Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = zinc oxide-gold composites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6327 KiB  
Article
ZnO Decorated Graphene-Based NFC Tag for Personal NO2 Exposure Monitoring during a Workday
by Alejandro Santos-Betancourt, José Carlos Santos-Ceballos, Mohamed Ayoub Alouani, Shuja Bashir Malik, Alfonso Romero, José Luis Ramírez, Xavier Vilanova and Eduard Llobet
Sensors 2024, 24(5), 1431; https://doi.org/10.3390/s24051431 - 22 Feb 2024
Cited by 6 | Viewed by 2768
Abstract
This paper presents the integration of a sensing layer over interdigitated electrodes and an electronic circuit on the same flexible printed circuit board. This integration provides an effective technique to use this design as a wearable gas measuring system in a target application, [...] Read more.
This paper presents the integration of a sensing layer over interdigitated electrodes and an electronic circuit on the same flexible printed circuit board. This integration provides an effective technique to use this design as a wearable gas measuring system in a target application, exhibiting high performance, low power consumption, and being lightweight for on-site monitoring. The wearable system proves the concept of using an NFC tag combined with a chemoresistive gas sensor as a cumulative gas sensor, having the possibility of holding the data for a working day, and completely capturing the exposure of a person to NO2 concentrations. Three different types of sensors were tested, depositing the sensing layers on gold electrodes over Kapton substrate: bare graphene, graphene decorated with 5 wt.% zinc oxide nanoflowers, or nanopillars. The deposited layers were characterized using FESEM, EDX, XRD, and Raman spectroscopy to determine their crystalline structure, morphological and chemical compositions. The gas sensing performance of the sensors was analyzed against NO2 (dry and humid conditions) and other interfering species (dry conditions) to check their sensitivity and selectivity. The resultant-built wearable NFC tag system accumulates the data in a non-volatile memory every minute and has an average low power consumption of 24.9 µW in dynamic operation. Also, it can be easily attached to a work vest. Full article
Show Figures

Figure 1

19 pages, 1949 KiB  
Review
Characterization of Nanoparticles in Antimicrobial Coatings for Medical Applications—A Review
by Iva Rezić and Ernest Meštrović
Coatings 2023, 13(11), 1830; https://doi.org/10.3390/coatings13111830 - 25 Oct 2023
Cited by 10 | Viewed by 3808
Abstract
This review discusses relevant topics concerning the understanding of the characterization of antimicrobial coatings due to powerful antimicrobial nanoparticles in their composition. These coatings are utilized in the surface modification of yarns and materials designed for use in medical and dental applications. Various [...] Read more.
This review discusses relevant topics concerning the understanding of the characterization of antimicrobial coatings due to powerful antimicrobial nanoparticles in their composition. These coatings are utilized in the surface modification of yarns and materials designed for use in medical and dental applications. Various physical and chemical methods are employed to create these coatings, ensuring the development of efficient, homogeneous, and uniform layers on diverse surfaces and materials. The primary objective is to confer antimicrobial and/or antiviral properties upon these materials. For these coatings to be effective, they must incorporate active compounds that can combat a wide array of microorganisms, including those that have developed resistance to antibiotics. Examples of such active compounds include metallic nanoparticles such as silver, copper, and gold, as well as nanoparticles of metal oxides such as zinc, titanium, and aluminum. Upon the application of these coatings to medical materials, extensive testing and characterization procedures are undertaken, which will be thoroughly detailed in this review. It is crucial to emphasize that the absence of proper characterization and testing of nanoparticles in antimicrobial coatings could lead to the absence of standards, norms, or procedures necessary to safeguard human health and the environment. Despite their widespread application in the medical field, concerns have been raised regarding the potential toxicity of nanoparticles to living organisms. Consequently, this paper provides a comprehensive overview of the current state-of-the-art methodologies for characterizing nanoparticles in antimicrobial coatings, specifically focusing on materials with varying roughness and structures. Additionally, it outlines the issues associated with the potential accumulation of antimicrobial nanoparticles within the human body. Full article
Show Figures

