Preparation and Characterization of an Oyster Peptide–Zinc Complex and Its Antiproliferative Activity on HepG2 Cells
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of Zinc–Peptide–Zinc Complex Process
2.2. Analysis of Amino Acid Composition
2.3. Optimization of Zinc–Peptide–Zinc Complex Process
2.3.1. Ultraviolet (UV) Spectroscopy Analysis
2.3.2. Fourier Transform Infrared Spectroscopy
2.4. Cytotoxicity
2.5. Antiproliferation Activity
2.6. Effect of COP2-Zn on Intracellular Antioxidant Enzymes
2.7. Induction of Cell Apoptosis by COP2-Zn
2.8. Effect of COP2-Zn on the Cell Cycle
3. Materials and Methods
3.1. Chemicals and Regents
3.2. Extraction and Preparation of Oyster Peptides (Named OP-2)
3.3. Optimization in the Production of the Peptide–Zinc Complex (COP2-Zn)
3.4. Determination of Zinc Chelating Capacity
3.5. Analysis of Amino Acid Composition
3.6. UV–Visible and Fourier Transform Infrared (FTIR) Spectroscopy
3.7. Cell Lines and Culture Conditions
3.8. Cytotoxicity and Antiproliferative Activity Assays
3.9. Cellular Antioxidant Enzymes Activities Assay
3.10. Fluorescence and Flow Cytometry Assays
3.11. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Novick, S.G. Complexometric titration of zinc—An analytical chemistry laboratory experiment. J. Chem. Educ. 1997, 74, 1463. [Google Scholar] [CrossRef]
- Welch, R.M. The impact of mineral nutrients in food crops on global human health. Plant Soil 2002, 247, 83–90. [Google Scholar] [CrossRef]
- Prasad, A.S. Zinc: An overview. Nutrition 1995, 11, 93–99. [Google Scholar]
- Fukui, K.; Baba, S.; Kumasaka, T.; Yano, T. Multiple zinc ions maintain the open conformation of the catalytic site in the dna mismatch repair endonuclease mutl from Aquifex aeolicus. FEBS Lett. 2018, 592, 1611–1619. [Google Scholar] [CrossRef]
- Prasad, A.S. Discovery of human zinc deficiency: 50 years later. J. Trace Elem. Med. Biol. 2012, 26, 66–69. [Google Scholar] [CrossRef]
- Fiorentino, M.; Landais, E.; Bastard, G.; Carriquiry, A.; Wieringa, F.T.; Berger, J. Nutrient intake is insufficient among senegalese urban school children and adolescents: Results from two 24 h recalls in state primary schools in dakar. Nutrients 2016, 8, 650. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Melse-Boonstra, A.; Shi, Z.; Pan, X.; Yuan, B.; Dai, Y.; Zhao, J.; Zimmermann, M.B.; Kok, F.J.; Zhou, M. Dietary intake of zinc in the population of Jiangsu province, China. Asia Pac. J. Clin. Nutr. 2009, 18, 193–199. [Google Scholar]
- Krebs, N.F. Overview of zinc absorption and excretion in the human gastrointestinal tract. J. Nutr. 2000, 130, 1374S–1377S. [Google Scholar] [CrossRef]
- Wapnir, R.A. Zinc deficiency, malnutrition and the gastrointestinal tract. J. Nutr. 2000, 130, 1388S–1392S. [Google Scholar] [CrossRef]
- Miquel, E.; Farre, R. Effects and future trends of casein phosphopeptides on zinc bioavailability. Trends Food Sci. Technol. 2007, 18, 139–143. [Google Scholar] [CrossRef]
- Wang, C.; Li, B.; Ao, J. Separation and identification of zinc-chelating peptides from sesame protein hydrolysate using IMAC-Zn2+ and LC–MS/MS. Food Chem. 2012, 134, 1231–1238. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; Wang, X.; Guo, X. Isolation and characterization of zinc-chelating peptides from wheat germ protein hydrolysates. J. Funct. Foods 2015, 12, 23–32. [Google Scholar] [CrossRef]
