Enhanced Electroluminescence from Silicon Quantum Dots Embedded in Silicon Nitride Thin Films Coupled with Gold Nanoparticles in Light Emitting Devices
Abstract
1. Introduction
2. Methods
3. Results and Discussion
3.1. Preparation of the Layered Luminescent Devices
3.2. Electroluminescence
3.3. J-E Characteristics
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Abeles, B.; Tiedje, T. Amorphous Semiconductor Superlattices. Phys. Rev. Lett. 1983, 51, 2003–2006. [Google Scholar] [CrossRef]
- DiMaria, D.J.; Kirtley, J.R.; Pakulis, E.J.; Dong, D.W.; Kuan, T.S.; Pesavento, F.L.; Theis, T.N.; Cutro, J.A.; Brorson, S.D. Electroluminescence studies in silicon dioxide films containing tiny silicon islands. J. Appl. Phys. 1984, 56, 401–416. [Google Scholar] [CrossRef]
- Canham, L.T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 1990, 57, 1046–1048. [Google Scholar] [CrossRef]
- Pavesi, L.; Gaburro, Z.; Negro, L.D.; Bettotti, P.; Prakash, G.V.; Cazzanelli, M.; Oton, C.J. Nanostructured silicon as a photonic material. Opt. Lasers Eng. 2003, 39, 345–368. [Google Scholar] [CrossRef]
- Streshinsky, M.; Ding, R.; Liu, Y.; Novack, A.; Galland, C.; Lim, A.E.-J.; Guo-Qiang Lo, P.; Baehr-Jones, T.; Hochberg, M. The Road to Affordable, Large-Scale Silicon Photonics. Opt. Photonics News 2013, 24, 32. [Google Scholar] [CrossRef]
- Rickman, A. The commercialization of silicon photonics. Nat. Photonics 2014, 8, 579–582. [Google Scholar] [CrossRef]
- Priolo, F.; Gregorkiewicz, T.; Galli, M.; Krauss, T.F. Silicon nanostructures for photonics and photovoltaics. Nat. Nanotechnol. 2014, 9, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Park, N.-M.; Choi, C.-J.; Seong, T.-Y.; Park, S.-J. Quantum Confinement in Amorphous Silicon Quantum Dots Embedded in Silicon Nitride. Phys. Rev. Lett. 2001, 86, 1355–1357. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.-W.; Cho, C.-H.; Kim, B.-H.; Park, S.-J. Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using SiH4 and NH3. Appl. Phys. Lett. 2006, 88, 123102. [Google Scholar] [CrossRef]
- Kim, T.; Park, N.; Kim, K.; Yong, G. Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films. Appl. Phys. Lett. 2004, 85, 5355–5357. [Google Scholar] [CrossRef]
- Rodriguez, A.; Arenas, J.; Alonso, J.C. Photoluminescence mechanisms in silicon quantum dots embedded in nanometric chlorinated-silicon nitride films. J. Lumin. 2012, 132, 2385–2389. [Google Scholar] [CrossRef]
- Das, D.; Samanta, A. Quantum size effects on the optical properties of nc-Si QDs embedded in an a-SiOx matrix synthesized by spontaneous plasma processing. Phys. Chem. Chem. Phys. 2015, 17, 5063–5071. [Google Scholar] [CrossRef] [PubMed]
- Alonso, J.C.; Pulgarín, F.A.; Monroy, B.M.; Benami, A.; Bizarro, M.; Ortiz, A. Visible electroluminescence from silicon nanoclusters embedded in chlorinated silicon nitride thin films. Thin Solid Films 2010, 518, 3891–3893. [Google Scholar] [CrossRef]
- Biteen, J.S.; Pacifici, D.; Lewis, N.S.; Atwater, H.A. Enhanced Radiative Emission Rate and Quantum Efficiency in Coupled Silicon Nanocrystal-Nanostructured Gold Emitters. Nano Lett. 2005, 5, 1768–1773. [Google Scholar] [CrossRef] [PubMed]
- Biteen, J.S.; Lewis, N.S.; Atwater, H.A.; Mertens, H.; Polman, A. Spectral tuning of plasmon-enhanced silicon quantum dot luminescence. Appl. Phys. Lett. 2006, 88, 131109. [Google Scholar] [CrossRef]
- Mertens, H.; Biteen, J.S.; Atwater, H.A.; Polman, A. Polarization-Selective Plasmon-Enhanced Silicon Quantum-Dot Luminescence. Nano Lett. 2006, 6, 2622–2625. [Google Scholar] [CrossRef] [PubMed]