Figure 1

18 pages, 2767 KiB  
Article
Polymer-Stabilized Silver (Gold)–Zinc Oxide Nanoheterodimer Structures as Antimicrobials
by Nadezhda A. Samoilova, Maria A. Krayukhina, Alexander V. Naumkin, Alexander A. Korlyukov, Nelya M. Anuchina and Dmitry A. Popov
Appl. Sci. 2023, 13(20), 11121; https://doi.org/10.3390/app132011121 - 10 Oct 2023
Cited by 3 | Viewed by 1466
Abstract
A simple one-pot method is proposed for obtaining the colloidal nanohybrid structures of silver (gold) and zinc oxide as well as nanostructures doped with zinc ions. The copolymers of maleic acid were used for the stabilization of nanoheterostructures. To characterize the preparation, UV–Vis [...] Read more.
A simple one-pot method is proposed for obtaining the colloidal nanohybrid structures of silver (gold) and zinc oxide as well as nanostructures doped with zinc ions. The copolymers of maleic acid were used for the stabilization of nanoheterostructures. To characterize the preparation, UV–Vis spectroscopy, TEM, FTIR, XPS, and XRD were used. The bactericidal properties of the nanoheterostructures were studied in relation to the fungus C. albicans and the bacteria E. coli and S. aureus, used in planktonic form. In general, the samples containing nanosilver were the most active, and the preparations containing gold nanoparticles were the least active. The minimum inhibitory concentrations (MICs) of the Ag/ZnO samples, based on all copolymers, were in the ranges of 1.4–1.7 μg/mL for C. albicans, 2.9–6.8 μg/mL for E. coli, and 23–27 μg/mL for S. aureus; the MIC values of Au/ZnO samples were 472 μg/mL for S. aureus and 945 μg/mL for C. albicans and E. coli. The additional introduction of zinc cations into heterodimers had practically no effect on the antimicrobial properties of the composites. For all prepared composites and all tested microorganisms, the fractional inhibitory concentration indexes were in the range of 0.5–2.2, which indicates a close-to-additive contribution of the bioactive components in the samples used in the bactericidal process. Full article
(This article belongs to the Special Issue Functional Polymers: Synthesis, Properties and Applications)
Show Figures

Figure 1

19 pages, 6900 KiB  
Article
Enhanced Plasmonic Photocatalysis of Au-Decorated ZnO Nanocomposites
by Maria Stefan, Adriana Popa, Dana Toloman, Cristian Leostean, Lucian Barbu-Tudoran and Alexandra Falamas
Inorganics 2023, 11(4), 157; https://doi.org/10.3390/inorganics11040157 - 6 Apr 2023
Cited by 17 | Viewed by 2855
Abstract
The rapid development of technological processes in various industrial fields has led to surface water pollution with different organic pollutants, such as dyes, pesticides, and antibiotics. In this context, it is necessary to find modern, environmentally friendly solutions to avoid the hazardous effects [...] Read more.
The rapid development of technological processes in various industrial fields has led to surface water pollution with different organic pollutants, such as dyes, pesticides, and antibiotics. In this context, it is necessary to find modern, environmentally friendly solutions to avoid the hazardous effects on the aquatic environment. The aim of this paper is to improve the photocatalytic performance of zinc oxide (ZnO) nanoparticles by using the plasmonic resonance induced by covering them with gold (Au) nanoparticles. Therefore, we evaluate the charge carriers’ behavior in terms of optical properties and reactive oxygen species (ROS) generation. The ZnO-Au nanocomposites were synthesized through a simple chemical protocol in multiple steps. ZnO nanoparticles (NPs) approximately 20 nm in diameter were prepared by chemical precipitation. ZnO-Au nanocomposites were obtained by decorating the ZnO NPs with Au at different molar ratios through a reduction process. X-ray diffraction (XRD) analysis and transmission electron microscopy (TEM) confirmed the simultaneous presence of hexagonal ZnO and cubic Au phases. The optical investigations evidenced the existence of a band-gap absorption peak of ZnO at 372 nm, as well as a surface plasmonic band of Au nanoparticles at 573 nm. The photocatalytic tests indicated increased photocatalytic degradation of the Rhodamine B (RhB) and oxytetracycline (OTC) pollutants under visible light irradiation in the presence of ZnO-Au nanocomposites (60–85%) compared to ZnO NPs (43%). This behavior can be assigned to the plasmonic resonance and the synergetic effects of the individual constituents in the composite nanostructures. The spin-trapping experiments showed the production of ROS while the nanostructures were in contact with the pollutants. This study introduces new strategies to adjust the efficiency of photocatalytic devices by the combination of two types of nanostructures with synergistic functionalities into one single entity. ZnO-Au nanocomposites can be used as stable photocatalysts with excellent reusability and possible industrial applications. Full article
(This article belongs to the Special Issue Optoelectronic Properties of Metal Oxide Semiconductors)
Show Figures

