Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = zinc-chelating peptide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2685 KiB  
Article
Preparation, Characterization, and In Vitro Stability Analysis of Deer Sinew Peptide-Zinc Chelate
by Shan Yang, Tianyuan Liu, Weijia Chen, Ying Zong, Jianan Geng, Yan Zhao, Zhongmei He and Rui Du
Foods 2025, 14(12), 2131; https://doi.org/10.3390/foods14122131 - 18 Jun 2025
Viewed by 441
Abstract
Novel peptide-zinc chelates (DSPs-Zn) with a zinc content of 186.94 mg/g were synthesized from deer tendon peptides at pH 6, 60 °C, 60 min, and peptide-zinc mass ratio of 1:3. Ultraviolet-visible absorption spectroscopy (UV) and Fourier transform infrared spectroscopy (FTIR) demonstrated that the [...] Read more.
Novel peptide-zinc chelates (DSPs-Zn) with a zinc content of 186.94 mg/g were synthesized from deer tendon peptides at pH 6, 60 °C, 60 min, and peptide-zinc mass ratio of 1:3. Ultraviolet-visible absorption spectroscopy (UV) and Fourier transform infrared spectroscopy (FTIR) demonstrated that the chelation sites of the deer tendon polypeptides (DSPs) with zinc ions were located at the carboxyl oxygen and amino nitrogen atoms of the peptides. Amino acid analysis showed that aspartic acid, glutamic acid, lysine, and arginine play important roles in the chelation process. In vitro simulated gastrointestinal digestion studies showed that DSPs-zinc exhibited higher stability than zinc sulfate and zinc gluconate in the pH range 2–8 and in a simulated gastrointestinal digestion environment. The above experimental results suggest that DSPs-Zn has the potential to be used as a novel zinc nutritional supplement. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

25 pages, 5888 KiB  
Article
Special Characterization and Excellent Antioxidant Capabilities of Zinc Chelated Squid Protein Nanoparticles
by Qiyi Zhou, Tianming Wang, Lixin Liu, Yaqi Kong, Yifan Liu, Wenhui Wu and Xiaozhen Diao
Foods 2025, 14(10), 1789; https://doi.org/10.3390/foods14101789 - 18 May 2025
Viewed by 473
Abstract
The functional exploration of marine-derived proteins is at the forefront of nutritional research. The Argentine squid protein (ASP) was extracted from Argentine squid carcasses and was hydrolyzed using neutral protease, with the degree of hydrolysis serving as the response variable. Using single-factor experiments [...] Read more.
The functional exploration of marine-derived proteins is at the forefront of nutritional research. The Argentine squid protein (ASP) was extracted from Argentine squid carcasses and was hydrolyzed using neutral protease, with the degree of hydrolysis serving as the response variable. Using single-factor experiments and response surface methodology, we identified optimal conditions for preparing Argentine squid protein peptides (ASPP). The hydrolysis degree reached 41.32% ± 0.27 under the conditions of 7% enzyme preparation addition, 2.4 h enzyme digestion time, and 6% substrate concentration. The ASPP was subsequently chelated with zinc sulfate to produce Zn-ASPP, whose structural and functional properties—including particle size, FTIR, DSC, viscosity, SEM, solubility, emulsibility, foamability, and antioxidant capacity—were systematically characterized. The results indicate that Zn-ASPP forms stable nanoparticles with strong antioxidant activity. The strongest antioxidant capacity reached 73.79% at a solution pH of 8, making it particularly valuable for food industry applications. This work may provide a theoretical basis and practical guidance for the development of zinc-fortified marine protein supplements with enhanced antioxidant properties. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