- Xie, N.; Huang, J.; Li, B.; Cheng, J.; Wang, Z.; Yin, J.; Yan, X. Affinity purification and characterisation of zinc chelating peptides from rapeseed protein hydrolysates: Possible contribution of characteristic amino acid residues. Food Chem. 2015, 173, 210–217. [Google Scholar] [CrossRef] [PubMed]
- You, L.; Zhao, M.; Liu, R.H.; Regenstein, J.M. Antioxidant and antiproliferative activities of loach (Misgurnus anguillicaudatus) peptides prepared by papain digestion. J. Agric. Food Chem. 2011, 59, 7948–7953. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Liu, C.; Song, W.; Che, S.; Wang, C.; Feng, X.; Li, B.; Dai, Y. Evaluating the efficacy of a ferrous-ion-chelating peptide from alaska pollock frame for the improvement of iron nutritional status in rats. Food Funct. 2019, 10, 4888–4896. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Z.; Zhang, J.; Song, L.; Li, D.; Wu, Z.; Zhu, B.; Nakamura, Y.; Shahidi, F.; Yu, C.; et al. Isolation and identification of zinc-chelating peptides from sea cucumber (Stichopus japonicus) protein hydrolysate. J. Sci. Food Agric. 2019, 99, 6400–6407. [Google Scholar] [CrossRef]
- Wu, W.; Li, B.; Hou, H.; Zhang, H.; Zhao, X. Isolation and identification of calcium—Chelating peptides from pacific cod skin gelatin and their binding properties with calcium. Food Funct. 2017, 8, 4441–4448. [Google Scholar] [CrossRef]
- Lanza, V.; Milardi, D.; Di Natale, G.; Pappalardo, G. Repurposing of copper (ii)-chelating drugs for the treatment of neurodegenerative diseases. Curr. Med. Chem. 2018, 25, 525–539. [Google Scholar] [CrossRef]
- Udechukwu, M.C.; Collins, S.A.; Udenigwe, C.C. Prospects of enhancing dietary zinc bioavailability with food-derived zinc-chelating peptides. Food Funct. 2016, 7, 4137–4144. [Google Scholar] [CrossRef]
- Gray, M.W.; Langdon, C.J. Ecophysiology of the olympia oyster, Ostrea lurida, and pacific oyster, Crassostrea gigas. Estuaries Coasts 2018, 41, 521–535. [Google Scholar] [CrossRef]
- Mandal, N.; Datta, S.C.; Manjaiah, K.M.; Dwivedi, B.S.; Kumar, R.; Aggarwal, P. Evaluation of zincated nanoclay polymer composite in releasing Zn and P and effect on soil enzyme activities in a wheat rhizosphere. Eur. J. Soil Sci. 2019, 70, 1164–1182. [Google Scholar] [CrossRef]
- Rajeshkumar, S.; Kumar, S.V.; Ramaiah, A.; Agarwal, H.; Lakshmi, T.; Roopan, S.M. Biosynthesis of zinc oxide nanoparticles using mangifera indica leaves and evaluation of their antioxidant and cytotoxic properties in lung cancer (a549) cells. Enzyme Microb. Technol. 2018, 117, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Liu, L.; He, G.; Wu, J. Molecular targets and mechanisms of bioactive peptides against metabolic syndromes. Food Funct. 2018, 9, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.; Lai, T.; Chen, L.; Fu, J.; Sreenivasan, S.T.; Yu, Z.; Ren, J. Synthesis and characterization of a walnut peptides—Zinc complex and its antiproliferative activity against human breast carcinoma cells through the induction of apoptosis. J. Agric. Food Chem. 2016, 64, 1509–1519. [Google Scholar] [CrossRef] [PubMed]
- Vogel, A.; Meyer, T.; Sapisochin, G.; Salem, R.; Saborowski, A. Hepatocellular carcinoma. Lancet 2022, 400, 1345–1362. [Google Scholar] [CrossRef] [PubMed]
- Grandhi, M.S.; Kim, A.K.; Ronnekleiv-Kelly, S.M.; Kamel, I.R.; Ghasebeh, M.A.; Pawlik, T.M. Hepatocellular carcinoma: From diagnosis to treatment. Surg. Oncol. 2016, 25, 74–85. [Google Scholar] [CrossRef]
