S.K.; Mishra, M.; Islam, A. Characterization of AlGaN/GaN based HEMT for low noise and high frequency application. Int. J. Numer. Model. Electron. Netw. Devices Fields 2022, 35, e2932. [Google Scholar] [CrossRef]
- Alim, M.A.; Gaquière, C.; Crupi, G. Experimental Investigation on the Bias and Temperature Dependence of the Forward Transmission Coefficient for HEMT Technologies. In Proceedings of the 2021 15th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS), Nis, Serbia, 20–22 October 2021; pp. 70–73. [Google Scholar]
Vgs = 0 V and Vds = 0 V (OFF Condition) | |
---|---|
Parameters | GaN HMET |
Lg (pH) | 142.0 |
Ls (pH) | 1.80 |
Ld (pH) | 64.0 |
Rg (Ω) | 2.69 |
Rs (Ω) | 3.10 |
Rd (Ω) | 5.81 |
Vgs = −10.0 V and Vds = 0 V (PINCH-OFF Condition) | |
Cpg (fF) | 51.0 |
Cpd (fF) | 85.0 |
Bias Condition (Vds, Vgs) | RMSE (dB) | R2 Value |
---|---|---|
Vds = 15 V, Vgs = −4.8 V | 0.52 | 0.993 |
Vds = 13 V, Vgs = −4.6 V | 0.47 | 0.991 |
Vds = 11 V, Vgs = −4.4 V | 0.43 | 0.994 |
Vds = 9 V, Vgs = −4.2 V | 0.39 | 0.995 |
Vds (V) | Ids (mA) | gm (mS) | Cgs (fF) | Cgd (fF) | Cds (fF) | Rgs (Ω) | Rgd (Ω) | Rds (Ω) | gmo (mS) | τgm (ps) | τgs (ps) | τgd (ps) | ft (GHz) | fmax (GHz) | S21 (dB) | Y21 (S) | K |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3 | 21.81 | 45.45 | 192.51 | 55.62 | 163.79 | 1.08 | 13.04 | 166.01 | 67.96 | 2.27 | 1.31 | 4.55 | 45.81 | 84.72 | 12.70 | 0.0327 | 1.04 |
5 | 29.54 | 50.02 | 195.91 | 52.68 | 162.17 | 1.15 | 14.83 | 158.10 | 72.57 | 2.15 | 1.42 | 4.89 | 50.92 | 92.34 | 13.45 | 0.03093 | 0.97 |
7 | 37.73 | 61.25 | 197.27 | 49.16 | 160.65 | 1.23 | 16.63 | 177.12 | 73.77 | 2.17 | 1.52 | 5.13 | 51.62 | 96.01 | 13.63 | 0.03052 | 0.96 |
9 | 43.65 | 56.36 | 201.39 | 45.20 | 159.13 | 1.39 | 20.07 | 196.14 | 73.66 | 2.20 | 1.76 | 5.70 | 50.46 | 98.12 | 13.74 | 0.03049 | 0.96 |
11 | 47.75 | 56.88 | 205.21 | 42.21 | 157.56 | 1.46 | 21.87 | 201.70 | 72.90 | 2.24 | 1.89 | 5.79 | 48.80 | 98.90 | 13.75 | 0.03037 | 0.97 |
13 | 51.40 | 56.58 | 209.26 | 39.76 | 156.01 | 1.58 | 24.49 | 213.99 | 71.70 | 2.30 | 2.08 | 6.11 | 46.82 | 98.76 | 13.72 | 0.03041 | 0.99 |
15 | 54.71 | 55.83 | 212.77 | 37.65 | 154.46 | 1.70 | 27.11 | 226.28 | 70.26 | 2.35 | 2.27 | 6.41 | 44.83 | 98.16 | 13.66 | 0.03048 | 1.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alim, M.A.; Gaquiere, C. Impact of Multi-Bias on the Performance of 150 nm GaN HEMT for High-Frequency Applications. Micromachines 2025, 16, 932. https://doi.org/10.3390/mi16080932
Alim MA, Gaquiere C. Impact of Multi-Bias on the Performance of 150 nm GaN HEMT for High-Frequency Applications. Micromachines. 2025; 16(8):932. https://doi.org/10.3390/mi16080932
Chicago/Turabian StyleAlim, Mohammad Abdul, and Christophe Gaquiere. 2025. "Impact of Multi-Bias on the Performance of 150 nm GaN HEMT for High-Frequency Applications" Micromachines 16, no. 8: 932. https://doi.org/10.3390/mi16080932
APA StyleAlim, M. A., & Gaquiere, C. (2025). Impact of Multi-Bias on the Performance of 150 nm GaN HEMT for High-Frequency Applications. Micromachines, 16(8), 932. https://doi.org/10.3390/mi16080932