Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (563)

Search Parameters:
Keywords = zircon U-Pb ages

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 7821 KiB  
Article
The Multiple Stages of Regional Triassic Crustal Reworking in Eastern Tianshan, NW China: Evidence from the Xigebi Area
by Ming Wei, Haiquan Li, Wenxiao Zhou, Mahemuti Muredili, Ernest Chi Fru and Thomas Sheldrick
Minerals 2025, 15(8), 829; https://doi.org/10.3390/min15080829 - 4 Aug 2025
Viewed by 203
Abstract
The eastern Tianshan region in the Central Asian Orogenic Belt (CAOB) is characterized by multiple complex tectonic activity of uncertain historical contribution to the construction of the CAOB. This study utilizes a multi-proxy geochemical approach to characterize I-type monzogranite pluton rocks and their [...] Read more.
The eastern Tianshan region in the Central Asian Orogenic Belt (CAOB) is characterized by multiple complex tectonic activity of uncertain historical contribution to the construction of the CAOB. This study utilizes a multi-proxy geochemical approach to characterize I-type monzogranite pluton rocks and their associated hornblende-rich dioritic enclaves to decipher the tectonic and magmatic evolution of the Xigebi area, eastern Tianshan. Zircon geochronology indicates a Triassic and Permian crystallization age of ca. 224.2 ± 1.7 Ma and ca. 268.3 ± 3.0 Ma for the host monzogranites and the dioritic enclaves, respectively. Major, trace and rare earth element distribution, together with Hf isotope systematics displaying noticeable positive εHf(t) anomalies for both rock types, point to partial melting of meta-mafic rocks in an intraplate extensional setting. The diorite was formed by the melting of lower crustal meta-igneous rocks mixed with mantle melts, and the monzogranite, predominantly from deep crustal meta-basalts contaminated by shallow metasedimentary rocks, with some degree of mixing with deeply sourced mantle magma. While both the host monzogranites and their dioritic enclaves are the products of upwelling magma, the younger Triassic monzogranites captured and preserved fragments of the dioritic Permian lower continental crust during crystallization. These multiple stages of magmatic underplating and crustal reworking associated with vertical stratification of the juvenile paleo-continental crust suggest the monzogranites and diorites indicate a change from a post-collisional setting to a regional intraplate regime on the southern margin of the CAOB. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

26 pages, 6611 KiB  
Article
The Geochronology, Geochemical Characteristics, and Tectonic Settings of the Granites, Yexilinhundi, Southern Great Xing’an Range
by Haixin Yue, Henan Yu, Zhenjun Sun, Yanping He, Mengfan Guan, Yingbo Yu and Xi Chen
Minerals 2025, 15(8), 813; https://doi.org/10.3390/min15080813 - 31 Jul 2025
Viewed by 195
Abstract
The southern Great Xing’an Range is located in the overlap zone of the Paleo-Asian Ocean metallogenic domain and the Circum-Pacific metallogenic domain. It hosts numerous Sn-polymetallic deposits, such as Weilasituo, Bianjiadayuan, Huanggang, and Dajing, and witnessed multiple episodes of magmatism during the Late [...] Read more.
The southern Great Xing’an Range is located in the overlap zone of the Paleo-Asian Ocean metallogenic domain and the Circum-Pacific metallogenic domain. It hosts numerous Sn-polymetallic deposits, such as Weilasituo, Bianjiadayuan, Huanggang, and Dajing, and witnessed multiple episodes of magmatism during the Late Mesozoic. The study area is situated within the Huanggangliang-Ganzhuermiao metallogenic belt in the southern Great Xing’an Range. The region has witnessed extensive magmatism, with Mesozoic magmatic activities being particularly closely linked to regional mineralization. We present petrographic, zircon U-Pb chronological, lithogeochemical, and Lu-Hf isotopic analyses of the Yexilinhundi granites. The results indicate that the granite porphyry and granodiorite were emplaced during the Late Jurassic. Both rocks exhibit high SiO2, K2O + Na2O, differentiation index (DI), and 10,000 Ga/Al ratios, coupled with low MgO contents. They show distinct fractionation between light and heavy rare earth elements (LREEs and HREEs), exhibit Eu anomalies, and have low whole-rock zircon saturation temperatures (Tzr), collectively demonstrating characteristics of highly fractionated I-type granites. The εHf(t) values of the granites range from 0.600 to 9.14, with young two-stage model ages (TDM2 = 616.0~1158 Ma), indicating that the magmatic source originated from partial melting of Mesoproterozoic-Neoproterozoic juvenile crust. This study proposes that the granites formed in a post-collisional/post-orogenic extensional setting associated with the subduction of the Mongol-Okhotsk Ocean, providing a scientific basis for understanding the relationship between the formation of Sn-polymetallic deposits and granitic magmatic evolution in the study area. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