19 pages, 8961 KiB  
Article
Novel Insights into Ethanol-Soluble Oyster Peptide–Zinc-Chelating Agents: Structural Characterization, Chelation Mechanism, and Potential Protection on MEHP-Induced Leydig Cells
by Zhen Lu, Qianqian Huang, Xiaoming Qin, Fujia Chen, Enzhong Li and Haisheng Lin
Mar. Drugs 2024, 22(10), 465; https://doi.org/10.3390/md22100465 - 10 Oct 2024
Viewed by 2091
Abstract
Numerous studies have reported that mono-(2-ethylhexyl) phthalate (MEHP) (bioactive metabolite of Di(2-ethylhexyl) phthalate) has inhibitory effects on Leydig cells. This study aims to prepare an oyster peptide–zinc complex (PEP-Zn) to alleviate MEHP-induced damage in Leydig cells. Zinc-binding peptides were obtained through the following [...] Read more.
Numerous studies have reported that mono-(2-ethylhexyl) phthalate (MEHP) (bioactive metabolite of Di(2-ethylhexyl) phthalate) has inhibitory effects on Leydig cells. This study aims to prepare an oyster peptide–zinc complex (PEP-Zn) to alleviate MEHP-induced damage in Leydig cells. Zinc-binding peptides were obtained through the following processes: zinc-immobilized affinity chromatography (IMAC-Zn2+), liquid chromatography–mass spectrometry technology (LC-MS/MS) analysis, molecular docking, molecular dynamic simulation, and structural characterization. Then, the Zn-binding peptide (PEP) named Glu—His—Ala—Pro—Asn—His—Asp—Asn—Pro—Gly—Asp—Leu (EHAPNHDNPGDL) was identified. EHAPNHDNPGDL showed the highest zinc-chelating ability of 49.74 ± 1.44%, which was higher than that of the ethanol-soluble oyster peptides (27.50 ± 0.41%). In the EHAPNHDNPGDL-Zn complex, Asn-5, Asp-7, Asn-8, His-2, and Asp-11 played an important role in binding to the zinc ion. Additionally, EHAPNHDNPGDL-Zn was found to increase the cell viability, significantly increase the relative activity of antioxidant enzymes and testosterone content, and decrease malondialdehyde (MDA) content in MEHP-induced TM3 cells. The results also indicated that EHAPNHDNPGDL-Zn could alleviate MEHP-induced apoptosis by reducing the protein level of p53, p21, and Bax, and increasing the protein level of Bcl-2. These results indicate that the zinc-chelating peptides derived from oyster peptides could be used as a potential dietary zinc supplement. Full article
(This article belongs to the Special Issue The Bioactive Potential of Marine-Derived Peptides and Proteins)
Show Figures

Graphical abstract

22 pages, 11160 KiB  
Article
Proteome and Peptidome Changes and Zn Concentration in Chicken after In Ovo Stimulation with a Multi-Strain Probiotic and Zn-Gly Chelate: Preliminary Research
by Artur Ciszewski, Łukasz S. Jarosz, Katarzyna Michalak, Agnieszka Marek, Zbigniew Grądzki, Jacek Wawrzykowski, Bartłomiej Szymczak and Anna Rysiak
Curr. Issues Mol. Biol. 2024, 46(2), 1259-1280; https://doi.org/10.3390/cimb46020080 - 1 Feb 2024
Cited by 1 | Viewed by 1687
Abstract
The aim of the study was to determine differences in the proteome and peptidome and zinc concentrations in the serum and tissues of chickens supplemented with a multi-strain probiotic and/or zinc glycine chelate in ovo. A total of 1400 fertilized broiler eggs (Ross [...] Read more.
The aim of the study was to determine differences in the proteome and peptidome and zinc concentrations in the serum and tissues of chickens supplemented with a multi-strain probiotic and/or zinc glycine chelate in ovo. A total of 1400 fertilized broiler eggs (Ross × Ross 708) were divided into four groups: a control and experimental groups injected with a multi-strain probiotic, with zinc glycine chelate, and with the multi-strain probiotic and zinc glycine chelate. The proteome and peptidome were analyzed using SDS-PAGE and MALDI—TOF MS, and the zinc concentration was determined by flame atomic absorption spectrometry. We showed that in ovo supplementation with zinc glycine chelate increased the Zn concentration in the serum and yolk sac at 12 h post-hatch. The results of SDS-PAGE and western blot confirmed the presence of Cu/Zn SOD in the liver and in the small and large intestines at 12 h and at 7 days after hatching in all groups. Analysis of the MALDI—TOF MS spectra of chicken tissues showed in all experimental groups the expression of proteins and peptides that regulate immune response, metabolic processes, growth, development, and reproduction. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