Graphical abstract

16 pages, 4170 KiB  
Article
Electrochemical Aptasensor Based on ZnO-Au Nanocomposites for the Determination of Ochratoxin A in Wine and Beer
by Sai Zhang, Yahui Wang, Qinglin Sheng and Tianli Yue
Processes 2023, 11(3), 864; https://doi.org/10.3390/pr11030864 - 14 Mar 2023
Cited by 7 | Viewed by 2283
Abstract
Ochratoxin A (OTA) is positively correlated with an increased risk of developing cancer in nephrotoxic and hepatotoxic patients. Therefore, it is of great significance for the highly sensitive, highly selective, and timely detection of OTA. We described here an electrochemical aptasensor for OTA analysis, [...] Read more.
Ochratoxin A (OTA) is positively correlated with an increased risk of developing cancer in nephrotoxic and hepatotoxic patients. Therefore, it is of great significance for the highly sensitive, highly selective, and timely detection of OTA. We described here an electrochemical aptasensor for OTA analysis, which took advantage of the favorable properties of gold nanoparticles (AuNPs) functionalized zinc oxide (ZnO) composites and the intercalative binding between methylene blue (MB) and nucleic acid. There were two label-free aptamers: one to capture OTA and another serving as complementary DNA (cDNA), enabling connection to the ZnO-Au composite’s immobilized electrode. Once OTA was present, the aptamer could capture OTA and detach from the electrode interface, thus, preventing MB from accessing electrode surface for efficient electron transfer; a decreased peak current was monitored by differential pulse voltammetry. The aptasensor presented nice analytical performance for OTA detection in the range of 0.1–30,000 pg·mL−1, with a detection limit of 0.05 pg·mL−1. Moreover, the developed biosensor could be applied to actual sample (wine and beer) analysis. Full article
Show Figures

Graphical abstract

24 pages, 5042 KiB  
Article
Burdock-Derived Composites Based on Biogenic Gold, Silver Chloride and Zinc Oxide Particles as Green Multifunctional Platforms for Biomedical Applications and Environmental Protection
by Irina Zgura, Nicoleta Badea, Monica Enculescu, Valentin-Adrian Maraloiu, Camelia Ungureanu and Marcela-Elisabeta Barbinta-Patrascu
Materials 2023, 16(3), 1153; https://doi.org/10.3390/ma16031153 - 29 Jan 2023
Cited by 10 | Viewed by 3313
Abstract
Green nanotechnology is a rapidly growing field linked to using the principles of green chemistry to design novel nanomaterials with great potential in environmental and health protection. In this work, metal and semiconducting particles (AuNPs, AgClNPs, ZnO, AuZnO, AgClZnO, and AuAgClZnO) were phytosynthesized [...] Read more.
Green nanotechnology is a rapidly growing field linked to using the principles of green chemistry to design novel nanomaterials with great potential in environmental and health protection. In this work, metal and semiconducting particles (AuNPs, AgClNPs, ZnO, AuZnO, AgClZnO, and AuAgClZnO) were phytosynthesized through a “green” bottom-up approach, using burdock (Arctium lappa L.) aqueous extract. The morphological (SEM/TEM), structural (XRD, SAED), compositional (EDS), optical (UV–Vis absorption and FTIR spectroscopy), photocatalytic, and bio-properties of the prepared composites were analyzed. The particle size was determined by SEM/TEM and by DLS measurements. The phytoparticles presented high and moderate physical stability, evaluated by zeta potential measurements. The investigation of photocatalytic activity of these composites, using Rhodamine B solutions’ degradation under solar light irradiation in the presence of prepared powders, showed different degradation efficiencies. Bioevaluation of the obtained composites revealed the antioxidant and antibacterial properties. The tricomponent system AuAgClZnO showed the best antioxidant activity for capturing ROS and ABTS•+ radicals, and the best biocidal action against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. The “green” developed composites can be considered potential adjuvants in biomedical (antioxidant or biocidal agents) or environmental (as antimicrobial agents and catalysts for degradation of water pollutants) applications. Full article
Show Figures