- Li, J.; Gong, C.; Wang, Z.; Gao, R.; Ren, J.; Zhou, X.; Wang, H.; Xu, H.; Xiao, F.; Cao, Y.; et al. Oyster-derived zinc-binding peptide modified by plastein reaction via zinc chelation promotes the intestinal absorption of zinc. Mar. Drugs 2019, 17, 341. [Google Scholar] [CrossRef]
- Sun, R.; Liu, X.; Yu, Y.; Miao, J.; Leng, K.; Gao, H. Preparation process optimization, structural characterization and in vitro digestion stability analysis of antarctic krill (Euphausia superba) peptides-zinc chelate. Food Chem. 2021, 340, 128056. [Google Scholar] [CrossRef]
- Fu, T.; Zhang, S.; Sheng, Y.; Feng, Y.; Jiang, Y.; Zhang, Y.; Yu, M.; Wang, C. Isolation and characterization of zinc-binding peptides from mung bean protein hydrolysates. Eur. Food Res. Technol. 2020, 246, 113–124. [Google Scholar] [CrossRef]
- Huang, H.; Fu, M.; Chen, M.H. Preparation, characteristics, and formation mechanism of oyster peptide-zinc nanoparticles. J. Ocean Univ. 2019, 18, 953–961. [Google Scholar] [CrossRef]
- Zhao, L.; Cai, X.; Huang, S.; Wang, S.; Huang, Y.; Hong, J.; Rao, P. Isolation and identification of a whey protein-sourced calcium-binding tripeptide tyr-asp-thr. Int. Dairy J. 2015, 40, 16–23. [Google Scholar] [CrossRef]
- Armas, A.; Sonois, V.; Mothes, E.; Mazarguil, H.; Faller, P. Zinc(ii) binds to the neuroprotective peptide humanin. J. Inorg. Biochem. 2006, 100, 1672–1678. [Google Scholar] [CrossRef]
- Yang, P.; Li, T.; She, C.; Hong, P.; Zhou, C. Physicochemical properties of zinc chelating purified components by different method of tilapia scraps protein hydrolysate. Shuichan Xuebao 2015, 39, 447–454. [Google Scholar]
- Qian, J.; Chen, W.; Zhang, W.; Zhang, H. Adulteration identification of some fungal polysaccharides with SEM, XRD, IR and optical rotation: A primary approach. Carbohydr. Polym. 2009, 78, 620–625. [Google Scholar] [CrossRef]
- Udechukwu, M.C.; Downey, B.; Udenigwe, C.C. Influence of structural and surface properties of whey-derived peptides on zinc-chelating capacity, and in vitro gastric stability and bioaccessibility of the zinc-peptide complexes. Food Chem. 2018, 240, 1227–1232. [Google Scholar] [CrossRef]
- Eryilmaz, I.E.; Eskiler, G.G.; Egeli, U.; Yurdacan, B.; Cecener, G.; Tunca, B. In vitro cytotoxic and antiproliferative effects of usnic acid on hormone-dependent breast and prostate cancer cells. J. Biochem. Mol. Toxicol. 2018, 32, e22208. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ahmad, S.; Wang, L.; Han, Q.; Zhang, J.; Luo, Y. Cell death induced by α-terthienyl via reactive oxygen species-mediated mitochondrial dysfunction and oxidative stress in the midgut of aedes aegypti larvae. Free Radic. Biol. Med. 2019, 137, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Yu, B.; Liu, Y.; Guo, R.; Li, J.; Zhang, L.; Su, J.; Sun, L.; Li, Y. Zinc promotes prostate cancer cell chemosensitivity to paclitaxel by inhibiting epithelial-mesenchymal transition and inducing apoptosis. Prostate 2019, 79, 647–656. [Google Scholar] [CrossRef]
- Wang, R.; He, N.; Song, P.; He, Y.; Ding, L.; Lei, Z. Preparation of low-molecular-weight chitosan derivative zinc complexes and their effect on the growth of liver cancer cells in vitro. Pure Appl. Chem. 2009, 81, 2397–2405. [Google Scholar] [CrossRef]