- Benami, A.; López-Suárez, A.; Rodríguez-Fernández, L.; Crespo-Sosa, A.; Cheang-Wong, J.C.; Reyes-Esqueda, J.A.; Oliver, A. Enhancement and quenching of photoluminescence from silicon quantum dots by silver nanoparticles in a totally integrated configuration. AIP Adv. 2012, 2, 012193. [Google Scholar] [CrossRef]
- Benami, A.; El Hassouani, Y.; Oliver, A.; Lopez-Suarez, A. Effect of Silver Nanoparticles on the Photoluminescence of Silicon Nanocrystals. Spectrosc. Lett. 2014, 47, 411–414. [Google Scholar] [CrossRef]
- Muñoz-Rosas, A.L.; Rodríguez-Gómez, A.; Arenas-Alatorre, J.A.; Alonso-Huitrón, J.C. Photoluminescence enhancement from silicon quantum dots located in the vicinity of a monolayer of gold nanoparticles. RSC Adv. 2015, 5, 92923–92931. [Google Scholar] [CrossRef]
- Biteen, J.S.; Sweatlock, L.A.; Mertens, H.; Lewis, N.S.; Polman, A.; Atwater, H.A. Plasmon-Enhanced Photoluminescence of Silicon Quantum Dots: Simulation and Experiment. J. Phys. Chem. C 2007, 111, 13372–13377. [Google Scholar] [CrossRef]
- Inoue, A.; Fujii, M.; Sugimoto, H.; Imakita, K. Surface Plasmon-Enhanced Luminescence of Silicon Quantum Dots in Gold Nanoparticle Composites. J. Phys. Chem. C 2015, 119, 25108–25113. [Google Scholar] [CrossRef]
- Yashima, S.; Sugimoto, H.; Takashina, H.; Fujii, M. Fluorescence Enhancement and Spectral Shaping of Silicon Quantum Dot Monolayer by Plasmonic Gap Resonances. J. Phys. Chem. C 2016, 120, 28795–28801. [Google Scholar] [CrossRef]
- Inoue, A.; Sugimoto, H.; Fujii, M. Photoluminescence Enhancement of Silicon Quantum Dot Monolayer by Double Resonance Plasmonic Substrate. J. Phys. Chem. C 2017, 121, 11609–11615. [Google Scholar] [CrossRef]
- Kim, B.-H.; Cho, C.-H.; Mun, J.-S.; Kwon, M.-K.; Park, T.-Y.; Kim, J.S.; Byeon, C.C.; Lee, J.; Park, S.-J. Enhancement of the External Quantum Efficiency of a Silicon Quantum Dot Light-Emitting Diode by Localized Surface Plasmons. Adv. Mater. 2008, 20, 3100–3104. [Google Scholar] [CrossRef]
- Li, D.; Wang, F.; Ren, C.; Yang, D. Improved electroluminescence from silicon nitride light emitting devices by localized surface plasmons. Opt. Mater. Express 2012, 2, 872. [Google Scholar] [CrossRef]
- Li, D.; Wang, F.; Yang, D. Evolution of electroluminescence from silicon nitride light-emitting devices via nanostructural silver. Nanoscale 2013, 5, 3435–3440. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.H.; Davis, R.F.; Cho, C.-H.; Park, S.-J. Enhanced performance of silicon quantum dot light-emitting diodes grown on nanoroughened silicon substrate. Appl. Phys. Lett. 2009, 95, 073113. [Google Scholar] [CrossRef]
- Li, W.; Wang, S.; Hu, M.; He, S.; Ge, P.; Wang, J.; Guo, Y.Y.; Zhaowei, L. Enhancement of electroluminescence from embedded Si quantum dots/SiO2 multilayers film by localized-surface-plasmon and surface roughening. Sci. Rep. 2015, 5, 11881. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Gómez, A.; Moreno-Rios, M.; García-García, R.; Pérez-Martínez, A.L.; Reyes-Gasga, J. Role of the substrate on the growth of silicon quantum dots embedded in silicon nitride thin films. Mater. Chem. Phys. 2018, 208, 61–67. [Google Scholar] [CrossRef]
- Tauc, J. Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 1968, 3, 37–46. [Google Scholar] [CrossRef]
- Robertson, J. Electronic structure of silicon nitride. Philos. Mag. Part B 1991, 63, 47–77. [Google Scholar] [CrossRef]
- Aspnes, D.E.; Studna, A.A. Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys. Rev. B 1983, 27, 985–1009. [Google Scholar] [CrossRef]
- Anutgan, M.; Anutgan, T.A.; Atilgan, I.; Katircioglu, B. Photoluminescence analyses of hydrogenated amorphous silicon nitride thin films. J. Lumin. 2011, 131, 1305–1311. [Google Scholar] [CrossRef]