Figure 1

17 pages, 1404 KiB  
Review
Applications of Inorganic Nanoparticles in Food Packaging: A Comprehensive Review
by Kshirod Kumar Dash, Pinky Deka, Sneh Punia Bangar, Vandana Chaudhary, Monica Trif and Alexandru Rusu
Polymers 2022, 14(3), 521; https://doi.org/10.3390/polym14030521 - 27 Jan 2022
Cited by 127 | Viewed by 10020
Abstract
Nanoparticles (NPs) have acquired significance in technological breakthroughs due to their unique properties, such as size, shape, chemical composition, physiochemical stability, crystal structure, and larger surface area. There is a huge demand for packaging materials that can keep food fresher for extended periods [...] Read more.
Nanoparticles (NPs) have acquired significance in technological breakthroughs due to their unique properties, such as size, shape, chemical composition, physiochemical stability, crystal structure, and larger surface area. There is a huge demand for packaging materials that can keep food fresher for extended periods of time. The incorporation of nanoscale fillers in the polymer matrix would assists in the alleviation of packaging material challenges while also improving functional qualities. Increased barrier properties, thermal properties like melting point and glass transition temperatures, and changed functionalities like surface wettability and hydrophobicity are all features of these polymers containing nanocomposites. Inorganic nanoparticles also have the potential to reduce the growth of bacteria within the packaging. By incorporating nano-sized components into biopolymer-based packaging materials, waste material generated during the packaging process may be reduced. The different inorganic nanoparticles such as titanium oxide, zinc oxide, copper oxide, silver, and gold are the most preferred inorganic nanoparticles used in food packaging. Food systems can benefit from using these packaging materials and improve physicochemical and functional properties. The compatibility of inorganic nanoparticles and their various forms with different polymers make them excellent components for package fortification. This review article describes the various aspects of developing and applying inorganic nanoparticles in food packaging. This study provides diverse uses of metals and metal oxides nanoparticles in food packaging films for the development of improved packaging films that can extend the shelf life of food products. These packaging solutions containing nanoparticles would effectively preserve, protect, and maintain the quality of the food material. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

12 pages, 2984 KiB  
Article
New Approaches to Increasing the Superhydrophobicity of Coatings Based on ZnO and TiO2
by Arsen E. Muslimov, Makhach Kh. Gadzhiev and Vladimir M. Kanevsky
Coatings 2021, 11(11), 1369; https://doi.org/10.3390/coatings11111369 - 8 Nov 2021
Cited by 6 | Viewed by 2780
Abstract
The work presented is devoted to new approaches to increasing the superhydrophobic properties of coatings based on zinc oxide (ZnO) and titanium dioxide (TiO2). There is an innovation in the use of inorganic coatings with a non-polar structure, high melting point, [...] Read more.
The work presented is devoted to new approaches to increasing the superhydrophobic properties of coatings based on zinc oxide (ZnO) and titanium dioxide (TiO2). There is an innovation in the use of inorganic coatings with a non-polar structure, high melting point, and good adhesion to ZnO, in contrast to the traditionally used polymer coatings with low performance characteristics. The maximum superhydrophobicity of the ZnO surface (contact angle of 173°) is achieved after coating with a layer of hematite (Fe2O3). The reason for the abnormally high hydrophobicity is a combination of factors: minimization of the area of contact with water (Cassie state) and the specific microstructure of a coating with a layer of non-polar Fe2O3. It was shown that the coating of ZnO structures with bimodal roughness with a gold (Au) layer that is 60-nm thick leads to an increase in the wetting contact angle from 145° to 168°. For clean surfaces of Au and hematite Fe2O3 films, the contact angle wets at no more than 70°. In the case of titanium oxide coatings, what is new lies in the method of controlled synthesis of a coating with a given crystal structure and a level of doping with nitrogen using plasma technologies. It has been shown that the use of nitrogen plasma in an open atmosphere with different compositions (molecular, atomic) makes it possible to obtain both a hydrophilic (contact angle of 73°) and a highly hydrophobic surface (contact angle of 150°). Full article
(This article belongs to the Special Issue Superhydrophobic and Superoleophobic Surfaces)
Show Figures