20 pages, 9529 KiB  
Article
Geochemistry and Geochronology of the Late Permian Linxi Formation in the Songliao Basin, China: Tectonic Implications for the Paleo-Asian Ocean
by Xin Huang, Haihua Zhang, Liang Qiu, Gongjian Li, Yujin Zhang, Wei Chen, Shuwang Chen and Yuejuan Zheng
Minerals 2025, 15(8), 784; https://doi.org/10.3390/min15080784 - 25 Jul 2025
Viewed by 146
Abstract
The Central Asian Orogenic Belt (CAOB) represents a crucial area for understanding the tectonic evolution of the Paleo-Asian Ocean and surrounding orogenic systems. This study investigates the petrology, geochronology, and geochemistry of volcanic and clastic rocks from Well HFD3 in the northern Songliao [...] Read more.
The Central Asian Orogenic Belt (CAOB) represents a crucial area for understanding the tectonic evolution of the Paleo-Asian Ocean and surrounding orogenic systems. This study investigates the petrology, geochronology, and geochemistry of volcanic and clastic rocks from Well HFD3 in the northern Songliao Basin, which provides key insights into the tectonic development of this region. Zircon U–Pb dating of tuff samples from the Linxi Formation provides an accurate age of 251.1 ± 1.1 Ma, corresponding to the late Permian. Geochemical analyses show that the clastic rocks are rich in SiO2 (63.5%) and Al2O3 (13.7%), with lower K2O/Na2O ratios (0.01–1.55), suggesting low compositional maturity. Additionally, the trace element data reveal enrichment in light rare earth elements (LREEs) and depletion in Nb, Sr, and Ta, with a negative Eu anomaly, which indicates a felsic volcanic arc origin. The Chemical Index of Alteration (CIA) values (53.2–65.8) reflect weak chemical weathering, consistent with cold and dry paleo-climatic conditions. These findings suggest that the Linxi Formation clastic rocks are derived from felsic volcanic arcs in an active continental margin environment, linked to the subduction of the Paleo-Asian Ocean slab. The sedimentary conditions reflect a gradual transition from brackish to freshwater environments, corresponding with the final stages of subduction or the onset of orogeny. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

32 pages, 32586 KiB  
Article
Magmatic Evolution at the Saindak Cu-Au Deposit: Implications for the Formation of Giant Porphyry Deposits
by Jun Hong, Yasir Shaheen Khalil, Asad Ali Narejo, Xiaoyong Yang, Tahseenullah Khan, Zhihua Wang, Huan Tang, Haidi Zhang, Bo Yang and Wenyuan Li
Minerals 2025, 15(8), 768; https://doi.org/10.3390/min15080768 - 22 Jul 2025
Viewed by 1276
Abstract
The Chagai porphyry copper belt is a major component of the Tethyan metallogenic domain, which spans approximately 300 km and hosts several giant porphyry copper deposits. The tectonic setting, whether subduction-related or post-collisional, and the deep dynamic processes governing the formation of these [...] Read more.
The Chagai porphyry copper belt is a major component of the Tethyan metallogenic domain, which spans approximately 300 km and hosts several giant porphyry copper deposits. The tectonic setting, whether subduction-related or post-collisional, and the deep dynamic processes governing the formation of these giant deposits remain poorly understood. Mafic microgranular enclaves (MMEs), mafic dikes, and multiple porphyries have been documented in the Saindak mining area. This work examines both the ore-rich and non-ore intrusions in the Saindak porphyry Cu-Au deposit, using methods like molybdenite Re-Os dating, U-Pb zircon ages, Hf isotopes, and bulk-rock geochemical data. Geochronological results indicate that ore-fertile and barren porphyries yield ages of 22.15 ± 0.22 Ma and 22.21 ± 0.33 Ma, respectively. Both MMEs and mafic dikes have zircons with nearly identical 206Pb/238U weighted mean ages (21.21 ± 0.18 Ma and 21.21 ± 0.16 Ma, respectively), corresponding to the age of the host rock. Geochemical and Sr–Nd–Hf isotopic evidence indicates that the Saindak adakites were generated by the subduction of the Arabian oceanic lithosphere under the Eurasian plate, rather than through continental collision. The adakites were mainly formed by the partial melting of a metasomatized mantle wedge, induced by fluids from the dehydrating subducting slab, with minor input from subducted sediments and later crust–mantle interactions during magma ascent. We conclude that shallow subduction of the Arabian plate during the Oligocene–Miocene may have increased the flow of subducted fluids into the sub-arc mantle source of the Chagai arc. This process may have facilitated the widespread deposition of porphyry copper and copper–gold mineralization in the region. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

