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Abstract: Green nanotechnology is a rapidly growing field linked to using the principles of green
chemistry to design novel nanomaterials with great potential in environmental and health protection.
In this work, metal and semiconducting particles (AuNPs, AgClNPs, ZnO, AuZnO, AgClZnO, and
AuAgClZnO) were phytosynthesized through a “green” bottom-up approach, using burdock (Arctium
lappa L.) aqueous extract. The morphological (SEM/TEM), structural (XRD, SAED), compositional
(EDS), optical (UV–Vis absorption and FTIR spectroscopy), photocatalytic, and bio-properties of the
prepared composites were analyzed. The particle size was determined by SEM/TEM and by DLS
measurements. The phytoparticles presented high and moderate physical stability, evaluated by
zeta potential measurements. The investigation of photocatalytic activity of these composites, using
Rhodamine B solutions’ degradation under solar light irradiation in the presence of prepared powders,
showed different degradation efficiencies. Bioevaluation of the obtained composites revealed the
antioxidant and antibacterial properties. The tricomponent system AuAgClZnO showed the best
antioxidant activity for capturing ROS and ABTS•+ radicals, and the best biocidal action against
Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. The “green” developed composites
can be considered potential adjuvants in biomedical (antioxidant or biocidal agents) or environmental
(as antimicrobial agents and catalysts for degradation of water pollutants) applications.

Keywords: “green” synthesis; burdock (Arctium lappa L.); biogenic metal and semiconducting
nanoparticles; composites; antioxidant activity; antibacterial action; photocatalytic properties

1. Introduction

Metal nanoparticles (MNPs) are widely used in engineering, and more in biomedical
field (e.g., biosensors, diagnostic imaging, and drug delivery applications) [1,2]. They
have attracted the interest of the scientific community due to their great potential in
nanoscience [3].

MNPs (Ag [4], Cu [5], Au [6], Pt [7], Zn [8]) have received increasing attention in
various fields such as electronics [8–11], optics [12] and biomedicine [6,13], due to their
properties, e.g., the very large specific surfaces of MNPs that determine their catalytic
properties [14]. This has led to the active use of MNPs as catalysts for a variety of industrial
processes, e.g., environmental cleaning [15,16]. However, MNP use is difficult because
they are complicated to handle and tend to agglomerate easily. This has the effect of
reducing their specific surface area. Through aggregation, the excellent functionalities
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of MNPs are greatly diminished. That is why the researchers have attached catalytic
MNPs on different support materials, such as polymeric materials [17,18] but also on
metal oxide powders [6,18]. Nanomaterials based on metals (e.g., Ag, Cu, Au, Pt, Zn,
Mg, etc.) and metal oxides (e.g., TiO2, Ag2O, ZnO, etc.) have also shown therapeutic
benefits in the biomedical field [19–22]. In materials science, zinc oxide (ZnO) is one of
the most used n-type semiconducting metal oxides, due to its tunable and multifunctional
morphological and photonic properties [23]. Moreover, ZnO-based materials have been
recognized to have low toxicity, photocatalytic activity, and antimicrobial properties [24].
The scientific literature presents various methods of obtaining these materials and various
bi-/tricomponent composites, and the interest in composites arises due to the fact that
when they are combined, they tend to demonstrate new or stronger characteristics, different
from those presented by their individual components [25].

Most chemical methods are expensive and can produce potential risks for the environ-
ment and living organisms. Therefore, the interest in obtaining materials through green
chemistry is increasing exponentially.

Valorization in a “green” manner, using the green chemistry principles, of the nature-
derived raw materials and converting them into valuable materials is a good aspect to
keep clean the environment. Plants have gained huge interest in nanotechnology since
they are available, cost-effective, ecofriendly, and renewable. The vegetal bioconstituents
(such as carbohydrates, polyphenolic compounds, flavonoids, steroids, sapogenins, tan-
nins, terpenoids, polyols, proteins, etc.) [26] act as capping and stabilizing agents for the
“green” synthesis of metal nanoparticles, and also give them interesting features such as
antioxidant/antimicrobial/biocompatibility and also ecofriendliness.

Recent research in the field of green chemistry has evolved in the sense of obtaining
bi-/trimetallic systems in the micro- and nanocomposite forms. DJ da Silva et al. demon-
strated that the Ag/ZnONPs system exhibits antimicrobial properties against Escherichia
coli and Staphylococcus aureus, antiviral activity against Delta SARS-CoV-2, and superior
photocatalytic properties to AgNP and ZnONP nanoparticles [4]. The green system of
ZnO/AgNPs presents anti-inflammatory activity and increases collagen fiber production
when being successfully used to treat skin lesions [27]. Additionally, this system synthe-
sized by using Zingiber officinale extract showed the highest cytotoxicity activity against
human cancerous cell lines (breast, colon, and peripheral blood mononuclear cells) [28].

The bimetallic Au@ZnO nanorod system, based on the leaf extract of Ziziphus jujuba,
has a 3–4 times higher photocatalytic activity in the photodegradation of industrial textile
effluent and methyl orange compared to ZnO nanorods and to AuNPs [29].

Anjum et al. reported, for the first time, the synthesis of hybrid bicomponent nanoparti-
cles (Au-AgNPs, AgNPs-ZnO, and AuNPs-AgNPs) using the same vegetal extract (Manilkara
zapota leaf extract). This extract has biocompatibility with human cells, and presents anti-
tumoral, antidiabetic, antibacterial, and antiglycation activities and enhanced therapeutic
activity as compared to their monometallic components [30].

The green trimetallic nanocomposites based on Cu-Cr-Ni NPs [31] and CuO-Cr2O3-
NiO [32] with antibacterial properties against Staphylococcus aureus, Escherichia coli, and Bacil-
lus cereus showed superior antibacterial activity as compared to single-metal nanoparticles.

However, the present paper describes a new biogenic approach to synthesize burdock-
derived metallic and semiconducting multicomponent particles (AuAgClZnO) with many
interesting properties. The main objective of our work was the “green” design of AuAg-
ClZnO composite particles, through a bottom-up approach, and their complex characteri-
zation. For the first time, the same extract (burdock extract) was used to obtain mono-, bi-,
and trimetallic systems of Au, Ag, and ZnO. In order to achieve this aim, some specific
objectives were followed:

(i) In the first step, biogenic monocomponent particles were prepared. For this purpose,
the burdock aqueous extract was used as a precursor for “green” particles of gold,
silver chloride, and zinc oxide (AuNPs, AgClNPs, and ZnO, respectively).
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(ii) The developed monocomponent particles were further used as building blocks to
achieve bi- (AuZnO and AgClZnO) and tricomponent (AuAgClZnO) particles.