14 pages, 1917 KiB  
Article
Preparation and Characterization of an Oyster Peptide–Zinc Complex and Its Antiproliferative Activity on HepG2 Cells
by Bo Peng, Zhu Chen and Yejia Wang
Mar. Drugs 2023, 21(10), 542; https://doi.org/10.3390/md21100542 - 18 Oct 2023
Cited by 4 | Viewed by 2362
Abstract
It is evident that zinc supplementation is essential for maintaining good health and preventing disease. In this study, a novel oyster peptide–zinc complex with an average molecular weight of 500 Da was prepared from oyster meat and purified using ultrafiltration, ultrasound, a programmed [...] Read more.
It is evident that zinc supplementation is essential for maintaining good health and preventing disease. In this study, a novel oyster peptide–zinc complex with an average molecular weight of 500 Da was prepared from oyster meat and purified using ultrafiltration, ultrasound, a programmed cooling procedure, chelating, and dialysis. The optimal chelating process parameters obtained through a response surface methodology optimization design are a peptide/zinc ratio of 15, pH of 6.53, reaction time of 80 min, and peptide concentration of 0.06 g/mL. Then, the structure of a peptide–zinc complex (named COP2-Zn) was investigated using the UV and infrared spectrums. The results showed that the maximum absorption peak was redshifted from 224.5 nm to 228.3 nm and the main difference of the absorption peaks was 1396.4 cm−1. The cytotoxicity and antiproliferative effects of COP2-Zn were evaluated. The results showed that COP2-Zn had a better antiproliferative effect than the unchelated peptide against HepG2 cells. A DNA flow cytometric analysis showed that COP2-Zn induced S-phase arrest in HepG2 cells in a dose-dependent manner. Additionally, the flow cytometer indicated that COP2-Zn significantly induced HepG2 cell apoptosis. Full article
Show Figures

Figure 1

16 pages, 4257 KiB  
Article
Bitter Almond Albumin ACE-Inhibitory Peptides: Purification, Screening, and Characterization In Silico, Action Mechanisms, Antihypertensive Effect In Vivo, and Stability
by Nan Qin, Chao Chen, Najun Zhang, Lulu Song, Yunfei Li, Lili Guo, Rui Liu and Wenfang Zhang
Molecules 2023, 28(16), 6002; https://doi.org/10.3390/molecules28166002 - 10 Aug 2023
Cited by 8 | Viewed by 2230
Abstract
Almond expeller is an undeveloped reservoir of bioactive peptides. In the current study, a zinc ion ligand Arg-Pro-Pro-Ser-Glu-Asp-Glu-Asp-Gln-Glu (RPPSEDEDQE) offering a noncompetitive inhibitory effect on ACE (IC50: 205.50 μmol·L−1) was identified from almond albumin hydrolysates via papain and thermolysin [...] Read more.
Almond expeller is an undeveloped reservoir of bioactive peptides. In the current study, a zinc ion ligand Arg-Pro-Pro-Ser-Glu-Asp-Glu-Asp-Gln-Glu (RPPSEDEDQE) offering a noncompetitive inhibitory effect on ACE (IC50: 205.50 μmol·L−1) was identified from almond albumin hydrolysates via papain and thermolysin hydrolysis, subsequent chromatographic separation, and UPLC-Q-TOF-MS/MS analysis. Molecular docking simulated the binding modes of RPPSEDEDQE to ACE and showed the formation of hydrogen bonds between RPPSEDEDQE and seven active residues of ACE. Moreover, RPPSEDEDQE could bind to fifteen active sites of ACE by hydrophobic interactions, and link with the His387 and zinc ions of the zinc tetrahedral coordination. Ultraviolet wavelength scanning and Fourier-transformed infrared spectroscopy analysis revealed that RPPSEDEDQE can provide multiple binding sites for zinc ions. However, RPPSEDEDQE cannot bind with any central pocket of ACE, which was evidenced by an inhibition kinetics experiment. Additionally, the zinc-chelating capacity and inhibiting ability against ACE of RPPSEDEDQE were both not significantly reduced by the hydrolysis of gastrointestinal enzymes. A moderate to high dose of RPPSEDEDQE (100–150 mg·kg bw−1) significantly reduced the systolic and diastolic blood pressure of spontaneous hypertensive rats, but chelation with zinc ions decreased its antihypertensive efficiency. These results indicate that bitter almond albumin peptides may be used for lowering blood pressure. Full article
Show Figures