20 pages, 10834 KiB  
Article
Genesis of Basalts of the Raohe Subduction–Accretion Complex in the Wandashan Block, NE China, and Its Inspirations for Evolution of the Paleo-Pacific Ocean
by Qing Liu, Cui Liu, Jixu Liu, Jinfu Deng and Shipan Tian
Appl. Sci. 2025, 15(15), 8139; https://doi.org/10.3390/app15158139 - 22 Jul 2025
Viewed by 197
Abstract
The Raohe subduction–accretion complex (RSAC) in the Wandashan Block, NE China, comprises ultramafic rocks, gabbro, mafic volcanic rocks, deep-sea and hemipelagic sediments, and trench–slope turbidites. We investigate the basalts within the RSAC to resolve debates on its origin. Zircon U-Pb dating of pillow [...] Read more.
The Raohe subduction–accretion complex (RSAC) in the Wandashan Block, NE China, comprises ultramafic rocks, gabbro, mafic volcanic rocks, deep-sea and hemipelagic sediments, and trench–slope turbidites. We investigate the basalts within the RSAC to resolve debates on its origin. Zircon U-Pb dating of pillow basalt from Dadingzi Mountain yields a concordant age of 117.5 ± 2.1 Ma (MSWD = 3.6). Integrating previous studies, we identify three distinct basalt phases. The Late Triassic basalt (210 Ma–230 Ma) is characterized as komatites–melilitite, exhibiting features of island arc basalt, as well as some characteristics of E-MORB. It also contains high-magnesium lava, suggesting that it may be a product of a juvenile arc. The Middle Jurassic basalt (around 159 Ma–172 Ma) consists of a combination of basalt and magnesium andesite, displaying features of oceanic island basalt and mid-ocean ridge basalt. Considering the contemporaneous sedimentary rocks as hemipelagic continental slope deposits, it is inferred that these basalts were formed in an arc environment associated with oceanic subduction, likely as a result of subduction of the young oceanic crust. The Early Cretaceous basalt (around 117 Ma) occurs in pillow structures, exhibiting some characteristics of oceanic island basalt but also showing transitional features towards a continental arc. Considering the regional distribution of the rocks, it is inferred that this basalt likely formed in a back-arc basin. Integrating the formation ages, nature, and tectonic attributes of the various structural units within the RSAC, as well as previous research, it is inferred that subduction of the Paleo-Pacific Ocean had already begun during the Late Triassic and continued into the Early Cretaceous without cessation. Full article
Show Figures

Figure 1

29 pages, 14630 KiB  
Article
Tectonic Evolution of the Eastern Central Asian Orogenic Belt: Evidence from Magmatic Activity in the Faku Area, Northern Liaoning, China
by Shaoshan Shi, Yi Shi, Xiaofan Zhou, Nan Ju, Yanfei Zhang and Shan Jiang
Minerals 2025, 15(7), 736; https://doi.org/10.3390/min15070736 - 15 Jul 2025
Viewed by 279
Abstract
The Permian–Triassic magmatic record in the eastern Central Asian Orogenic Belt (CAOB) provides critical insights into the terminal stages of the Paleo-Asian Ocean (PAO) evolution, including collisional and post-collisional processes following its Late Permian closure. The northeastern China region, tectonically situated within the [...] Read more.
The Permian–Triassic magmatic record in the eastern Central Asian Orogenic Belt (CAOB) provides critical insights into the terminal stages of the Paleo-Asian Ocean (PAO) evolution, including collisional and post-collisional processes following its Late Permian closure. The northeastern China region, tectonically situated within the eastern segment of the CAOB, is traditionally known as the Xingmeng Orogenic Belt (XOR). This study integrates zircon U-Pb geochronology, whole-rock geochemistry, and zircon Hf isotopic analyses of intermediate-acid volcanic rocks and intrusive rocks from the former “Tongjiatun Formation” in the Faku area of northern Liaoning. The main objective is to explore the petrogenesis of these igneous rocks and their implications for the regional tectonic setting. Zircon U-Pb ages of these rocks range from 260.5 to 230.1 Ma, indicating Permian–Triassic magmatism. Specifically, the Gongzhuling rhyolite (260.5 ± 2.2 Ma) and Gongzhuling dacite (260.3 ± 2.4 Ma) formed during the Middle-Late Permian (270–256 Ma); the Wangjiadian dacite (243 ± 3.0 Ma) and Wafangxi rhyolite (243.9 ± 3.0 Ma) were formed in the late Permian-early Middle Triassic (256–242 Ma); the Haoguantun rhyolite (240.9 ± 2.2 Ma) and Sheshangou pluton (230.1 ± 1.7 Ma) were formed during the Late Middle-Late Triassic (241–215 Ma). Geochemical studies, integrated with the geochronological results, reveal distinct tectonic settings during successive stages: (1) Middle-Late Permian (270–256 Ma): Magmatism included peraluminous A-type rhyolite with in calc-alkaline series (e.g., Gongzhuling) formed in an extensional environment linked to a mantle plume, alongside metaluminous, calc-alkaline I-type dacite (e.g., Gongzhuling) associated with the subduction of the PAO plate. (2) Late Permian-Early Middle Triassic (256–242 Ma): Calc-alkaline I-type magmatism dominated, represented by dacite (e.g., Wangjiadian) and rhyolite (e.g., Wafangxi), indicative of a collisional uplift environment. (3) Late Middle-Late Triassic (241–215 Ma): Magmatism transitioned to high-K calc-alkaline with A-type rocks affinities, including rhyolite (e.g., Haoguantun) and plutons (e.g., Sheshangou), formed in a post-collisional extensional environment. This study suggests that the closure of the PAO along the northern margin of the North China Craton (NCC) occurred before the Late Triassic. Late Triassic magmatic rocks in this region record a post-orogenic extensional setting, reflecting tectonic processes following NCC-XOR collision rather than PAO subduction. Combined with previously reported age data, the tectonic evolution of the eastern segment of the CAOB during the Permian-Triassic can be divided into four stages: active continental margin (293–274 Ma), plate disintegration (270–256 Ma), final collision and closure (256–241 Ma), and post-orogenic extension (241–215 Ma). Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