(iii) The complex characterization of AuAgClZnO composite as compared to AuNPs,
AgClNPs, ZnO, AuZnO, and AgClZnO.

In this study, we chose burdock (Arctium lappa L., Asteraceae family) because it is one of
the most popular and widespread plants in our country (Romania) and is used in traditional
medicine as a carminative, diuretic, depurative, antioxidant, anti-inflammatory, antibacte-
rial, and antitubercular agent to treat many diseases (e.g., skin disorders, atherosclerosis,
hepatitis, hypertension, and geriatric diseases). Its high therapeutic potential is determined
by the presence of many polyphenolic compounds [33]. Arctium lappa leaves contain valu-
able bioactives such as phenolic acids (e.g., chlorogenic acid, caffeic acid, and cynarin),
quercetin, quercitrin, arctiin, rutin, and luteolin [34].

In this work, the biosynthesized materials were physicochemically characterized,
and their bioperformance (antioxidant and antibacterial properties) was further studied.
Moreover, their catalytic activity for the degradation of Rhodamine B (RhB) as a model of a
water pollutant was also assessed.

2. Materials and Methods

The present study focuses on the environmentally friendly synthesis of the metal and
semiconducting particles (AuNPs, AgClNPs, ZnO, AuZnO, AgClZnO, and AuAgClZnO)
by using burdock (Arctium lappa L.) aqueous extract and their complex characterization.
The synthesis of the composites consists of two steps: (i) the preparation of AgClNPs and
AuNPs, and (ii) the AgClNPs, AuNPs, or their mixture suspension further used to generate
ZnO particles through the reaction between Zn(NO3)2 and NaOH.

All the chemical substances—AgNO3, HAuCl4·3H2O, Zn(NO3)2·6H2O, NaOH
Tris[hydroxymethyl] aminomethane, sodium chloride, 2,2-azinobis-(3-ethyl benzthizoline-
6-sulfonic acid) (ABTS), HCl, Luminol (5-Amino-2,3-dihydro-1,4-phthalazinedione), H2O2,
K2S2O8, Trolox (6-hydroxy-2,5,7,8-tetramethyl chroman-2-carboxylic acid) and Rhodamine
B—were purchased from Sigma Aldrich (Munich, Germany) and were used without any
further purification.

2.1. Preparation of AgClNPs and AuNPs by Using the Burdock Extract

The aqueous burdock extract (EB) was made from fresh leaves of Arctium lappa which
were inserted into hot distilled water (in a mass ratio vegetal material: water = 1:5, w/w) as
previously described [33].

The silver and gold nanoparticles were prepared in two glass beakers, each containing
50 mL of EB. In the first beaker, AgNO3 was introduced, and in the second, HAuCl4·3H2O,
under continuous stirring in the dark for 24 h (VIBRAX stirrer, Milian, OH, USA, 200 rpm),
until the final concentrations reached the values of 2.6 mM (for AgNO3) and 0.8 mM (for
HAuCl4). After 45 min., the color of the mixtures turned from pale yellowish to brown
(1st beaker) and to purple (2nd beaker), highlighting the formation of silver chloride
nanoparticles (sample AgClNPs) and gold nanoparticles (sample AuNPs), respectively.
The phytocompounds present in burdock extract helped to form the nanoparticles by
giving up electrons. The vegetal extract acted both as a bioreducing and capping agent for
NP formation.

2.2. Preparation of Composites Based on ZnO, AgClNPs, AuNPs, and a Mixture of
AuNPs-AgClNPs in Burdock Extract

Aqueous solutions of 0.5 M of Zn(NO3)2 and of 1 M of NaOH were dropwise added
(under continuous stirring for 30 min) to burdock extract (EB) or to suspensions of AuNPs,
AgClNPs, and a mixture of AuNPs/AgClNPs. In each case, the resulting precipitates
were centrifuged and washed several times, and then dried in vacuum at 100 ◦C for
2 h. The obtained nanostructures were named as follows: ZnO, AuZnO, AgClZnO, and
AuAgClZnO, respectively.
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The preparation of the burdock-derived composites involved the following steps:

(i) HAuCl4,aq + EB (phyto-compounds)→ AuNPs;
(ii) AgNO3,aq + EB (phyto-compounds)→ AgClNPs;
(iii) Zn(NO3)2 + 2NaOH→ Zn(OH)2↓ + 2NaNO3;

(iv) EB/AuNPs/AgClNPs/(AuNPs + AgClNPs) + Zn(OH)2
100

◦
C→ ZnO/AuZnO/

AgClZnO/AuAgClZnO + H2O.

The two-step “green” synthesis of phyto-ZnONPs involves:

(i) Zn(NO3)2 + 2NaOH→ Zn(OH)2↓ + 2NaNO3;

(ii) EB + Zn(OH)2
100

◦
C→ ZnO (capped with phyto-molecules) + H2O.

The synthesized materials were evaluated from the point of view of morphologi-
cal, physical stability, compositional, structural, optical, photocatalytical, and biological
(antioxidant and antibacterial) properties.

2.3. Physicochemical and Biological Characterization of “Green” Developed Composites

The UV-Vis absorption spectra of the obtained materials were recorded on a double-
beam UV–Vis 670 Jasco spectrophotometer (Jasco, Tokyo, Japan), in the 200–800 nm wave-
length range, operated at a resolution of 1 nm. Fourier-transform infrared (FTIR) spectra
were recorded in the range of 4000–500 cm−1, with a resolution of 4 cm−1 in transmit-
tance mode, on Perkin Elmer-Spectrum 100. The morphological properties of composite
powders were evaluated using a Carl Zeiss (Oberkochen, Germany) Gemini 500 field
emission scanning electron microscope (FESEM) working in high vacuum (HV), from 0.2 to
30 kV, and equipped with a LaB6 emitter, InLens, and SE2 detectors. The elemental com-
position of the samples was evaluated using a Bruker QUANTAX 200 energy-dispersive
X-ray spectrometer detector (EDS) with Peltier cooling and an energy resolution < 129 eV
at Mn-Ka.