Graphical abstract

15 pages, 3747 KiB  
Article
Study on the In Silico Screening and Characterization, Inhibition Mechanisms, Zinc-Chelate Activity, and Stability of ACE-Inhibitory Peptides Identified in Naked Oat Bran Albumin Hydrolysates
by Yan Li, Junru Li, Chaoxia Cheng, Yajun Zheng, Hanxu Li, Zilin Zhu, Yuxiang Yan, Wenhui Hao and Nan Qin
Foods 2023, 12(11), 2268; https://doi.org/10.3390/foods12112268 - 5 Jun 2023
Cited by 7 | Viewed by 2188
Abstract
In this study, naked oat bran albumin hydrolysates (NOBAH) were subjected to gel chromatography with Sephadex G-15, reverse phase-high liquid performance separation, and UPLC-ESI-MS/MS identification. Six safe peptides including Gly-Thr-Thr-Gly-Gly-Met-Gly-Thr (GTTGGMGT), Gln-Tyr-Val-Pro-Phe (QYVPF), Gly-Ala-Ala-Ala-Ala-Leu-Val (GAAAALV), Gly-Tyr-His-Gly-His (GYHGH), Gly-Leu-Arg-Ala-Ala-Ala-Ala-Ala-Ala-Glu-Gly-Gly (GLRAAAAAAEGG), and Pro-Ser-Ser-Pro-Pro-Ser (PSSPPS) were [...] Read more.
In this study, naked oat bran albumin hydrolysates (NOBAH) were subjected to gel chromatography with Sephadex G-15, reverse phase-high liquid performance separation, and UPLC-ESI-MS/MS identification. Six safe peptides including Gly-Thr-Thr-Gly-Gly-Met-Gly-Thr (GTTGGMGT), Gln-Tyr-Val-Pro-Phe (QYVPF), Gly-Ala-Ala-Ala-Ala-Leu-Val (GAAAALV), Gly-Tyr-His-Gly-His (GYHGH), Gly-Leu-Arg-Ala-Ala-Ala-Ala-Ala-Ala-Glu-Gly-Gly (GLRAAAAAAEGG), and Pro-Ser-Ser-Pro-Pro-Ser (PSSPPS) were identified. Next, in silico screening demonstrated that QYVPF and GYHGH had both angiotensin-I-converting enzyme (ACE) inhibition activity (IC50: 243.36 and 321.94 μmol/L, respectively) and Zinc-chelating ability (14.85 and 0.32 mg/g, respectively). The inhibition kinetics demonstrated that QYVPF and GYHGH were both uncompetitive inhibitors of ACE. Molecular docking showed that QYVPF and GYHGH could bind, respectively, three and five active residues of ACE with short hydrogen bonds (but not belonging to any central pocket). QYVPF and GYHGH could bind, respectively, twenty-two and eleven residues through hydrophobic interactions. Moreover, GYHGH was able to affect zinc tetrahedral coordination in ACE by interacting with His383. The inhibition activities of QYVPF and GYHGH toward ACE were relatively resistant to gastrointestinal digestion. GYHGH improved zinc solubility in the intestines (p > 0.05) because its amino and carboxyl groups were chelating sites for zinc ions. These results suggest the potential applications of naked oat peptides for potential antihypertension or zinc fortification. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