24 pages, 4663 KiB  
Article
Neoproterozoic Subduction Zone Fluids and Sediment Melt-Metasomatized Mantle Magmatism on the Northern Yangtze Block: Constraints from the Ca. 880 Ma Taoyuan Syenogranite
by Shilei Liu, Yiduo Li, Han Liu, Peng Wang, Shizhen Zhang and Fenglin Chen
Minerals 2025, 15(7), 730; https://doi.org/10.3390/min15070730 - 12 Jul 2025
Viewed by 199
Abstract
The Yangtze Block, with its widespread Neoproterozoic mafic–felsic magmatic rock series and volcanic–sedimentary rock assemblages, is one of the key windows for reconstructing the assembly and fragmentation process of Rodinia. This study focuses on the Taoyuan syenogranite from the Micangshan Massif on the [...] Read more.
The Yangtze Block, with its widespread Neoproterozoic mafic–felsic magmatic rock series and volcanic–sedimentary rock assemblages, is one of the key windows for reconstructing the assembly and fragmentation process of Rodinia. This study focuses on the Taoyuan syenogranite from the Micangshan Massif on the northern Yangtze Block, by conducting systematic chronology, mineralogy, and geochemistry analyses to investigate their source, petrogenesis, and tectonic setting. LA-ICP-MS U–Pb geochronology reveals that the medium- to coarse-grained and medium- to fine-grained syenogranites have crystallization ages of 878 ± 4.2 Ma and 880 ± 6.5 Ma, respectively. These syenogranites have aluminum saturation index (A/CNK) values ranging from 0.79 to 1.06, indicating quasi-aluminous to weakly peraluminous compositions, and are classified as calc-alkaline I-type granites. The geochemical indicators of these rocks, including Mg# (44–48, mean 46), Zr/Hf (40.07), Nb/La (0.4), and zircon εHf(t) values (+9.2 to +10.9), collectively indicate a depleted lithospheric mantle source. The mantle source was metasomatized by subduction-derived fluids and sediment melts prior to partial melting as evidenced by their higher Mg#, elevated Ba content, and distinctive ratios (Rb/Y, Nb/Y, Th/Yb, Th/Sm, Th/Ce, and Ba/La). Integrating regional data, this study confirms crust–mantle interaction along the northern Yangtze during the early Neoproterozoic, supporting a sustained subduction-related tectonic setting. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

18 pages, 3402 KiB  
Article
Synergistic Detrital Zircon U-Pb and REE Analysis for Provenance Discrimination of the Beach-Bar System in the Oligocene Dongying Formation, HHK Depression, Bohai Bay Basin, China
by Jing Wang, Youbin He, Hua Li, Tao Guo, Dayong Guan, Xiaobo Huang, Bin Feng, Zhongxiang Zhao and Qinghua Chen
J. Mar. Sci. Eng. 2025, 13(7), 1331; https://doi.org/10.3390/jmse13071331 - 11 Jul 2025
Viewed by 315
Abstract
The Oligocene Dongying Formation beach-bar system, widely distributed in the HHK Depression of the Bohai Bay Basin, constitutes a key target for mid-deep hydrocarbon exploration, though its provenance remains controversial due to complex peripheral source terrains. To address this, we developed an integrated [...] Read more.
The Oligocene Dongying Formation beach-bar system, widely distributed in the HHK Depression of the Bohai Bay Basin, constitutes a key target for mid-deep hydrocarbon exploration, though its provenance remains controversial due to complex peripheral source terrains. To address this, we developed an integrated methodology combining LA-ICP-MS zircon U-Pb dating with whole-rock rare earth element (REE) analysis, facilitating provenance studies in areas with limited drilling and heavy mineral data. Analysis of 849 high-concordance zircons (concordance >90%) from 12 samples across 5 wells revealed that Geochemical homogeneity is evidenced by strongly consistent moving-average trendlines of detrital zircon U-Pb ages among the southern/northern provenances and the central uplift zone, complemented by uniform REE patterns characterized by HREE (Gd-Lu) enrichment and LREE depletion; geochemical disparities manifest as dual dominant age peaks (500–1000 Ma and 1800–3100 Ma) in the southern provenance and central uplift samples, contrasting with three distinct peaks (65–135 Ma, 500–1000 Ma, and 1800–3100 Ma) in the northern provenance; spatial quantification via multidimensional scaling (MDS) demonstrates closer affinity between the southern provenance and central uplift (dij = 4.472) than to the northern provenance (dij = 6.708). Collectively, these results confirm a dual (north–south) provenance system for the central uplift beach-bar deposits, with the southern provenance dominant and the northern acting as a subsidiary source. This work establishes a dual-provenance beach-bar model, providing a universal theoretical and technical framework for provenance analysis in hydrocarbon exploration within analogous settings. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