The crystalline phase of the powders was identified with X-ray diffraction (XRD)
with a Bruker D8 Advance diffractometer (Bruker AXS, Karlsruhe, Germany) with CuKα

radiation (λ = 0.154 nm); using a nickel filter, the Kβ radiation was removed. Diffraction
patterns were recorded in Bragg–Brentano geometry in the 2θ range from 20◦ to 80◦ at a
rate of 0.6◦/min (2θ/min). The obtained XRD data were processed using “Bruker Diffrac
plus Basic Package Evaluation v.12”.

Morphostructural investigations were carried out using an atomic resolution analytical
JEM ARM200F (JEOL Ltd., Tokyo, Japan) microscope operated at 200 kV acceleration
voltage and equipped with a JEOL JED-2300T unit for energy-dispersive X-ray spectroscopy
(EDS) analysis. The samples in powder form were gently crushed in an agate mortar and
dispersed in ethanol. A droplet of the suspension was then deposited onto a 400-mesh
carbon lacey TEM Cu grid and allowed to dry at room temperature.

The photocatalytic properties of the composites were determined by evaluating the
photodegradation of Rhodamine B (RhB) aqueous solutions during the irradiation with
solar light. Approximately 0.5 mg of composite powders were immersed in a beaker
containing 10 mL of RhB aqueous solution, with a concentration of 2 × 10−5 M and
prepared using deionized water (Millipore system). The beaker was irradiated with solar
light obtained using an SF300-A Small Collimated Beam Solar Simulator (Sciencetech,
London, ON, Canada) equipped with an Air Mass AM1.5G Filter (spot size: 25 mm
diameter at one Sun) and an integrated electrical shutter with a controller and a Xe lamp
(300 W). At different time intervals, approximately 3 mL of dye solutions was carefully
extracted from the beaker and placed in a cuvette, and the optical absorbance spectra in the
spectral domain 400–700 nm were measured (UV–Vis–NIR CARY 5000 spectrophotometer,
Varian, Agilent Technologies Deutschland GmbH, Waldbronn, Germany). The degradation
of Rhodamine B was evaluated by monitoring the characteristic band peaking at ~554 nm.
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By measuring the variation in the absorption peak at the wavelength of 554 nm, the
degradation of RhB was determined. The dye degradation efficiency was estimated using
the equation:

Degradation efficiency = (C0 − C)/C0 × 100 (1)

where C0 is the initial value of the dye concentration; C is the value of the dye concentration
at time t.

2.4. Evaluation of Particle Size Distribution

The particle size (Zav) and polydispersity index (PdI) were analyzed with dynamic
light scattering (DLS) using a Zetasizer Nano ZS, Malvern Instruments Inc., Worcestershire,
UK. The particles size was calculated using the Stokes–Einstein equation (Equation (2)).
All the measurements were performed in triplicate and the results were expressed as
mean ± S.D.

d =
kT

3πρD
(2)

where d = the diameter of the spherical particle, k = Boltzmann constant, T = temperature,
ρ = the viscosity of the medium, and D = the diffusion coefficient of the particle.

2.5. Electrokinetic Potential Analysis

The physical stability of the samples was evaluated by measuring the electrophoretic
mobility in an electric field using the Zetasizer Nano ZS, Malvern Instruments Inc., Worces-
tershire, UK. The zeta potential (ξ) was calculated using the Helmholtz–Smoluchowski
Equation (3):

ξ = EM · 4πη

ε
(3)

where ξ is the zeta potential, η viscosity of the dispersion medium, EM is electrophoretic
mobility, and ε is the dielectric constant. The conductivity of samples was adjusted using
50 µL of NaCl 0.9% solution and all the measurements were performed in triplicate.

2.6. Biological Characterization of Developed Materials
2.6.1. In Vitro Antioxidant Activity Analysis

The radical scavenger activity of the nanoparticle samples and the burdock extract
was evaluated using the ABTS and the chemiluminescence methods. The cation radicals,
ABTS•+, were generated from the reaction between 2,2-azinobis-(3-ethyl benzthizoline-6-
sulfonic acid) solution (7 mM) and K2S2O8 solution (2.45 mM) after 16 h in dark conditions.
The work solution was normalized to the absorbance 0.70 ± 0.01 at λ = 734 nm. The
reference solution was prepared using 3 mL of ABTS•+ work solution and 2 mL of ultra-
purified water, and the sample was prepared identically, by replacing 1 mL of ultra-purified
water with the 1 mL of nanoparticle suspension. The samples were analyzed at 4 min after
mixing at 734 nm using UV-Vis Spectrophotometer Type V670, (Jasco, Tokyo, Japan). The
inhibition capacity (%) was calculated using Equation (4):

%Inhibition ABTS•+ =
A0 − AS

A0
× 100 (4)

where A0 = the absorbance of the blank (unscavenged radical cation solution); As = the
absorbance of the nanoparticle suspension.

The chemiluminescence system used to evaluate of the scavenger activity for the
short-life radicals was formed by 0.01 M of luminol solution, H2O2 (10−5 M), and Tris–HCl
buffer solution (pH = 8.6). The free-radical-scavenger activity of the samples was calculated
by applying the relation (5) and using a Turner Design TD 20/20 chemiluminometer
(Sunnyvale, CA, USA)

AA (%) =
I0 − IS

I0
× 100 (5)
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I0 = the maximum CL for reference at t = 5 s; Is = the maximum CL for sample at t = 5 s [35].

2.6.2. In Vitro Antibacterial Activity Analysis

Minimum Inhibitory Concentration (MIC) determination
To evaluate the antibacterial activity, the AuNPs, AgClNPs, ZnO, AuZnO, AgClZnO,

and AuAgClZnO were tested against three pathogenic microbial strains: Escherichia coli
ATCC 8738, Pseudomonas aeruginosa ATCC 15442 (Gram-negative bacteria) and Staphylococ-
cus aureus ATCC BAA 1026 (Gram-positive bacteria).

Minimum inhibitory concentration represents the lowest concentration of an antimicro-
bial agent at which the growth of microorganisms is totally inhibited, expressed in µg/mL.
For MIC determination, EUCAST [36] mostly recommends broth microdilution, except for
fosfomycin and mecillinam, for which it recommends agar dilution. To determine MIC
values, all quantitative methods use Mueller–Hinton broth (MHB) [37,38]. All reagents
used for antimicrobial investigations were purchased from VWR (Darmstadt, Germany).