Figure 1

25 pages, 2576 KiB  
Review
Inorganic Nanoparticles and Composite Films for Antimicrobial Therapies
by Vera Alexandra Spirescu, Cristina Chircov, Alexandru Mihai Grumezescu, Bogdan Ștefan Vasile and Ecaterina Andronescu
Int. J. Mol. Sci. 2021, 22(9), 4595; https://doi.org/10.3390/ijms22094595 - 27 Apr 2021
Cited by 120 | Viewed by 12038
Abstract
The development of drug-resistant microorganisms has become a critical issue for modern medicine and drug discovery and development with severe socio-economic and ecological implications. Since standard and conventional treatment options are generally inefficient, leading to infection persistence and spreading, novel strategies are fundamentally [...] Read more.
The development of drug-resistant microorganisms has become a critical issue for modern medicine and drug discovery and development with severe socio-economic and ecological implications. Since standard and conventional treatment options are generally inefficient, leading to infection persistence and spreading, novel strategies are fundamentally necessary in order to avoid serious global health problems. In this regard, both metal and metal oxide nanoparticles (NPs) demonstrated increased effectiveness as nanobiocides due to intrinsic antimicrobial properties and as nanocarriers for antimicrobial drugs. Among them, gold, silver, copper, zinc oxide, titanium oxide, magnesium oxide, and iron oxide NPs are the most preferred, owing to their proven antimicrobial mechanisms and bio/cytocompatibility. Furthermore, inorganic NPs can be incorporated or attached to organic/inorganic films, thus broadening their application within implant or catheter coatings and wound dressings. In this context, this paper aims to provide an up-to-date overview of the most recent studies investigating inorganic NPs and their integration into composite films designed for antimicrobial therapies. Full article
(This article belongs to the Special Issue Interactions of Nanoparticles with Biomolecules)
Show Figures