26 pages, 9198 KiB  
Article
The Exotic Igneous Clasts Attributed to the Cuman Cordillera: Insights into the Makeup of a Cadomian/Pan-African Basement Covered by the Moldavides of the Eastern Carpathians, Romania
by Sarolta Lőrincz, Marian Munteanu, Ştefan Marincea, Relu Dumitru Roban, Valentina Maria Cetean, George Dincă and Mihaela Melinte-Dobrinescu
Geosciences 2025, 15(7), 256; https://doi.org/10.3390/geosciences15070256 - 3 Jul 2025
Viewed by 311
Abstract
The Eastern Carpathians are thrust to the east and north over their Eastern European foreland, tectonically covering it over an area several hundred kilometers across. Information about the nature of the underthrust part of the Carpathian foreland can be obtained from the rock [...] Read more.
The Eastern Carpathians are thrust to the east and north over their Eastern European foreland, tectonically covering it over an area several hundred kilometers across. Information about the nature of the underthrust part of the Carpathian foreland can be obtained from the rock fragments preserved in the sedimentary successions of the Carpathian fold and thrust belt, specifically in the Outer Dacides and the Moldavides. Fragments of felsic rocks occurring within the sedimentary units of the Upper Cretaceous successions of the Moldavides have long been attributed to the Cuman Cordillera—an intrabasinal ridge in the Eastern Outer Carpathians. This work is the first complex geochemical and geochronological study on the exotic igneous clasts of the Cuman Cordillera. Igneous clasts from the southern part of the Moldavides (Variegated clay nappe/formation) are investigated here. They include mainly granites and rhyolites. Phaneritic rocks are composed of cumulus plagioclase, albite, amphibole and biotite, and intercumulus quartz and potassium feldspar, with apatite, magnetite, sphene, and zircon as main accessories, while the porphyritic rocks have a mineral assemblage similar to that mentioned above, displayed in a porphyritic texture with a usually crystallized groundmass. SHRIMP U-Pb zircon dating indicated the 583–597 Ma age interval for magma crystallization. Based on calcareous nannofossils, the depositional age of the investigated igneous clasts is Cenomanian to Maastrichtian, implying that the Cuman Cordillera was an emerged piece of land, herein an active source of sediments in the flysch basin for at least 40 Ma, from the Early Cretaceous (Aptian) to the Late Cretaceous (Maastrichtian). The intrusive and subvolcanic rocks show similar trends for trace and major elements, evincing their comagmatic nature. The enrichment in LILE and LREE relative to HFSE and HREE, as well as the element anomalies (e.g., negative Nb, Ta, and Eu and positive Rb, Ba, K, and Pb) suggest a convergent continental plate margin tectonic setting. Mineral chemistry suggests magma crystallization in relatively oxic conditions (magnetite series), during ascent within a depth of 15 km to 5 km. The igneous rocks attributed to the Cuman ridge display compositional and geochronological features similar to Brno and Thaya batholiths in the Brunovistulian terrane, which could be a piece of the Carpathian foreland not covered by the Tertiary thrusts. Our data confirm the non-Carpathian origin of the igneous clasts, revealing a Neoproterozoic history of the Carpathian foreland units, which include a Cadomian/Pan-African continental arc, exposed mainly during the Late Cretaceous as an intrabasinal island of the Alpine Tethys, traditionally known as the Cuman Cordillera. Full article
Show Figures