Serially diluted logarithmic concentrations of prepared burdock-derived samples
ranging from 400 to 0.195 µg/mL were inoculated with standardized overnight cultures of
the cultured bacteria at 37 ◦C.

MIC values for each microorganism were reported as the median of three experiments.
Standard deviation (S.D.) was calculated as the square root of variance using STDEV
function in Excel 2010.

The antibacterial activity of the burdock-derived samples was determined employing
the Kirby–Bauer test. The method is based on the property of the antimicrobial agent to
diffuse into a solid culture medium on which the bacterial culture to be tested is seeded.
Briefly, the melted and cooled culture medium (Luria Bertani Agar acc. Miller medium) at
50 ◦C was poured into 4 mm thick Petri dishes, and then it was used after solidification. A
bacterial suspension with a concentration close to 0.5 on the MacFarland scale was made.
After this step, wells were made with a sterile glass tube into which 50 µL of each tested
sample was pipetted. Then, agar Petri dishes were incubated under suitable conditions at
37 ◦C for 18–24 h. The diameter of the zone of inhibition (ZOI, mm) was measured [39,40].

3. Results and Discussion
3.1. Optical Characterization of Phytoderived Materials

The formation of burdock-derived materials was observed by means of UV–Vis absorp-
tion spectroscopy as shown in Figure 1. ZnO-containing particles presented an absorption
peak located at the wavelengths: 372, 369, and 371 nm for the samples of ZnO, AuZnO,
and AgClZnO, respectively. This peak is characteristic for ZnO nanoparticles as mentioned
by various reports [25,41–44], highlighting that ZnO generally shows UV absorption bands
at the λmax ranging from 355 to 380 nm. The bottom inset of Figure 1 displays the spectral
signature of ZnO in the spectra of the ZnO-based particles.

As observed, the AuNP spectrum presents a single absorption band at 547 nm, charac-
teristic for spherical gold nanoparticles [45], while in the spectrum of AgClNPs, a band at
420 nm was observed, indicating the formation of AgClNPs [46]. Similar UV-Vis spectra
were observed by Fageria et al. [47] for ZnO, ZnO/Au, and ZnO/Ag nanoparticles, where
a ZnO peak at 369 nm was identified in these spectra.

UV-Vis absorption spectrum of burdock extract (see the top inset of Figure 1) shows
the following peaks: at 208 nm attributed to the phenolic compounds and carbohydrates,
and at 319 nm assigned to the B ring portion (cinnamoyl system, band I) of flavonoids. A
shoulder at 263 nm was also observed, attributed to the absorption of amino acid residues
of proteins and of the A-ring of flavonoids (benzoyl system, band II) [46,48].

The UV-Vis absorption spectrum of AuAgClZnO displays a very large/wide band
between 350–750 nm with a peak centered at 411 nm, covering the absorption of all
components of this composite.

The burdock-derived samples were further investigated with FTIR spectroscopy
(Figure 2). The attributions of the main FTIR bands are shown in Table S1
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(Supplementary Material) . An intense sharp band centered at 3321 cm−1, 3325 cm−1,
and 3297 cm−1 observed in the spectrum of EB, AuNPs, and AgClNPs, respectively, is
attributed to the bending and stretching vibrations of hydroxyl groups intermolecularly
hydrogen bonded in alcohols, polysaccharides, and phenolic compounds/polyphenols;
these bands are assigned also to the stretching vibrations of the primary and secondary
amines [46]. This band widened in the case of ZnO-containing samples (ZnO, AuZnO,
AgClZnO, and AuAgClZnO), overlapping the frequencies of the following groups: phe-
nols, OH stretch, and hydrogen-bonded O–H (the bending and stretching vibrations of
hydroxyl groups in alcohols, polysaccharides, and phenolic compounds) [46,49]. The sam-
ples EB, AuNPs, and AgClNPs presented FTIR bands originating from C–H anti-symmetric
stretching vibration, in the wavenumber range of 2933–2923 cm−1, and also C–H symmet-
rical stretch vibration of alkyl chains, in the range of 2871–2848 cm−1 (see Table S1 in the
Supplementary Material).
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Figure 1. Comparative presentation of UV-Vis absorption spectra of burdock-derived samples. All
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The top inset shows the spectrum of burdock extract (EB).

The peaks observed at 545 cm−1, 694 cm−1, 555/519 cm−1, and 559 cm−1 in the FTIR
spectra of the samples of ZnO, AuZnO, AgClZnO and AuAgClZnO, respectively, originated
from the Zn-O stretching vibration of the hexagonal phase of ZnO [42,50].

Other FTIR bands which are presented in the obtained burdock-derived samples
were due to the carbonyl stretch and carboxylate groups in proteins, C-O bending in
esters, –C–O–C– ether, phenol or tertiary alcohol, and OH bend (see Table S1 in the
Supplementary Material).

As a consequence, the results of the FTIR analysis indicate that the functional groups
belonging to the phytocompounds of burdock extract (proteins, carboxylates, flavones,
alcohols, polyphenols, and ethers) may also act as reducing and capping agents for AuNPs,
AgClNPs, and ZnO particles’ formation. These functional groups are present also on
the surface of the particles AuZnO, AgClZnO, and AuAgClZnO. The presence of these
hydroxyls, carboxylates, carbonyls, and other functional groups prevents agglomera-
tion of the “green” prepared NPs in the aqueous extract medium as mentioned also by
Rahman et al. [42].
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The involvement of carboxylic acids, flavonoids, alcohols, and polyphenols in the
bioreduction as well as the capping of bimetallic Ag-ZnO and Au-ZnO particles was also
demonstrated via FTIR analysis by Anjum et al. [30] who used Manilkara zapota leaf extract
as a precursor. This fact underlines the role of phytochemicals in the donation of electrons
or hydrogen atoms for the bioreduction of metals, and in the stabilization of resulting
metallic nanoparticles, granting them at the same time a high biocompatibility and superior
biological activity [30].

