Insulated Gate Bipolar Transistor (IGBT) Modules, 2nd Edition

A special issue of Micromachines (ISSN 2072-666X). This special issue belongs to the section "A:Physics".

Deadline for manuscript submissions: 30 April 2026 | Viewed by 2114

Special Issue Editor


E-Mail Website
Guest Editor
Jiangsu Key Laboratory of ASIC Design, School of Information Science and Technology, Nantong University, Nantong 226019, China
Interests: integrated circuit packaging; power devices; reliability analysis; micro and nano devices
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

With the rapid development of social progress and productivity, the insulated gate bipolar transistor (IGBT), as a new electronic power device, is a composite, fully controlled voltage-driven power device composed of a bipolar junction transistor (BJT) and metal-oxide-semiconductor field-effect transistor (MOSFET). It is also widely used in many high-power applications, such as wind turbines, high-speed trains, electric vehicles, and ships; it is also a leader in the development of power semiconductor devices due to its fast-switching speed, low on-state voltage and good stability in smart grids and high-voltage DC transmission. The reliability of IGBT modules is also a trending topic of research in the packaging industry. Long periods of high-temperature operation can lead to increased failure and reduced reliability of power devices; the failure of devices in areas with very low fault tolerance can cause irreversible results. The study of the reliability of IGBT modules, on the one hand, extends the life of the modules and, on the other hand, consolidates the development of power device reliability technology and accelerates research and innovation on IGBT power devices.

Building on the success of this Special Issue’s first edition, the second edition will not only continue to address the damage mechanisms of IGBT modules but also highlight new strategies for optimizing device design and packaging, ensuring better performance under extreme operating conditions. We encourage further submissions on cutting-edge research and novel approaches to solve the challenges faced by IGBT modules, as well as improvements in the integration of IGBT technology with other power devices.

We invite research papers, communications, and review articles to contribute to this Special Issue that offer deeper insights into IGBT module reliability, focusing on failure modes, damage prevention, and innovations in packaging and thermal management. Manuscripts that explore related power device technologies are also welcome.

Thank you in advance.

Dr. Peisheng Liu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Micromachines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • IGBT module
  • integrated circuit rackaging
  • power devices
  • reliability analysis

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 2415 KB  
Article
Thermal–Electrical Fusion for Real-Time Condition Monitoring of IGBT Modules in Transportation Systems
by Man Cui, Yun Liu, Zhen Hu and Tao Shi
Micromachines 2026, 17(2), 154; https://doi.org/10.3390/mi17020154 - 25 Jan 2026
Viewed by 336
Abstract
The operational reliability of Insulated Gate Bipolar Transistor (IGBT) modules in demanding transportation applications, such as traction systems, is critically challenged by solder layer and bond wire failures under cyclic thermal stress. To address this, this paper proposes a novel health monitoring framework [...] Read more.
The operational reliability of Insulated Gate Bipolar Transistor (IGBT) modules in demanding transportation applications, such as traction systems, is critically challenged by solder layer and bond wire failures under cyclic thermal stress. To address this, this paper proposes a novel health monitoring framework that innovatively synergizes micro-scale spatial thermal analysis with microsecond electrical dynamics inversion. The method requires only non-invasive temperature measurements on the module baseplate and utilizes standard electrical signals (load current, duty cycle, switching frequency, DC-link voltage) readily available from the converter’s controller, enabling simultaneous diagnosis without dedicated voltage or high-bandwidth current sensors. First, a non-invasive assessment of solder layer fatigue is achieved by correlating the normalized thermal gradient (TP) on the baseplate with the underlying thermal impedance (ZJC). Second, for bond wire aging, a cost-effective inversion algorithm estimates the on-state voltage (Vce,on) by calculating the total power loss from temperature, isolating the conduction loss (Pcond) with the aid of a Foster-model-based junction temperature (TJ) estimate, and finally computing Vce,on at a unique current inflection point (IC,inf) to nullify TJ dependency. Third, the health states from both failure modes are fused for comprehensive condition evaluation. Experimental validation confirms the method’s accuracy in tracking both degradation modes. This work provides a practical and economical solution for online IGBT condition monitoring, enhancing the predictive maintenance and operational safety of transportation electrification systems. Full article
(This article belongs to the Special Issue Insulated Gate Bipolar Transistor (IGBT) Modules, 2nd Edition)
Show Figures