Figure 1

28 pages, 11235 KiB  
Article
Petrogenesis, Tectonic Setting, and Metallogenic Constraints of Tin-Bearing Plutons in the Karamaili Granite Belt of Eastern Junggar, Xinjiang (NW China)
by Shuai Yuan, Qiwei Wang, Bowen Zhang, Xiaoping Gong and Chunmei Su
Minerals 2025, 15(7), 710; https://doi.org/10.3390/min15070710 - 3 Jul 2025
Viewed by 591
Abstract
The Karamaili Granite Belt (KGB) in the southern margin of the Eastern Junggar is the most important tin metallogenic belt in the southwestern Central Asian Orogenic Belt. The plutons in the western part have a close genetic relationship with tin mineralization. The zircon [...] Read more.
The Karamaili Granite Belt (KGB) in the southern margin of the Eastern Junggar is the most important tin metallogenic belt in the southwestern Central Asian Orogenic Belt. The plutons in the western part have a close genetic relationship with tin mineralization. The zircon U-Pb ages of the Kamusite, Laoyaquan, and Beilekuduke plutons are 315.1 ± 3.4 Ma, 313.6 ± 2.9 Ma, and 316.5 ± 4.6 Ma, respectively. The plutons have high silica (SiO2 = 75.53%–77.85%), potassium (K2O = 4.43%–5.42%), and alkalis (K2O + Na2O = 8.17%–8.90%) contents and low ferroan (Fe2O3T = 0.90%–1.48%), calcium, and magnesium contents and are classified as metaluminous–peraluminous, high-potassium, calc-alkaline iron granite. The rocks are enriched in Rb, Th, U, K, Pb, and Sn and strongly depleted in Ba, Sr, P, Eu, and Ti. They have strongly negative Eu anomalies (δEu = 0.01–0.05), 10,000 Ga/Al = 2.87–4.91 (>2.6), showing the geochemical characteristics of A-type granite. The zircon U/Pb ratios indicate that the above granites should be I- or A-type granite, which is generally formed under high-temperature (768–843 °C), low-pressure, and reducing magma conditions. The high Rb/Sr ratio (a mean of 48 > 1.2) and low K/Rb ratio (53.93–169.94) indicate that the tin-bearing plutons have undergone high differentiation. The positive whole-rock εNd(t) values (3.99–5.54) and the relatively young Nd T2DM model ages (616–455 Ma) suggest the magma is derived from partially melted juvenile crust, and the underplating of basic magma containing mantle materials that affected the source area. The results indicate the KGB was formed in the tectonic transition period in the late Carboniferous subduction post-collision environment. Orogenic compression influenced the tin-bearing plutons in the western part of the KGB, forming highly differentiated and reduced I, A-type transition granite. An extensional environment affected the plutons in the eastern sections, creating A-type granite with dark enclaves that suggest magma mixing with little evidence of tin mineralization. Full article
Show Figures

Figure 1

32 pages, 7693 KiB  
Article
Genesis and Evolution of the Qieliekeqi Siderite Deposit in the West Kunlun Orogen: Constraints from Geochemistry, Zircon U–Pb Geochronology, and Carbon–Oxygen Isotopes
by Yue Song, Liang Li, Yuan Gao and Yang Luo
Minerals 2025, 15(7), 699; https://doi.org/10.3390/min15070699 - 30 Jun 2025
Viewed by 342
Abstract
The Qieliekeqi siderite deposit, located in the Tashkurgan block of western Kunlun, is a carbonate-hosted iron deposit with hydrothermal sedimentary features. This study integrates whole-rock geochemistry, stable isotopes, and zircon U–Pb–Hf data to investigate its metallogenic evolution. Coarse-grained siderite samples, formed in deeper [...] Read more.
The Qieliekeqi siderite deposit, located in the Tashkurgan block of western Kunlun, is a carbonate-hosted iron deposit with hydrothermal sedimentary features. This study integrates whole-rock geochemistry, stable isotopes, and zircon U–Pb–Hf data to investigate its metallogenic evolution. Coarse-grained siderite samples, formed in deeper water, exhibit average Al2O3/TiO2 ratios of 29.14, δEu of 2.69, and δCe of 0.83, indicating hydrothermal fluid dominance with limited seawater mixing. Banded samples from shallower settings show an average Al2O3/TiO2 of 17.07, δEu of 3.18, and δCe of 0.94, suggesting stronger seawater interaction under oxidizing conditions. Both types are enriched in Mn, Co, and Ba, with low Ti and Al contents. Stable isotope results (δ13CPDB = −6.0‰ to −4.6‰; δ18OSMOW = 16.0‰ to 16.9‰) point to seawater-dominated fluids with minor magmatic and meteoric contributions, formed under open-system conditions at avg. temperatures of 53 to 58 °C. Zircon U–Pb dating yields an age of 211.01 ± 0.82 Ma, with an average εHf(t) of −3.94, indicating derivation from the partially melted ancient crust. These results support a two-stage model involving Late Cambrian hydrothermal sedimentation and Late Triassic magmatic overprinting. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