3.2. Evaluation of Zeta Potential of the Phytometallic Particles

Zeta potential is an important parameter that evaluates the stability of nanoparticle
systems, with the increasing zeta potential corresponding to an increase in the nanoparti-
cles physical stability. In our case, the samples of AgClNPs, ZnO, and the mixture sample
presented a very good stability having a zeta potential value less than −25 mV. These
results are similar to those reported in the literature, when the silver nanoparticles based
on marigold flower presented a physical stability of −27.1 mV [51] and −32.7 mV using
rhamnogalacturonan gum [52]. The samples containing AuNPs showed a moderate sta-
bility, having a zeta potential of −18.5 mV for the individual sample and −17.6 mV for
AuZnO, but a higher stability than the gold nanoparticles obtained using the aqueous
extract of Mangifera indica seeds that presented a zeta potential value of −1.98 mV [53]. The
three-component system AuAgClZnO showed good stability, having a value of the zeta
potential equal to −29.8 ± 0.57 mV.

Figure 3a displays a comparative presentation of the zeta potential values for the
burdock-derived samples, and Figure 3b shows the distribution of zeta potential for the
ZnO sample.
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Figure 3. (a) Comparative presentation of the electrokinetic potential of samples; (b) The electrokinetic
potential of ZnO sample.

3.3. Structural Characterization

The crystal structure was established by the diffraction peaks shown in Figure 4. For
the monocomponent samples, it was found: (i) for Au, the diffraction peaks positioned
at 38.2◦ and 44.4◦ correspond to the Miller indices of the reflecting planes (111) and (200)
assigned to the cubic phase (file 00-066-0091); (ii) the peaks at 27.8◦, 32.2◦, and 46.2◦

correspond to the crystallographic planes (111), (200), and (220) specific to the cubic unit
cell of the AgCl crystal (file 00-031-1238), and (iii) in the case of ZnO, the diffraction
peaks from 31.8◦, 34.7◦, 36.3◦, 47.6◦, 56.6◦, 62.9◦, 66.4◦, 67.9◦, and 69.1◦ correspond to the
crystallographic planes (100), (002), (101), (102), (110), (103), (200), (112), and (201) and are
attributed to the hexagonal phase of ZnO (file 00-036-1451).
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In Figure 4, the diffractogram obtained from the burdock extract was also inserted.
It can be seen that there are several diffraction maxima in this case as well; they were
found at 28.3◦ and 40.5◦, respectively, and correspond to the Miller indices of the reflective
planes (200) and (220), respectively, of the cubic phase of KCl. These diffraction peaks
were also found in the diffractograms obtained on the AuNP and AgClNP samples; these
samples were kept as they are obtained in the burdock extract. For X-ray diffraction,
these samples were deposited by drop casting on a Si wafer with no X-ray signal. In
the XRD spectra of ZnO, AuZnO, AgClZnO, and AuAgClZnO powders, the diffraction
peaks corresponding to the burdock extract were not found because the synthesis route
of them involves the addition of two aqueous solutions to a volume of burdock extract
with/without Au/AgClNPs, and in this way, the burdock extract is more diluted. In
addition, the powders were washed several times, so the peaks related to KCl were not
evident. The bi-/tricomponent samples showed mixed diffraction peaks from ZnO particles
and Au/AgClNPs. Moreover, minor peaks of Au and AgCl and major peaks of ZnO were
observed in the XRD patterns for bi- and trimetallic particles. This behavior in the XRD
pattern was also observed for Ag–ZnO NPs and Au–ZnONPs obtained from Manilkara
zapota leaf extract [30], as well as for the Ag–ZnO NPs prepared from Silybum marianum [54].

3.4. Size and Morphological Characterization of Phytmaterials

The average particle size (Zav) and PdI index of samples were determined using light
scattering measurements (Figure 5). The individual systems presented a size between
91–182 nm, and for the complex systems, showed a size between 272 and 375 nm with
PdI index between 0.448–0.578 (Figure 5a). The average particle size of AuNPs, AgClNPs
and ZnO was 91 nm, 41 nm and 181 nm, respectively. The sample AgClZnO showed a
PdI of 0.57, indicating the existence of several populations of particles; this could also be
due to the agglomeration phenomenon due to the potential value of −22.2 ± 1.06 mV.
Additionally, the AuAgClZnO particles presented a mean dimension of 271 nm, having a
large size as compared to individual systems. Figure 5b displays the size distribution of
particle population for the AuZnO sample. The results obtained using DLS analyses were
in concordance with the data obtained from SEM and TEM microscopy.
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Figure 5. (a) The average particle size and PdI index of samples; (b) Size distribution of particles
population for AuZnO sample.

3.5. Morphological and Compositional Characterization

The features of the samples were investigated from a morphological point of view by
using the SEM and TEM techniques. Conventional TEM (CTEM), selected area electron
diffraction (SAED) and high-resolution TEM (HRTEM) were used for morphologic and
structural characterization while energy-dispersive X-ray spectroscopy (EDS) determined
the chemical composition. Morphological analysis of ZnO powder showed the presence of
a mixture of flower- and spindle-type structures, with dimensions ranging from 150 nm to
750 nm (Figures 6(a,a’) and 7(D1,D3)). SEM and TEM analyses of AuNPs and AgClNPs
samples revealed that the particles had a size between 6 nm and 89 nm for Au nanoparticles
(Figure 7(B1)) and between 3 nm and 117 nm for AgClNPs (Figure 7(C1)), respectively. The
composite samples had different morphologies as follows: (i) the AuZnO powder consisted
of cylindrical structures with dimensions from 200 nm to 300 nm (Figures 6(b,b’) and 7(E1));
(ii) the AgClZnO powder consisted of rod-type structures with a diameter of approximately
200 nm (Figures 6(c,c’) and 7(F1)), and (iii) the three-component AuAgClZnO powder
consisted of spherical and spindle-type structures with dimensions between 200 nm and
400 nm (Figures 6(d,d’) and 7(G1)).



Materials 2023, 16, 1153 12 of 24

Materials 2023, 16, x FOR PEER REVIEW 12 of 24 
 

 

AuAgClZnO powder consisted of spherical and spindle-type structures with dimensions 

between 200 nm and 400 nm (Figures 6(d,d’) and 7(G1)). 

  

(a) (a’) 

  

(b) (b’) 

  

(c) (c’) 

  

(d) (d’) 

Figure 6. SEM images of samples at two magnifications, (a,a’) ZnO; (b,b’) AuZnO; (c,c’) AgClZnO; 

(d,d’) AuAgClZnO. 