21 pages, 33125 KiB  
Article
Identification and Characterization of Novel ACE Inhibitory and Antioxidant Peptides from Sardina pilchardus Hydrolysate
by Mingyang Shao, Haixing Wu, Bohui Wang, Xuan Zhang, Xia Gao, Mengqi Jiang, Ruiheng Su and Xuanri Shen
Foods 2023, 12(11), 2216; https://doi.org/10.3390/foods12112216 - 31 May 2023
Cited by 21 | Viewed by 2746
Abstract
Sardina pilchardus is a valuable source of bioactive peptides with potential applications in functional foods. In this study, we investigated the angiotensin-converting enzyme (ACE) inhibitory activity of Sardina pilchardus protein hydrolysate (SPH) produced using dispase and alkaline protease. Our results showed that the [...] Read more.
Sardina pilchardus is a valuable source of bioactive peptides with potential applications in functional foods. In this study, we investigated the angiotensin-converting enzyme (ACE) inhibitory activity of Sardina pilchardus protein hydrolysate (SPH) produced using dispase and alkaline protease. Our results showed that the low molecular mass fractions (<3 kDa) obtained through ultrafiltration exhibited more effective ACE inhibition, as indicated by screening with ACE inhibitory activity. We further identified the low molecular mass fractions (<3 kDa) using an LC-MS/MS rapid screening strategy. A total of 37 peptides with potential ACE inhibitory activity were identified based on high biological activity scores, non-toxicity, good solubility, and novelty. Molecular docking was used to screen for peptides with ACE inhibitory activity, resulting in the identification of 11 peptides with higher -CDOCKER ENERGY and -CDOCKER INTERACTION ENERGY scores than lisinopril. The sequences FIGR, FILR, FQRL, FRAL, KFL, and KLF were obtained by synthesizing and validating these 11 peptides in vitro, all of which had ACE inhibitory activity, as well as zinc-chelating capacity. All six peptides were found to bind to the three active pockets (S1, S2, and S1’) of ACE during molecular docking, indicating that their inhibition patterns were competitive. Further analysis of the structural characteristics of these peptides indicated that all six peptides contain phenylalanine, which suggests that they may possess antioxidant activities. After experimental verification, it was found that all six of these peptides have antioxidant activities, and we also found that the SPH and ultrafiltration fractions of SPH had antioxidant activities. These findings suggest that Sardina pilchardus may be a potential source of natural antioxidants and ACE inhibitors for the development of functional foods, and using LC-MS/MS in combination with an online database and molecular docking represents a promising, effective, and accurate approach for the discovery of novel ACE inhibitory peptides. Full article
(This article belongs to the Section Foods of Marine Origin)
Show Figures

Figure 1

14 pages, 4555 KiB  
Article
Pentapeptide-Zinc Chelate from Sweet Almond Expeller Amandin Hydrolysates: Structural and Physicochemical Characteristics, Stability and Zinc Transport Ability In Vitro
by Jiangning Zhang and Zheng Ye
Molecules 2022, 27(22), 7936; https://doi.org/10.3390/molecules27227936 - 16 Nov 2022
Cited by 13 | Viewed by 2066
Abstract
To promote the application of almond expellers, sweet almond expeller globulin (amandin) was extracted for the preparation of bioactive peptides. After dual enzymatic hydrolysis, Sephadex G-15 gel isolation, reverse-phase high-performance liquid chromatography purification and ESI-MS/MS analysis, two novel peptides Val-Asp-Leu-Val-Ala-Glu-Val-Pro-Arg-Gly-Leu (1164.45 Da) and [...] Read more.
To promote the application of almond expellers, sweet almond expeller globulin (amandin) was extracted for the preparation of bioactive peptides. After dual enzymatic hydrolysis, Sephadex G-15 gel isolation, reverse-phase high-performance liquid chromatography purification and ESI-MS/MS analysis, two novel peptides Val-Asp-Leu-Val-Ala-Glu-Val-Pro-Arg-Gly-Leu (1164.45 Da) and Leu-Asp-Arg-Leu-Glu (644.77 Da) were identified in sweet almond expeller amandin hydrolysates. Leu-Asp-Arg-Leu-Glu (LDRLE) of excellent zinc-chelating capacity (24.73 mg/g) was selected for preparation of peptide-zinc chelate. Structural analysis revealed that zinc ions were mainly bonded to amino group and carboxyl group of LDRLE. Potential toxicity and some physicochemical properties of LDRLE and Val-Asp-Leu-Val-Ala-Glu-Val-Pro-Arg-Gly-Leu (VDLVAEVPRGL) were predicted in silico. The results demonstrated that both LDRLE and VDLVAEVPRGL were not toxic. Additionally, zinc solubility of LDRLE-zinc chelate was much higher than that of zinc sulphate and zinc gluconate at pH 6.0–10.0 and against gastrointestinal digestion at 37 °C (p < 0.05). However, incubation at 100 °C for 20–60 min significantly reduced zinc-solubility of LDRLE-zinc chelate. Moreover, the chelate showed higher zinc transport ability in vitro than zinc sulphate and zinc gluconate (p < 0.05). Therefore, peptides isolated from sweet almond expeller amandin have potential applications as ingredient of zinc supplements. Full article
(This article belongs to the Section Food Chemistry)
Show Figures