Figure 1

31 pages, 4625 KiB  
Review
Nanomaterials for Diagnosis and Treatment of Brain Cancer: Recent Updates
by Mahwash Mukhtar, Muhammad Bilal, Abbas Rahdar, Mahmood Barani, Rabia Arshad, Tapan Behl, Ciprian Brisc, Florin Banica and Simona Bungau
Chemosensors 2020, 8(4), 117; https://doi.org/10.3390/chemosensors8040117 - 20 Nov 2020
Cited by 145 | Viewed by 16226
Abstract
Brain tumors, especially glioblastoma, remain the most aggressive form of all the cancers because of inefficient diagnosis and profiling. Nanostructures, such as metallic nanostructures, silica nano-vehicles, quantum dots, lipid nanoparticles (NPs) and polymeric NPs, with high specificity have made it possible to permeate [...] Read more.
Brain tumors, especially glioblastoma, remain the most aggressive form of all the cancers because of inefficient diagnosis and profiling. Nanostructures, such as metallic nanostructures, silica nano-vehicles, quantum dots, lipid nanoparticles (NPs) and polymeric NPs, with high specificity have made it possible to permeate the blood–brain barrier (BBB). NPs possess optical, magnetic and photodynamic properties that can be exploited by surface modification, bio composition, contrast agents’ encapsulation and coating by tumor-derived cells. Hence, nanotechnology has brought on a revolution in the field of diagnosis and imaging of brain tumors and cancers. Recently, nanomaterials with biomimetic functions have been introduced to efficiently cross the BBB to be engulfed by deep skin tumors and cancer malignancies for imaging. The review focuses on nanotechnology-based diagnostic and imaging approaches for exploration in brain tumors and cancers. Moreover, the review also summarizes a few strategies to image glioblastoma and cancers by multimodal functional nanocomposites for more precise and accurate clinical diagnosis. Their unique physicochemical attributes, including nanoscale sizes, larger surface area, explicit structural features and ability to encapsulate diverse molecules on their surface, render nanostructured materials as excellent nano-vehicles to cross the blood–brain barrier and convey drug molecules to their target region. This review sheds light on the current progress of various kinds of nanomaterials, such as liposomes, nano-micelles, dendrimers, carbon nanotubes, carbon dots and NPs (gold, silver and zinc oxide NPs), for efficient drug delivery in the treatment and diagnosis of brain cancer. Full article
(This article belongs to the Special Issue Nanostructured Devices for Biochemical Sensing)
Show Figures

Figure 1

15 pages, 2572 KiB  
Article
Biomimetic Catalysts Based on Au@ZnO–Graphene Composites for the Generation of Hydrogen by Water Splitting
by Abniel Machín, Juan C. Arango, Kenneth Fontánez, María Cotto, José Duconge, Loraine Soto-Vázquez, Edgar Resto, Florian Ion Tiberiu Petrescu, Carmen Morant and Francisco Márquez
Biomimetics 2020, 5(3), 39; https://doi.org/10.3390/biomimetics5030039 - 21 Aug 2020
Cited by 19 | Viewed by 5431
Abstract
For some decades, the scientific community has been looking for alternatives to the use of fossil fuels that allow for the planet’s sustainable and environmentally-friendly development. To do this, attempts have been made to mimic some processes that occur in nature, among which [...] Read more.
For some decades, the scientific community has been looking for alternatives to the use of fossil fuels that allow for the planet’s sustainable and environmentally-friendly development. To do this, attempts have been made to mimic some processes that occur in nature, among which the photosystem-II stands out, which allows water splitting operating with different steps to generate oxygen and hydrogen. This research presents promising results using synthetic catalysts, which try to simulate some natural processes, and which are based on Au@ZnO–graphene compounds. These catalysts were prepared by incorporating different amounts of gold nanoparticles (1 wt.%, 3 wt.%, 5 wt.%, 10 wt.%) and graphene (1 wt.%) on the surface of synthesized zinc oxide nanowires (ZnO NWs), and zinc oxide nanoparticles (ZnO NPs), along with a commercial form (commercial ZnO) for comparison purposes. The highest amount of hydrogen (1127 μmol/hg) was reported by ZnO NWs with a gold and graphene loadings of 10 wt.% and 1 wt.%, respectively, under irradiation at 400 nm. Quantities of 759 μmol/hg and 709 μmol/hg were obtained with catalysts based on ZnO NPs and commercial ZnO, respectively. The photocatalytic activity of all composites increased with respect to the bare semiconductors, being 2.5 times higher in ZnO NWs, 8.8 times higher for ZnO NPs, and 7.5 times higher for commercial ZnO. The high photocatalytic activity of the catalysts is attributed, mainly, to the synergism between the different amount of gold and graphene incorporated, and the surface area of the composites. Full article
(This article belongs to the Special Issue Biomimetic Nanotechnology Vol. 2)
Show Figures