For the burdock sample (CTEM image, Figure 7(A1)), the SAED pattern (Figure 

7(A2)) and the HRTEM image (Figure 7(A3)) show that it was all amorphous. The EDS 

spectrum (Figure 7(A4)) evidenced the presence of several chemical elements (O, Mg, P, 

S, K and Ca) beside Cu and C from the TEM grid. 

Figure 6. SEM images of samples at two magnifications, (a,a’) ZnO; (b,b’) AuZnO; (c,c’) AgClZnO;
(d,d’) AuAgClZnO.

For the burdock sample (CTEM image, Figure 7(A1)), the SAED pattern (Figure 7(A2))
and the HRTEM image (Figure 7(A3)) show that it was all amorphous. The EDS spectrum
(Figure 7(A4)) evidenced the presence of several chemical elements (O, Mg, P, S, K and Ca)
beside Cu and C from the TEM grid.
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Figure 7. TEM results obtained using CTEM (1), SAED (2), HRTEM (3) and EDS (4) of sam-
ples for: burdock extract (A), AuNPs (B), AgClNPs (C), ZnO (D), AuZnO (E), AgClZnO (F) and
AuAgClZnO (G).
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In the case of the AuNP sample, the SAED pattern (Figure 7(B2)) confirmed that they
were crystallized in a cubic structure. In the HRTEM image (Figure 7(B3)), lattice fringes of
2.35 Å and 2.03 Å characteristic of (111) and (200) cubic Au were clearly visible. The EDS
spectrum (Figure 7(B4)) confirmed once more that Au was present in the sample, but it also
showed the chemical elements present in the burdock sample.

For AgClNPs, the SAED pattern (Figure 7(C2)) and HRTEM image (Figure 7(C3))
demonstrate that the NPs were mostly crystallized in a cubic structure, but they also reveal
the presence of the hexagonal phase of AgCl. This phase was not identified with XRD.
The reason why this happened is that information obtained with TEM comes from a small
area of a TEM grid containing an infinitesimal volume of sample compared with the one
analyzed in XRD. This means that the signal given by hexagonal-phase AgCl can be lost in
the background if the number of NPs with this crystalline structure is very small. The EDS
spectrum (Figure 7(C4)) confirms the presence of Ag and Cl beside the chemical elements
from the burdock extract.

The CTEM image of ZnO sample (Figure 7(D1)) show that NPs were agglomerated.
The diffraction rings observed in the SAED pattern (Figure 7(D2)) correspond to hexagonal-
phase ZnO. Lattice fringes of 2.9 Å and 2.5 Å characteristic of the (101) and (101) planes
of hexagonal ZnO are visible in the HRTEM image (Figure 7(D3)). Only the peaks of Zn
and O were present in the EDS spectrum (Figure 7(D4)). The hexagonal phase of ZnO
particles was also observed in the FTIR spectra (see Section 3.1) and in XRD patterns (see
Section 3.3), these results being similar to those for “green” synthesized ZnO nanoparticles
using Lactobacillus plantarum [55].

For the last three samples (AuZnO, AgClZnO and AuAgClZnO), the SAED patterns
(Figure 7(E2,F2,G2)) confirmed the presence of ZnO in a hexagonal structure. The absence
of the characteristic diffraction spots for AuNPs and AgClNPs from the SAED patterns
is explained by the fact that they were present in a very small amount in these samples.
HRTEM was able to demonstrate that AuNPs (Figure 7(E3,G3)) and AgClNPs (Figure 7(F3))
were present in these samples. Additionally, the EDS spectra show characteristic peaks for
Au (Figure 7(E4,G4)), Ag and Cl (Figure 7(F4,G4)) similar to those from the literature [56].

3.6. The Photocatalytic Properties of Obtained ZnO-Based Materials

The photocatalytic performance of the prepared powders of ZnO, AuZnO, AgClZnO
and AuAgClZnO was examined for the degradation of Rhodamine B (RhB) under solar
light irradiation. The RhB solution presented an absorption peak at 554 nm, and its intensity
decreased under solar light irradiation in the presence of the synthesized ZnO-powders
(Figure 8). Thus, in the presence of ZnO or AuZnO powders, the absorption peak at 554 nm
of the RhB solution decreased slower when compared with the decrease observed in the
presence of AgClZnO powder. Additionally, the presence of the three-component powder,
AuAgClZnO, induced a more efficient degradation of RhB than the ones observed in the
presence of the ZnO and AuZnO powder but much lower than in the case of AgClZnO.
In the presence of AgClZnO, AuAgClZnO, AuZnO, and ZnO powders, the degradation
percentages of RhB were 97.02%, 67.95%, 38.1% and 15.56%, respectively, after 150 min of
solar light irradiation. These results demonstrate that the AgClZnO composite possessed
much higher photocatalytic efficiency compared to the ZnO sample. It should be mentioned
that all the composites had a better photocatalytic activity than ZnO particles, and also,
as can be seen from Figure 8b, the photodegradation of RhB in the presence of the tested
powders but in the absence of light was lower (~5% for the AgClZnO powder and less
than 3% for the rest of the samples). By fitting the experimental results with a function
of the first degree (Figure 8a), it proves that the mechanism is of the pseudo-first-order,
according to the kinetics data. By fitting the experimental curves with a linear regression
curve (pseudo-first-order, ln(C0/C) = kt) (Figure 8a), the reaction rate constant (k) was
calculated, and the obtained values given in Table 1 being in good agreement with the
literature [56,57].
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Figure 8. (a) ln(C0/C) vs. time for RhB degradation in the presence of the ZnO-based powders. The
straight line represents the linear fit of the data; (b) ln(C0/C) vs. time for RhB degradation in the
presence of the ZnO-based powders in dark conditions; (c) Time dependence of RhB degradation
efficiency in the presence of ZnO-based powders.

Table 1. The reaction rate constant k and the correlation coefficient R2.