Graphical abstract

15 pages, 4103 KiB  
Article
Two Novel Antihypertensive Peptides Identified in Millet Bran Glutelin-2 Hydrolysates: Purification, In Silico Characterization, Molecular Docking with ACE and Stability in Various Food Processing Conditions
by Yajun Zheng, Xueying Wang, Min Guo, Xiaoting Yan, Yongliang Zhuang, Yue Sun and Junru Li
Foods 2022, 11(9), 1355; https://doi.org/10.3390/foods11091355 - 6 May 2022
Cited by 20 | Viewed by 3213
Abstract
The addition of food-derived antihypertensive peptides to the diet is considered a reasonable antihypertension strategy. However, data about the stability of antihypertensive peptides in different food processing conditions are limited. In this study, through Sephadex G-15 gel chromatography and RP-HPLC separation, UPLC–ESI–MS/MS analysis [...] Read more.
The addition of food-derived antihypertensive peptides to the diet is considered a reasonable antihypertension strategy. However, data about the stability of antihypertensive peptides in different food processing conditions are limited. In this study, through Sephadex G-15 gel chromatography and RP-HPLC separation, UPLC–ESI–MS/MS analysis and in silico screening, two novel ACE-inhibitory peptides, Pro-Leu-Leu-Lys (IC50: 549.87 μmol/L) and Pro-Pro-Met-Trp-Pro-Phe-Val (IC50: 364.62 μmol/L), were identified in millet bran glutelin-2 hydrolysates. The inhibition of angiotensin-I converting enzyme and the potential safety of PLLK and PPMWPFV were studied using molecular docking and in silico prediction, respectively. The results demonstrated that PLLK and PPMWPFV could non-competitively bind to one and seven binding sites of ACE through short hydrogen bonds, respectively. Both PLLK and PPMWPFV were resistant to different pH values (2.0–10.0), pasteurization conditions, addition of Na+, Mg2+ or K+ and simulated gastrointestinal digestion. However, PLLK and PPMWPFV were unstable upon heat treatment at 100 °C for more than 20 min or treatment with Fe3+ or Zn2+. In fact, treatment with Fe3+ or Zn2+ induced the formation of PLLK–iron or PLLK–zinc chelates and reduced the ACE-inhibitory activity of PLLK. These results indicate that peptides derived from millet bran could be added to foods as antihypertension agents. Full article
(This article belongs to the Special Issue Advanced Research on Anti-chronic Disease of Food Active Components)
Show Figures

Graphical abstract

23 pages, 12341 KiB  
Article
Probing the Structure and Function of the Cytosolic Domain of the Human Zinc Transporter ZnT8 with Nickel(II) Ions
by Maria Carmen Catapano, Douglas S. Parsons, Radosław Kotuniak, Přemysl Mladěnka, Wojciech Bal and Wolfgang Maret
Int. J. Mol. Sci. 2021, 22(6), 2940; https://doi.org/10.3390/ijms22062940 - 14 Mar 2021
Cited by 5 | Viewed by 3687
Abstract
The human zinc transporter ZnT8 provides the granules of pancreatic β-cells with zinc (II) ions for assembly of insulin hexamers for storage. Until recently, the structure and function of human ZnTs have been modelled on the basis of the 3D structures of bacterial [...] Read more.
The human zinc transporter ZnT8 provides the granules of pancreatic β-cells with zinc (II) ions for assembly of insulin hexamers for storage. Until recently, the structure and function of human ZnTs have been modelled on the basis of the 3D structures of bacterial zinc exporters, which form homodimers with each monomer having six transmembrane α-helices harbouring the zinc transport site and a cytosolic domain with an α,β structure and additional zinc-binding sites. However, there are important differences in function as the bacterial proteins export an excess of zinc ions from the bacterial cytoplasm, whereas ZnT8 exports zinc ions into subcellular vesicles when there is no apparent excess of cytosolic zinc ions. Indeed, recent structural investigations of human ZnT8 show differences in metal binding in the cytosolic domain when compared to the bacterial proteins. Two common variants, one with tryptophan (W) and the other with arginine (R) at position 325, have generated considerable interest as the R-variant is associated with a higher risk of developing type 2 diabetes. Since the mutation is at the apex of the cytosolic domain facing towards the cytosol, it is not clear how it can affect zinc transport through the transmembrane domain. We expressed the cytosolic domain of both variants of human ZnT8 and have begun structural and functional studies. We found that (i) the metal binding of the human protein is different from that of the bacterial proteins, (ii) the human protein has a C-terminal extension with three cysteine residues that bind a zinc(II) ion, and (iii) there are small differences in stability between the two variants. In this investigation, we employed nickel(II) ions as a probe for the spectroscopically silent Zn(II) ions and utilised colorimetric and fluorimetric indicators for Ni(II) ions to investigate metal binding. We established Ni(II) coordination to the C-terminal cysteines and found differences in metal affinity and coordination in the two ZnT8 variants. These structural differences are thought to be critical for the functional differences regarding the diabetes risk. Further insight into the assembly of the metal centres in the cytosolic domain was gained from potentiometric investigations of zinc binding to synthetic peptides corresponding to N-terminal and C-terminal sequences of ZnT8 bearing the metal-coordinating ligands. Our work suggests the involvement of the C-terminal cysteines, which are part of the cytosolic domain, in a metal chelation and/or acquisition mechanism and, as now supported by the high-resolution structural work, provides the first example of metal-thiolate coordination chemistry in zinc transporters. Full article
Show Figures