Graphical abstract

15 pages, 4258 KiB  
Article
Au/ZnO Hybrid Nanostructures on Electrospun Polymeric Mats for Improved Photocatalytic Degradation of Organic Pollutants
by Laura Campagnolo, Simone Lauciello, Athanassia Athanassiou and Despina Fragouli
Water 2019, 11(9), 1787; https://doi.org/10.3390/w11091787 - 28 Aug 2019
Cited by 30 | Viewed by 4381
Abstract
An innovative approach for the fabrication of hybrid photocatalysts on a solid porous polymeric system for the heterogeneous photocatalytic degradation of organic pollutants is herein presented. Specifically, gold/zinc oxide (Au/ZnO)-based porous nanocomposites are formed in situ by a two-step process. In the first [...] Read more.
An innovative approach for the fabrication of hybrid photocatalysts on a solid porous polymeric system for the heterogeneous photocatalytic degradation of organic pollutants is herein presented. Specifically, gold/zinc oxide (Au/ZnO)-based porous nanocomposites are formed in situ by a two-step process. In the first step, branched ZnO nanostructures fixed on poly(methyl methacrylate) (PMMA) fibers are obtained upon the thermal conversion of zinc acetate-loaded PMMA electrospun mats. Subsequently, Au nanoparticles (NPs) are directly formed on the surface of the ZnO through an adsorption dipping process and thermal treatment. The effect of different concentrations of the Au ion solutions to the formation of Au/ZnO hybrids is investigated, proving that for 1 wt % of Au NPs with respect to the composite there is an effective metal–semiconductor interfacial interaction. As a result, a significant improvement of the photocatalytic performance of the ZnO/PMMA electrospun nanocomposite for the degradation of methylene blue (MB) and bisphenol A (BPA) under UV light is observed. Therefore, the proposed method can be used to prepare flexible fibrous composites characterized by a high surface area, flexibility, and light weight. These can be used for heterogeneous photocatalytic applications in water treatment, without the need of post treatment steps for their removal from the treated water which may restrict their wide applicability and cause secondary pollution. Full article
(This article belongs to the Special Issue Water Treatment with New Nanomaterials)
Show Figures

Figure 1

13 pages, 4348 KiB  
Article
A Comparative Study on the Effects of Au, ZnO and AZO Seed Layers on the Performance of ZnO Nanowire-Based Piezoelectric Nanogenerators
by Camille Justeau, Taoufik Slimani Tlemcani, Guylaine Poulin-Vittrant, Kevin Nadaud and Daniel Alquier
Materials 2019, 12(16), 2511; https://doi.org/10.3390/ma12162511 - 7 Aug 2019
Cited by 21 | Viewed by 4026
Abstract
In this study, different seed layers like gold (Au), zinc oxide (ZnO) and aluminum-doped ZnO (AZO) have been associated to ZnO nanowires (NWs) for the development of mechanical energy harvesters. ZnO NWs were grown by using a low temperature hydrothermal method. The morphological [...] Read more.
In this study, different seed layers like gold (Au), zinc oxide (ZnO) and aluminum-doped ZnO (AZO) have been associated to ZnO nanowires (NWs) for the development of mechanical energy harvesters. ZnO NWs were grown by using a low temperature hydrothermal method. The morphological properties were investigated using Scanning Electron Microscopy (SEM) and the analysis of crystalline quality and growth orientation was studied using X-ray Diffraction (XRD). The obtained ZnO NWs are found to be highly dense, uniformly distributed and vertically well aligned on the ZnO and AZO seed layers, while ZnO NWs grown on Au possess a low density and follow a non-uniform distribution. Moreover, the NWs exhibited good crystal quality over the seed layers. The piezoelectric nanogenerator (PENG) consists of ZnO NWs grown on the three different seed layers, parylene-C matrix, Ti/Al top electrode and poly(dimethylsiloxane) (PDMS) encapsulated polymer composite. The measurements of the open circuit voltage (VOC) were around 272 mV, 36 mV for ZnO, AZO seed layers while the PENG including Au seed layer presented a short-circuited state. This study is an important step in order to investigate the effect of different seed layers influencing the magnitude of the generated electrical performances under identical growth and measurement conditions. It will also help identify the most suitable seed layers for energy harvesting devices and their future integration in industrial applications. Full article
Show Figures