Sample k (min−1) R2

ZnO 1.07 × 10−3 0.98984
AuZnO 3.27 × 10−3 0.99813

AgClZnO 22.97 × 10−3 0.99899
AuAgClZnO 7.88 × 10−3 0.99113

The specialized literature [58] attributes the increase in the photocatalytic activity
of the AuZnO composite, compared to ZnO, to gold, which is playing the role of an
electron trap in the composite. When the ZnO surface is illuminated with visible light
(see Figure 9a), the electrons from the valence band (VB) move to the conduction band
(CB), while in the valence band remain the holes. The Au nanoparticles act as an electron
trap from the conduction band of ZnO and, in this way, the recombination process of
the electron and hole is inhibited and then enhances the photocatalytic efficiency of the
AuZnO composite. In the case of the AgClZnO composite, charge carriers are generated
under visible-light irradiation in AgClNPs. As the energy level of the CB of silver chloride
nanoparticle is higher than that of zinc oxide particles (see Figure 9b), the photogenerated
electrons are transferred from the CB of AgClNPs to that of ZnO particles [56]. Thus, the
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efficient separation of electron–hole pairs is achieved and leads to more reactive species.
A plausible mechanism for the photodegradation of RhB in the presence of AuAgClZnO
composites is illustrated in Figure 9c. Under visible-light irradiation, Au nanoparticles can
absorb visible-light photons due to surface plasmons. The absorbed photons are rapidly
separated into electrons and holes. Electrons are injected into the conduction band of ZnO,
while holes are delivered to the surface of AgClNPs [59]. The holes from the surface of
AgClNPs can lead to the oxidation of Cl− ions to Cl0 atoms. Furthermore, the holes react
with the water molecules and create the •OH radical and the electrons from the conduction
band react with the absorbed O2 and create the O2

−• radical which are the active species
used in the degradation of dyes [43,58]. Superoxide radical anions, •OH radicals and Cl0

atoms are strong oxidants for the degradation of RhB [59,60]. In the case of the three-
component sample, AuAgClZnO, the obtained result can be explained based on the SEM
images (Figure 6). Thus, from Figure 6, we observe that the dimensions of the AuAgClZnO
structures were larger compared to those of AgClZnO. Under these conditions, the active
surface of AuAgClZnO structures is smaller than in the case of AgClZnO structures and
has a possible effect on the reduction in the photocatalytic activity for the tricomponent
composite. Moreover, it is possible that the photocatalytic effect of the AuAgClZnO sample
was lower than that of the AgClZnO sample due to the presence of Au nanoparticles.
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Figure 9. Schematic representation of the RhB degradation in the presence of the composite
(a) AuZnO, (b) AgClZnO, and (c) AuAgClZnO.

The AuAgClZnO system presented a reaction rate constant 7.3 times higher than
ZnO and 2.4 times higher than AuZnO. Similar results regarding the high photocatalytic
capacity of the ternary system compared to the binary AuZnO system were obtained by
Koga et al. [61], who chemically obtained nanoparticles deposited on paper, and then used
them for the degradation of p-aminophenol and p-nitrophenol.

3.7. Evaluation of Antioxidant and Antibacterial Properties of Phytoderived Materials

The in vitro antioxidant activity was assessed using ABTS and chemiluminescence
methods.

Free radicals are responsible for the production of oxidative stress, and “green”
nanoparticles have demonstrated that they can combat this phenomenon [62]. The ca-
pacity of inhibition of the short-life free radicals (ROS) and long-life radicals (ABTS•+) was
comparatively evaluated for samples using two spectral methods. The samples had a capac-
ity to capture ABTS•+ radicals between 30.5–50.5% higher than the burdock extract, which
captured only 17% of these radicals. The best result was registered for the AuAgClZnO
sample (Figure 10). The percent of ABTS•+ inhibition of the phyto-ZnO sample was 30.8%
at 10 µg/mL, higher than that reported by S. Loganathan et al. for ZnO using Barberis
aristata leaf (40% at 80 µg/mL). In another study, Sharmila et al. reported for green ZnO
particles synthesized with Tecoma castanifolia leaf extract a capacity of 13% at 10 µg/mL [63].
Phyto-AuNPs showed a capacity to inhibit this radical of 42%, compared to an inhibition of
29.42% at a concentration of 100 µg/mL for gold nanoparticles synthesized with the help
of Citrullus lanatus peels [64].
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Figure 10. The scavenger activity of ABTS•+ by phytometallic particles.

The chemiluminescence assay evaluates the inhibition capacity of reactive oxygen
species (ROS) derived from hydrogen peroxide [35]. The antioxidant activity of the samples
evaluated by chemiluminescence was between 42–65% above the activity of the native
extract (AA = 25.4 ± 1.14%). In Figure 11, no significant differences were observed in the
capture of ROS radicals between the dual-nanoparticle systems (AuZnO and AgClZnO)
that presented values of 47%. The best result was obtained in the case of the AuAgClZnO
sample, which showed an antioxidant activity of 65 ± 0.43%.
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Figure 11. Antioxidant activity of phytometallic particles, evaluated using the chemiluminescence
technique.

The antioxidant activity of green nanoparticles based on ZnO, silver and gold nanopar-
ticles is explained by the presence of phytoconstituents from the burdock extract and the
nanostructures with a nanosized effect that leads to the generation of many reaction centers
for the capture of free radicals.

The antimicrobial activity of the burdock-generated samples was demonstrated to-
wards three bacteria (Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus),
because of their high pathogenicity. Some of the bacteria in drinking water can harm the
body, while others can be harmless. Some of them can be removed with the help of a water
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filter, while others can only disappear by treating the cause of the source of the water. The
best-known bacterium that can be identified in drinking water is Escherichia coli, known
as E. coli, a bacterium that can also be found in food. Each country has its own indicators,
within the limits that the water meets the necessary conditions to be consumed. E. coli
bacteria can seriously affect the body’s functioning and can cause gastroenteritis, urinary
tract infections, meningitis, and septic shock [65]. Another bacterium that can be found
in infected drinking water is Pseudomonas aeruginosa which can cause disease in animals
and in humans. Pseudomonas aeruginosa is found in soil, water, flora, and most human envi-
ronments around the world [66,67]. Rarely, another pathogenic bacterium found in water
is Staphylococcus aureus; it produces enterotoxins that can be fatal to those who consume
contaminated water or food [68,69]. Table 2 presents the antimicrobial susceptibility of the
mentioned microorganisms to the tested samples.

Table 2. Antimicrobial susceptibility of the microorganisms to burdock-derived particles.