Figure 1

17 pages, 1015 KiB  
Review
Peptide–Mineral Complexes: Understanding Their Chemical Interactions, Bioavailability, and Potential Application in Mitigating Micronutrient Deficiency
by Xiaohong Sun, Roghayeh Amini Sarteshnizi, Ruth T. Boachie, Ogadimma D. Okagu, Raliat O. Abioye, Renata Pfeilsticker Neves, Ikenna Christian Ohanenye and Chibuike C. Udenigwe
Foods 2020, 9(10), 1402; https://doi.org/10.3390/foods9101402 - 2 Oct 2020
Cited by 74 | Viewed by 8272
Abstract
Iron, zinc, and calcium are essential micronutrients that play vital biological roles to maintain human health. Thus, their deficiencies are a public health concern worldwide. Mitigation of these deficiencies involves micronutrient fortification of staple foods, a strategy that can alter the physical and [...] Read more.
Iron, zinc, and calcium are essential micronutrients that play vital biological roles to maintain human health. Thus, their deficiencies are a public health concern worldwide. Mitigation of these deficiencies involves micronutrient fortification of staple foods, a strategy that can alter the physical and sensory properties of foods. Peptide–mineral complexes have been identified as promising alternatives for mineral-fortified functional foods or mineral supplements. This review outlines some of the methods used in the determination of the mineral chelating activities of food protein-derived peptides and the approaches for the preparation, purification and identification of mineral-binding peptides. The structure–activity relationship of mineral-binding peptides and the potential use of peptide–mineral complexes as functional food ingredients to mitigate micronutrient deficiency are discussed in relation to their chemical interactions, solubility, gastrointestinal digestion, absorption, and bioavailability. Finally, insights on the current challenges and future research directions in this area are provided. Full article
Show Figures

Figure 1

11 pages, 830 KiB  
Article
Effect of Molecular Weight of Tilapia (Oreochromis Niloticus) Skin Collagen Peptide Fractions on Zinc-Chelating Capacity and Bioaccessibility of the Zinc-Peptide Fractions Complexes in Vitro Digestion
by Lei Chen, Xuanri Shen and Guanghua Xia
Appl. Sci. 2020, 10(6), 2041; https://doi.org/10.3390/app10062041 - 17 Mar 2020
Cited by 29 | Viewed by 3943
Abstract
To investigate the effect of the molecular weight of tilapia skin collagen peptide fractions on their zinc chelation capacity and the bioaccessibility of their zinc complexes, we evaluated the zinc-chelating ability of different molecular weight peptide, the solubility, and the stability of the [...] Read more.
To investigate the effect of the molecular weight of tilapia skin collagen peptide fractions on their zinc chelation capacity and the bioaccessibility of their zinc complexes, we evaluated the zinc-chelating ability of different molecular weight peptide, the solubility, and the stability of the complexes during simulated in vitro digestion. Low molecular weight peptide (P1) exhibited a higher zinc-chelating ability, which can be attributed to the variety of metal chelate amino acid residues. The highest solubility and the lowest release of zinc during peptic digestion for the P1-zinc complex and the zinc binding to P1 were retained at approximately 50% after peptic-pancreatic digestion. Fourier transform infrared spectroscopy indicated the primary involvement of the N-H group in all peptide-zinc complexes. This finding suggests that low molecular weight peptidefraction with strong zinc chelation ability can be used as delivery agents to improve zinc bioaccessibility. Full article
(This article belongs to the Special Issue Research of Bioactive Peptides in Foods)
Show Figures