Figure 1

20 pages, 1157 KB  
Article
A Dynamic Physics-Guided Ensemble Model for Non-Intrusive Bond Wire Health Monitoring in IGBTs
by Xinyi Yang, Zhen Hu, Yizhi Bo, Tao Shi and Man Cui
Micromachines 2026, 17(1), 70; https://doi.org/10.3390/mi17010070 - 1 Jan 2026
Viewed by 340
Abstract
Bond wire degradation represents the predominant failure mechanism in IGBT modules, accounting for approximately 70% of power converter failures and posing significant reliability challenges in modern power electronic systems. Existing monitoring techniques face inherent trade-offs between measurement accuracy, implementation complexity, and electromagnetic compatibility. [...] Read more.
Bond wire degradation represents the predominant failure mechanism in IGBT modules, accounting for approximately 70% of power converter failures and posing significant reliability challenges in modern power electronic systems. Existing monitoring techniques face inherent trade-offs between measurement accuracy, implementation complexity, and electromagnetic compatibility. This paper proposes a physics-constrained ensemble learning framework for non-intrusive bond wire health assessment via Vce-on prediction. The methodological innovation lies in the synergistic integration of multidimensional feature engineering, adaptive ensemble fusion, and domain-informed regularization. A comprehensive 16-dimensional feature vector is constructed from multi-physical measurements, including electrical, thermal, and aging parameters, with novel interaction terms explicitly modeling electro-thermal stress coupling. A dynamic weighting mechanism then adaptively fuses three specialized gradient boosting models (CatBoost for high-current, LightGBM for thermal-stress, and XGBoost for late-life conditions) based on context-aware performance assessment. Finally, the meta-learner incorporates a physics-based regularization term that enforces fundamental semiconductor properties, ensuring thermodynamic consistency. Experimental validation demonstrates that the proposed framework achieves a mean absolute error of 0.0066 V and R2 of 0.9998 in predicting Vce-on, representing a 48.4% improvement over individual base models while maintaining 99.1% physical constraint compliance. These results establish a paradigm-shifting approach that harmonizes data-driven learning with physical principles, enabling accurate, robust, and practical health monitoring for next-generation power electronic systems. Full article
(This article belongs to the Special Issue Insulated Gate Bipolar Transistor (IGBT) Modules, 2nd Edition)
Show Figures

Figure 1

13 pages, 2332 KB  
Article
Structure and Temperature Dependence of Solder Layer and Electric Parameters in IGBT Modules
by Jibing Chen, Yanfeng Liu, Bowen Liu and Yiping Wu
Micromachines 2025, 16(9), 1023; https://doi.org/10.3390/mi16091023 - 5 Sep 2025
Cited by 2 | Viewed by 929
Abstract
IGBT high-power devices are subjected to various extreme working conditions for long periods and are affected by multiple loading conditions, inevitably leading to various aging and failure issues. Among them, the solder layer, as one of the weakest parts in the packaging structure [...] Read more.
IGBT high-power devices are subjected to various extreme working conditions for long periods and are affected by multiple loading conditions, inevitably leading to various aging and failure issues. Among them, the solder layer, as one of the weakest parts in the packaging structure of IGBT modules, has rarely been studied regarding its thermal fatigue characteristics and interface structure evolution behavior. In this work, a rapid temperature test chamber was used to conduct a thermal fatigue temperature cycling experiment on IGBT modules from −40 to 150 °C. The microscopic structural evolution behavior and the growth pattern of intermetallic compounds (IMC) during the solder layer’s thermal fatigue process of the IGBT modules were studied. At the same time, the changes in relevant static parameters of the IGBT after thermal cycling fatigue were tested using an oscilloscope and a power device analyzer, thereby clarifying the failure mechanism of the IGBT module. This provides a theoretical basis and data support for the thermal design and reliability assessment of IGBT modules. Full article
(This article belongs to the Special Issue Insulated Gate Bipolar Transistor (IGBT) Modules, 2nd Edition)
Show Figures

Figure 1

Back to TopTop