19 pages, 3874 KiB  
Article
The Formation Age and Geological Setting of the Huoqiu Group in the Southern Margin of North China Craton: Implication for BIF-Type Iron Prospecting Potentiality
by Lizhi Xue, Rongzhen Tang, Xinkai Chen, Jiashuo Cao and Yanjing Chen
Minerals 2025, 15(7), 695; https://doi.org/10.3390/min15070695 - 29 Jun 2025
Viewed by 318
Abstract
The Huoqiu Group is located in the southern margin of the North China Craton and is considered an Archean geologic body. Its supracrustal rocks are divided into the Huayuan, Wuji, and Zhouji formations in ascending order. The Wuji and Zhouji formations contain large [...] Read more.
The Huoqiu Group is located in the southern margin of the North China Craton and is considered an Archean geologic body. Its supracrustal rocks are divided into the Huayuan, Wuji, and Zhouji formations in ascending order. The Wuji and Zhouji formations contain large BIF-type iron deposits. The BIFs show geological and geochemical features of Paleoproterozoic Lake Superior-type rather than Archean Algoma-type. The study of the formation ages and evolutionary history of the Huoqiu Terrane will provide significant guidance for the mineralization and exploration of the Huoqiu iron deposits. In this paper, we collected all available isotopic ages and Hf isotopic compositions obtained from the Huoqiu Terrane and reassessed their accuracy and geological meanings. We conclude that the Wuji and Zhouji formations were not older than 2343 Ma. Therefore, the BIFs hosted in the Wuji and Zhouji formations must be of Paleoproterozoic age. The magmatic zircons from the TTG gneisses and granite yield U-Pb ages of Neoarchean Era, indicating that the Wuji and Zhouji formations of the Huoqiu Group were deposited on an Archean granitic basement that mainly comprises the trondhjemite-tonalite-granodiorite (TTG) gneisses and granites of the “Huayuan Formation”. The Early Precambrian crystalline basement in the Huoqiu area can be divided into the Huayuan Gneiss Complex and the Huoqiu Group, comprising the Wuji and Zhouji formations. The tectonic scenario of granitic complexes overlain by supracrustal rocks in the Huoqiu Terrane has been recognized in the Songshan, Zhongtiao, Xiaoshan, and Lushan Early Precambrian terranes in the southern margin of the North China Craton. As indicated by the zircon U-Pb ages and εHf(t) data, the crustal growth of the Huoqiu Terrane occurred mainly at ~2.9 Ga and ~2.7 Ga. Based on the sedimentary age, environment, and rhythm, the BIFs in the Huoqiu region are considered to be of Lake Superior type and of great potential for Fe ore exploration. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

30 pages, 11512 KiB  
Article
Petrogenesis of Late Jurassic–Early Cretaceous Granitoids in the Central Great Xing’ an Range, NE China
by Cheng Qian, Lu Lu, Yan Wang, Junyu Fu, Xiaoping Yang, Yujin Zhang and Sizhe Ni
Minerals 2025, 15(7), 693; https://doi.org/10.3390/min15070693 - 28 Jun 2025
Viewed by 329
Abstract
The Great Xing’ an Range is located in the eastern part of the Xing’ an-Mongolian Orogenic Belt, which is an important component of the Central Asian Orogenic Belt. To determine the emplacement age and petrogenesis of the granitoids in the Gegenmiao and Taonan [...] Read more.
The Great Xing’ an Range is located in the eastern part of the Xing’ an-Mongolian Orogenic Belt, which is an important component of the Central Asian Orogenic Belt. To determine the emplacement age and petrogenesis of the granitoids in the Gegenmiao and Taonan areas of the central Great Xing’an Range, and to investigate its tectonic setting, petrographic studies, zircon U-Pb geochronology, whole-rock Sr-Nd isotopic analysis, zircon Hf isotopic analysis, and detailed geochemical investigations of this intrusion were carried out. The results indicate the following, in relation to the granitoids in the study areas: (1) The zircon U-Pb dating of the granitic rocks in the study areas yields ages ranging from 141.4 ± 2.0 Ma to 158.7 ± 1.9 Ma, indicating their formation during the Late Jurassic to Early Cretaceous; (2) the geochemical characteristics indicate that these rocks belong to the calc-alkaline series and peraluminous, classified as highly fractionated I-type granites with adakite features; (3) the Sr-Nd isotopic data show that the εNd(t) values of Gegenmiao granitic rocks are 2.8 and 2.1, while those of Taonan granitic rocks range from −1.5 to 0.7; (4) the Zircon εHf(t) values of the granitic rocks from Gegenmiao and Taonan vary from 2.11 to 6.48 and 0.90 to 8.25, respectively. They are interpreted to have formed through partial melting of thickened lower crustal material during the Meso-Neoproterozoic. The Gegenmiao and Taonan granitic rocks were formed in a transitional environment from post-orogenic compression to extension, which is closely associated with the Mongolia–Okhotsk tectonic system. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