Figure 1

14 pages, 3281 KiB  
Article
Associative Interactions among Zinc, Apolipoprotein E, and Amyloid-β in the Amyloid Pathology
by Shin Bi Oh, Jung Ah Kim, SuJi Park and Joo-Yong Lee
Int. J. Mol. Sci. 2020, 21(3), 802; https://doi.org/10.3390/ijms21030802 - 25 Jan 2020
Cited by 20 | Viewed by 4522
Abstract
Zinc and apolipoprotein E (apoE) are reportedly involved in the pathology of Alzheimer’s disease. To investigate the associative interaction among zinc, apoE, and amyloid-β (Aβ) and its role in amyloid pathogenesis, we performed various biochemical and immunoreactive analyses using brain tissues of Tg2576 [...] Read more.
Zinc and apolipoprotein E (apoE) are reportedly involved in the pathology of Alzheimer’s disease. To investigate the associative interaction among zinc, apoE, and amyloid-β (Aβ) and its role in amyloid pathogenesis, we performed various biochemical and immunoreactive analyses using brain tissues of Tg2576 mice and synthetic Aβ and apoE peptides. On amyloid plaques or in brain lysates of Tg2576 mice, apoE and Aβ immunoreactivities increased after zinc chelation and were restored by its subsequent replacement. Zinc depletion dissociated apoE/Aβ complexes or larger-molecular sizes of Aβ oligomers/aggregates into smaller-molecular sizes of apoE and/or Aβ monomers/complexes. In the presence of zinc, synthetic apoE and/or Aβ peptides aggregated into larger-molecular sizes of oligomers or complexes. Endogenous proteases or plasmin in brain lysates degraded apoE and/or Aβ complexes, and their proteolytic activity increased with zinc depletion. These biochemical findings suggest that zinc associates with apoE and Aβ to encourage the formation of apoE/Aβ complexes or large aggregates, raising the deposition of zinc-rich amyloid plaques. In turn, the presence of abundant zinc around and within apoE/Aβ complexes may block the access or activity of Aβ-degrading antibodies or proteases. These results support the plausibility of chelation strategy aiming at reducing amyloid pathology in Alzheimer’s disease. Full article
(This article belongs to the Special Issue Advances on Chelation in Medicine)
Show Figures

Figure 1

14 pages, 2029 KiB  
Article
Zinc-Chelating Mechanism of Sea Cucumber (Stichopus japonicus)-Derived Synthetic Peptides
by Xiaoyang Liu, Zixu Wang, Fawen Yin, Yuxin Liu, Ningbo Qin, Yoshimasa Nakamura, Fereidoon Shahidi, Chenxu Yu, Dayong Zhou and Beiwei Zhu
Mar. Drugs 2019, 17(8), 438; https://doi.org/10.3390/md17080438 - 25 Jul 2019
Cited by 34 | Viewed by 5036
Abstract
In this study, three synthetic zinc-chelating peptides (ZCPs) derived from sea cucumber hydrolysates with limited or none of the common metal-chelating amino-acid residues were analyzed by flame atomic absorption spectroscopy, circular dichroism spectroscopy, size exclusion chromatography, zeta-potential, Fourier transform infrared spectroscopy, Raman spectroscopy [...] Read more.
In this study, three synthetic zinc-chelating peptides (ZCPs) derived from sea cucumber hydrolysates with limited or none of the common metal-chelating amino-acid residues were analyzed by flame atomic absorption spectroscopy, circular dichroism spectroscopy, size exclusion chromatography, zeta-potential, Fourier transform infrared spectroscopy, Raman spectroscopy and nuclear magnetic resonance spectroscopy. The amount of zinc bound to the ZCPs reached maximum values with ZCP:zinc at 1:1, and it was not further increased by additional zinc presence. The secondary structures of ZCPs were slightly altered, whereas no formation of multimers was observed. Furthermore, zinc increased the zeta-potential value by neutralizing the negatively charged residues. Only free carboxyl in C-terminus of ZCPs was identified as the primary binding site of zinc. These results provide the theoretical foundation to understand the mechanism of zinc chelation by peptides. Full article
Show Figures

Graphical abstract

Back to TopTop