Figure 1

14 pages, 4078 KiB  
Article
Enhanced Electroluminescence from Silicon Quantum Dots Embedded in Silicon Nitride Thin Films Coupled with Gold Nanoparticles in Light Emitting Devices
by Ana Luz Muñoz-Rosas, Arturo Rodríguez-Gómez and Juan Carlos Alonso-Huitrón
Nanomaterials 2018, 8(4), 182; https://doi.org/10.3390/nano8040182 - 22 Mar 2018
Cited by 12 | Viewed by 5592
Abstract
Nowadays, the use of plasmonic metal layers to improve the photonic emission characteristics of several semiconductor quantum dots is a booming tool. In this work, we report the use of silicon quantum dots (SiQDs) embedded in a silicon nitride thin film coupled with [...] Read more.
Nowadays, the use of plasmonic metal layers to improve the photonic emission characteristics of several semiconductor quantum dots is a booming tool. In this work, we report the use of silicon quantum dots (SiQDs) embedded in a silicon nitride thin film coupled with an ultra-thin gold film (AuNPs) to fabricate light emitting devices. We used the remote plasma enhanced chemical vapor deposition technique (RPECVD) in order to grow two types of silicon nitride thin films. One with an almost stoichiometric composition, acting as non-radiative spacer; the other one, with a silicon excess in its chemical composition, which causes the formation of silicon quantum dots imbibed in the silicon nitride thin film. The ultra-thin gold film was deposited by the direct current (DC)-sputtering technique, and an aluminum doped zinc oxide thin film (AZO) which was deposited by means of ultrasonic spray pyrolysis, plays the role of the ohmic metal-like electrode. We found that there is a maximum electroluminescence (EL) enhancement when the appropriate AuNPs-spacer-SiQDs configuration is used. This EL is achieved at a moderate turn-on voltage of 11 V, and the EL enhancement is around four times bigger than the photoluminescence (PL) enhancement of the same AuNPs-spacer-SiQDs configuration. From our experimental results, we surmise that EL enhancement may indeed be due to a plasmonic coupling. This kind of silicon-based LEDs has the potential for technology transfer. Full article
(This article belongs to the Special Issue Silicon-Based Nanomaterials: Technology and Applications)
Show Figures

Figure 1

14 pages, 1236 KiB  
Article
In Situ Synthesis of Bimetallic Hybrid Nanocatalysts on a Paper-Structured Matrix for Catalytic Applications
by Hirotaka Koga, Yuuka Umemura and Takuya Kitaoka
Catalysts 2011, 1(1), 69-82; https://doi.org/10.3390/catal1010069 - 25 Nov 2011
Cited by 18 | Viewed by 8759
Abstract
Bimetallic nanoparticles have attracted significant attention as their electrochemical and catalytic properties being superior to those of the individual component nanoparticles. In this study, gold-silver hybrid nanoparticles (AuAgNPs) with an Aucore-Agshell nanostructure were successfully synthesized on zinc oxide (ZnO) whiskers. [...] Read more.
Bimetallic nanoparticles have attracted significant attention as their electrochemical and catalytic properties being superior to those of the individual component nanoparticles. In this study, gold-silver hybrid nanoparticles (AuAgNPs) with an Aucore-Agshell nanostructure were successfully synthesized on zinc oxide (ZnO) whiskers. The as-prepared nanocatalyst, denoted AuAgNPs@ZnO whisker, exhibits an excellent catalytic efficiency in the aqueous reduction of 4-nitrophenol to 4-aminophenol; the turnover frequency was up to 40 times higher than that of each component nanoparticle. Their unique features were attributed to the electronic ligand effect at the bimetallic interface. In addition, the AuAgNPs were synthesized on a ZnO whisker-containing paper with a fiber-network microstructure, which was prepared via a papermaking technique. The paper-structured AuAgNPs composite possessed both a paper-like practical utility and a good catalytic performance. Furthermore, the on-paper synthesis process for these bimetallic nanocatalysts is facile. These easy-to-handle nanocatalyst hybrid composites are expected to find a wide range of applications in various chemical and catalytic processes. Full article
(This article belongs to the Special Issue Gold Catalysts)
Show Figures

Back to TopTop