26 pages, 17130 KiB  
Article
Petrogenesis of an Anisian A2-Type Monzogranite from the East Kunlun Orogenic Belt, Northern Qinghai–Tibet Plateau
by Chao Hui, Fengyue Sun, Shahzad Bakht, Yanqian Yang, Jiaming Yan, Tao Yu, Xingsen Chen, Yajing Zhang, Chengxian Liu, Xinran Zhu, Yuxiang Wang, Haoran Li, Jianfeng Qiao, Tao Tian, Renyi Song, Desheng Dou, Shouye Dong and Xiangyu Lu
Minerals 2025, 15(7), 685; https://doi.org/10.3390/min15070685 - 27 Jun 2025
Viewed by 351
Abstract
Late Paleozoic to Early Mesozoic granitoids in the East Kunlun Orogenic Belt (EKOB) provide critical insights into the complex and debated relationship between Paleo–Tethyan magmatism and tectonics. This study presents integrated bulk-rock geochemical and zircon isotopic data for the Xingshugou monzogranite (MG) to [...] Read more.
Late Paleozoic to Early Mesozoic granitoids in the East Kunlun Orogenic Belt (EKOB) provide critical insights into the complex and debated relationship between Paleo–Tethyan magmatism and tectonics. This study presents integrated bulk-rock geochemical and zircon isotopic data for the Xingshugou monzogranite (MG) to address these controversies. LA-ICP-MS zircon U-Pb dating constrains the emplacement age of the MG to 247.1 ± 1.5 Ma. The MG exhibits a peraluminous and low Na2O A2-type granite affinity, characterized by high K2O (4.69–6.80 wt.%) and Zr + Nb + Ce + Y (>350 ppm) concentrations, coupled with high Y/Nb (>1.2) and A/CNK ratios (1.54–2.46). It also displays low FeOT, MnO, TiO2, P2O5, and Mg# values (26–49), alongside pronounced negative Eu anomalies (Eu/Eu* = 0.37–0.49) and moderately fractionated rare earth element (REE) patterns ((La/Yb)N = 3.30–5.11). The MG exhibits enrichment in light rare earth elements (LREEs) and large ion lithophile elements (LILEs; such as Sr and Ba), and depletion in high field strength elements (HFSEs; such as Nb, Ta, and Ti), collectively indicating an arc magmatic affinity. Zircon saturation temperatures (TZr = 868–934 °C) and geochemical discriminators suggest that the MG was generated under high-temperature, low-pressure, relatively dry conditions. Combined with positive zircon εHf(t) (1.8 to 4.7) values, it is suggested that the MG was derived from partial melting of juvenile crust. Synthesizing regional data, this study suggests that the Xingshugou MG was formed in an extensional tectonic setting triggered by slab rollback of the Paleo-Tethys Oceanic slab. Full article
(This article belongs to the Special Issue Tectonic Evolution of the Tethys Ocean in the Qinghai–Tibet Plateau)
Show Figures

Figure 1

34 pages, 12770 KiB  
Article
Immiscibility in Magma Conduits: Evidence from Granitic Enclaves
by Ya Tian, Guanglai Li, Yongle Yang, Chao Huang, Yinqiu Hu, Kai Xu and Ji Zhang
Minerals 2025, 15(7), 664; https://doi.org/10.3390/min15070664 - 20 Jun 2025
Viewed by 317
Abstract
Many granitic enclaves are developed in the volcanic channel of the Xiangshan volcanic basin. To explore their genesis, this study examined the petrography, geochemistry, LA-ICP-MS zircon U–Pb chronology, and zircon Hf isotopes of the granitic enclaves and compared them with the porphyroclastic lavas. [...] Read more.
Many granitic enclaves are developed in the volcanic channel of the Xiangshan volcanic basin. To explore their genesis, this study examined the petrography, geochemistry, LA-ICP-MS zircon U–Pb chronology, and zircon Hf isotopes of the granitic enclaves and compared them with the porphyroclastic lavas. In general, the granitic enclaves and porphyroclastic lavas have similar structures, and the rock-forming minerals and accessory minerals have relatively close compositions. In terms of rock geochemical characteristics, the granitic enclaves are richer in silicon and alkalis but have lower abundances of aluminum, magnesium, iron, and calcium than the porphyroclastic lavas. Rb, Th, K, Sm, and other elements are more enriched, whereas Ba, Ti, Nb, P, and other elements are more depleted. The granitic enclaves have lower rare earth contents (195.53 × 10−6–271.06 × 10−6) than the porphyroclastic lavas (246.67 × 10−6–314.27 × 10−6). The rare earth element distribution curves of the two are generally consistent, both right-leaning, and enriched with light rare earth patterns. The weighted average zircon U–Pb ages of two granitic enclave samples were 135.45 ± 0.54 Ma (MSWD = 0.62, n = 17) and 135.81 ± 0.60 Ma (MSWD = 0.40, n = 20), respectively, which are consistent with the weighted average age of a single porphyroclastic lava sample of 134.01 ± 0.53 Ma (MSWD = 2.0, n = 20). The zircons of the two kinds of rocks crystallize at almost the same temperature. The consistent trend of the rare earth element distribution curve of zircons in the granitic enclaves and the porphyroclastic lava samples indicates that the zircons of the two samples were formed in the same stage. The formation process of granitic enclaves may be that the lower crustal melt is induced to rise, and the crystallization differentiation occurs in the magma reservoir and is stored in the form of crystal mush, forming a shallow crystal mush reservoir. The crystal mush reservoir is composed of a large number of rock-forming minerals such as quartz, feldspar, and biotite, as well as accessory mineral crystals such as zircon and flowable intergranular melt. In the later stage of magma high evolution, a small and short-time magmatic activity caused a large amount of crystalline granitic crystal mush to pour into the volcanic pipeline. In the closed system of volcanic pipeline, the pressure and temperature decreased rapidly, and the supercooling degree increased, and the immiscibility finally formed pale granitic enclaves. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

Back to TopTop