- Banerjee, A.; Banerjee, K.; Sinha, A.; Das, S.; Majumder, S.; Majumdar, S.; Choudhuri, S.K. A zinc schiff base complex inhibits cancer progression both in vivo and in vitro by inducing apoptosis. Environ. Toxicol. Pharmacol. 2017, 56, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Yang, L.; Jiang, J. Effects of thonningianin a in natural foods on apoptosis and cell cycle arrest of hepg-2 human hepatocellular carcinoma cells. Food Funct. 2015, 6, 2588–2597. [Google Scholar] [CrossRef] [PubMed]
- Arias-Gil, M.; Garde-Cerdán, T.; Ancín-Azpilicueta, C. Influence of addition of ammonium and different amino acid concentrations on nitrogen metabolism in spontaneous must fermentation. Food Chem. 2007, 103, 1312–1318. [Google Scholar] [CrossRef]
- Hajji, L.; Boukir, A.; Assouik, J.; Lakhiari, H.; Kerbal, A.; Doumenq, P.; Mille, G.; De Carvalho, M.L. Conservation of moroccan manuscript papers aged 150, 200 and 800 years. Analysis by infrared spectroscopy (atr-ftir), X-ray diffraction (xrd), and scanning electron microscopy energy dispersive spectrometry (sem-eds). Spectroc. Acta Part A—Mol. Biomol. Spectr. 2015, 136, 1038–1046. [Google Scholar] [CrossRef] [PubMed]
- Felice, D.L.; Sun, J.; Liu, R.H. A modified methylene blue assay for accurate cell counting. J. Funct. Foods 2009, 1, 109–118. [Google Scholar] [CrossRef]
Test Number | Level | Chelating Rate | ||
---|---|---|---|---|
Peptide/Zinc | pH | Time (min) | (%) | |
1 | 10 | 6 | 60 | 72.61 |
2 | 15 | 6 | 40 | 63.08 |
3 | 15 | 5 | 60 | 65.92 |
4 | 5 | 6 | 40 | 61.81 |
5 | 5 | 6 | 80 | 60.89 |
6 | 15 | 7 | 60 | 70.83 |
7 | 10 | 6 | 60 | 70.94 |
8 | 10 | 7 | 40 | 66.99 |
9 | 10 | 7 | 80 | 69.33 |
10 | 10 | 5 | 40 | 63.61 |
11 | 15 | 6 | 80 | 76.08 |
12 | 5 | 7 | 60 | 64.42 |
13 | 10 | 6 | 60 | 69.54 |
14 | 5 | 5 | 60 | 59.36 |
15 | 10 | 6 | 60 | 71.94 |
16 | 10 | 6 | 60 | 69.61 |
17 | 10 | 5 | 80 | 63.94 |
Source | df | Mean Sequence | F Value | p Value | Significant |
---|---|---|---|---|---|
Model | 9 | 37.0597 | 12.7800 | <0.0001 | *** |
A | 1 | 108.3538 | 37.3657 | 0.0005 | ** |
B | 1 | 43.8834 | 15.1331 | 0.0060 | ** |
C | 1 | 27.2362 | 9.3924 | 0.0182 | * |
AB | 1 | 0.0051 | 0.0018 | 0.9677 | - |
AC | 1 | 48.4186 | 16.6971 | 0.0047 | ** |
BC | 1 | 1.0111 | 0.3487 | 0.5734 | - |
A2 | 1 | 41.8140 | 14.4195 | 0.0067 | * |
B2 | 1 | 29.5051 | 10.1748 | 0.0153 | * |
C2 | 1 | 22.5216 | 7.7666 | 0.0270 | * |
Residual | 7 | 2.8998 | - | - | - |
Lack of fit | 3 | 4.2574 | 2.2626 | 0.2233 | - |
Amino Acid Composition | Content (g/100 g) | Amino Acid Composition | Content (g/100 g) |
---|---|---|---|
Asp | 2.708 | Ile * | 0.819 |
Thr * | 1.040 | Leu * | 0.908 |
Ser | 0.937 | Tyr | 0.489 |
Glu | 2.496 | Phe * | 0.464 |
Gly | 1.699 | Lys * | 1.260 |
Ala | 0.704 | His | 0.781 |
Cys | 0.195 | Arg | 1.085 |
Val * | 0.861 | Pro | 1.539 |
Met * | 0.576 | Trp * | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, B.; Chen, Z.; Wang, Y. Preparation and Characterization of an Oyster Peptide–Zinc Complex and Its Antiproliferative Activity on HepG2 Cells. Mar. Drugs 2023, 21, 542. https://doi.org/10.3390/md21100542
Peng B, Chen Z, Wang Y. Preparation and Characterization of an Oyster Peptide–Zinc Complex and Its Antiproliferative Activity on HepG2 Cells. Marine Drugs. 2023; 21(10):542. https://doi.org/10.3390/md21100542
Chicago/Turabian StylePeng, Bo, Zhu Chen, and Yejia Wang. 2023. "Preparation and Characterization of an Oyster Peptide–Zinc Complex and Its Antiproliferative Activity on HepG2 Cells" Marine Drugs 21, no. 10: 542. https://doi.org/10.3390/md21100542