Microorganism
Concentration of AuNPs Used (µg/mL)

400 200 100 50 25 12.5 6.25 3.125 1.56 0.78 0.39 0.195

Escherichia coli ATCC 8738 S S R R R R R R R R R R
Staphylococcus aureus ATCC BAA 1026 S R R R R R R R R R R R
Pseudomonas aeruginosa ATCC 15442 S S R R R R R R R R R R

Concentration of AgClNPs used (µg/mL)

Escherichia coli ATCC 8738 S S S R R R R R R R R R
Staphylococcus aureus ATCC BAA 1026 S S S R R R R R R R R R
Pseudomonas aeruginosa ATCC 15442 S S S R R R R R R R R R

Concentration of ZnO particles used (µg/mL)

Escherichia coli ATCC 8738 S S R R R R R R R R R R
Staphylococcus aureus ATCC BAA 1026 S R R R R R R R R R R R
Pseudomonas aeruginosa ATCC 15442 S S R R R R R R R R R R

Concentration of AuZnO used (µg/mL)

Escherichia coli ATCC 8738 S S S R R R R R R R R R
Staphylococcus aureus ATCC BAA 1026 S S R R R R R R R R R R
Pseudomonas aeruginosa ATCC 15442 S S R R R R R R R R R R

Concentration of AgClZnO used (µg/mL)

Escherichia coli ATCC 8738 S S S R R R R R R R R R
Staphylococcus aureus ATCC BAA 1026 S S S S R R R R R R R R
Pseudomonas aeruginosa ATCC 15442 S S S R R R R R R R R R

Concentration of AuAgClZnO used (µg/mL)

Escherichia coli ATCC 8738 S S S S S R R R R R R R
Staphylococcus aureus ATCC BAA 1026 S S S S R R R R R R R R
Pseudomonas aeruginosa ATCC 15442 S S S S S R R R R R R R

Key: R—Resistant; S—Susceptible/Sensitive.

Figure 12 displays, comparatively, the ZOI values of the prepared samples.
The antibacterial results showed that our tested samples had a better antimicrobial

effect against Gram-negative bacteria because Gram-positive bacteria have a strong, thick
cell wall, whereas Gram-negative bacteria have a thin cell wall, so the antibacterial agent
easily penetrates and causes damages to the bacterial cell.

ZnO is a material with a broad antimicrobial spectrum with long-term antibacterial
activity and minimal cytotoxicity, and it can destroy the microorganisms without the
possibility of adaptation [70,71]; it is approved by the Food and Drug Administration (FDA)
as a bio-safe material [72,73].
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When ZnO particles come into contact with a microorganism, many mechanisms of
action are possible: (1) degradation of the cell membrane via ROS (reactive oxygen species),
causing lipid peroxidation and DNA/RNA damage [73]; (2) interaction between ZnO
particles and the bacterial wall due to the loss of cell integrity [74]; (3) the release of Zn2+

ions [74].
According to Sathiyaraj et al. [75], the antibacterial activity of AuNPs was achieved

in two phases: inhibition of the metabolic pathway via changing the membrane potential
and lowering adenosine triphosphate synthase activity and, second, AuNPs rejecting the
ribosome’s subunit for tRNA binding.

The antimicrobial activity of AgClNPs has been highlighted by many authors [76,77].
Our burdock-derived ZnO and AgClZnO structures were more effective against

Pseudomonas aeruginosa (MICZnO = 200 µg/mL; MICAgClZnO = 100 µg/mL) than the ZnO–
NPs and Ag–ZnO heterostructures prepared by Hameed et al. from aqueous extract of
Silybum marianum (MICZnO-NPs = 250 µg/mL; MICAg-ZnO = 150 µg/mL) [54].

Our results can be attributed to synergism between all the components of the prepared
samples. Based on these results, it was concluded that burdock-derived samples could be
used to combat antibiotic drug resistance.

4. Conclusions

This study described an original “green” bottom-up strategy to prepare multifunc-
tional mono-, bi-, and trimetallic composites based on burdock-derived gold, silver chloride,
and zinc oxide nanoparticles.

The mechanism of bio-nanomaterials’ formation was explained by correlating the
UV-Vis, FTIR, and EDS spectra with information provided by microscopic images (SEM,
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TEM). The EDS spectra, SAED, and XRD patterns of the samples were well-correlated and
showed the presence of potassium chloride in the burdock extract, and also in the AuNPs
and AgClNPs. Moreover, the XRD results were well-correlated with the SAED and FTIR
data, regarding the particles’ phase. The DLS results were in good agreement with the SEM
and TEM analyses related to the dimensions of the obtained materials.

The optical characterization (FTIR and UV-Vis) of phytoderived materials demon-
strated the key role played by proteins, flavones, polyphenols, ethers, and other phyto-
compounds arising from A. lappa extract in the development of prepared particles. The
presence of these phytomolecules gives the antioxidant and antibacterial properties and
also the physical stability of our developed materials. The phytometallic and semiconduct-
ing materials presented good physical stability with zeta potential values between −18 and
−35 mV. The most stable samples proved to be AgClNPs and AuAgClZnO.

The novel material AuAgClZnO showed an ability to inhibit both kinds of short-
life oxygenated radicals (ROS) and long-life cationic radicals (ABTS•+), and an inhibition
capacity of 50.5% ABTS•+ was determined, while the ability to capture ROS radicals was
of 65%. This tricomponent system showed excellent antimicrobial properties against
Escherichia coli (ZOI = 20 ± 0.57 mm), Pseudomonas aeruginosa (ZOI = 27.5 ± 0.41 mm),
and Staphylococcus aureus (ZOI = 15 ± 0.14 mm). Additionally, the bicomponent material,
AgClZnO, showed good photocatalytic properties demonstrated by the degradation of
97.02% of RhB, and antibacterial activity against the tested Gram-negative and Gram-
positive bacteria. The ZnO-containing samples presented photocatalytic activity, but the
most efficient system proved to be AgClZnO which can be used as an efficient catalyst in
wastewater treatment for dye pollutant degradation.

The “green” developed composite particles combine the properties of all the com-
ponents they are made of. Due to a synergic action of all components, the trimetallic
AuAgClZnO particles presented the best bioperformance (good antioxidant and antibacte-
rial activities) as compared to the bi- and monometallic components.

Our developed burdock-derived composites based on phytogenic gold, silver chloride,
and zinc oxide particles could be used as green multifunctional platforms in various appli-
cations in the biomedical field (as antioxidant and antibacterial agents) or in environmental
protection (as antimicrobial agents and catalysts for dye degradation).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma16031153/s1, Table S1: FT-IR band assignment for vegetal
extract and phytosynthesized materials. Refs. [78,79] are cited in the supplementary materials.
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