- Ay, F.; Aydinli, A. Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides. Opt. Mater. 2004, 26, 33–46. [Google Scholar] [CrossRef]
- Jiang, X.; Ma, Z.; Xu, J.; Chen, K.; Xu, L.; Li, W.; Huang, X.; Feng, D. a-SiNx:H-based ultra-low power resistive random access memory with tunable Si dangling bond conduction paths. Sci. Rep. 2015, 5, 15762. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Núñez, M.A.; Rodríguez-Gómez, A.; Escobar-Alarcón, L.; Alonso-Huitrón, J.C. Combined study of the effect of deposition temperature and post-deposition annealing on the photoluminescence of silicon quantum dots embedded in chlorinated silicon nitride thin films. RSC Adv. 2016, 6, 77440–77451. [Google Scholar] [CrossRef]
- Rodríguez-Gómez, A.; Escobar-Alarcón, L.; Serna, R.; Cabello, F.; Haro-Poniatowski, E.; García-Valenzuela, A.; Alonso, J.C. Modeling of the refractive index and composition of luminescent nanometric chlorinated-silicon nitride films with embedded Si-quantum dots. J. Appl. Phys. 2016, 120, 145305. [Google Scholar] [CrossRef]
- Wang, M.; Xie, M.; Ferraioli, L.; Yuan, Z.; Li, D.; Yang, D.; Pavesi, L. Light emission properties and mechanism of low-temperature prepared amorphous SiNX films. I. Room-temperature band tail states photoluminescence. J. Appl. Phys. 2008, 104, 083504. [Google Scholar] [CrossRef]
- Wang, M.; Huang, J.; Yuan, Z.; Anopchenko, A.; Li, D.; Yang, D.; Pavesi, L. Light emission properties and mechanism of low-temperature prepared amorphous SiNX films. II. Defect states electroluminescence. J. Appl. Phys. 2008, 104, 083505. [Google Scholar] [CrossRef]
- Morales-Sánchez, A.; Domínguez, C.; Barreto, J.; Aceves-Mijares, M.; Licea-Jiménez, L.; Luna-López, J.A.; Carrillo, J. Floating substrate luminescence from silicon rich oxide metal-oxide-semiconductor devices. Thin Solid Films 2013, 531, 442–445. [Google Scholar] [CrossRef]
- Cabañas-Tay, S.A.; Palacios-Huerta, L.; Luna-López, J.A.; Aceves-Mijares, M.; Alcántara-Iniesta, S.; Pérez-García, S.A.; Morales-Sánchez, A. Analysis of the luminescent centers in silicon rich silicon nitride light-emitting capacitors. Semicond. Sci. Technol. 2015, 30, 065009. [Google Scholar] [CrossRef]
- Gaillard, N.; Pinzelli, L.; Gros-Jean, M.; Bsiesy, A. In situ electric field simulation in metal/insulator/metal capacitors. Appl. Phys. Lett. 2006, 89, 89–92. [Google Scholar] [CrossRef]
- Lopes, M.C.V. Si-SiO2 Electronic Interface Roughness as a Consequence of Si-SiO2 Topographic Interface Roughness. J. Electrochem. Soc. 1996, 143, 1021–1025. [Google Scholar] [CrossRef]
- Regan, W.; Byrnes, S.; Gannett, W.; Ergen, O.; Vazquez-Mena, O.; Wang, F.; Zettl, A. Screening-Engineered Field-Effect Solar Cells. Nano Lett. 2012, 12, 4300–4304. [Google Scholar] [CrossRef] [PubMed]
- Oguro, T.; Koyama, H.; Ozaki, T.; Koshida, N. Mechanism of the visible electroluminescence from metal/porous silicon/n-Si devices. J. Appl. Phys. 1997, 81, 1407–1412. [Google Scholar] [CrossRef]
R = NH3/SiH2Cl2 Gas Flow Ratio | Sample | Thickness (nm) | Refractive Index | Optical Band Gap (eV) |
---|---|---|---|---|
120 | SiNx | 96.5 | 1.78 | 4.68 |
40 | SiQDs | 97.9 | 1.84 | 4.04 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-Rosas, A.L.; Rodríguez-Gómez, A.; Alonso-Huitrón, J.C. Enhanced Electroluminescence from Silicon Quantum Dots Embedded in Silicon Nitride Thin Films Coupled with Gold Nanoparticles in Light Emitting Devices. Nanomaterials 2018, 8, 182. https://doi.org/10.3390/nano8040182
Muñoz-Rosas AL, Rodríguez-Gómez A, Alonso-Huitrón JC. Enhanced Electroluminescence from Silicon Quantum Dots Embedded in Silicon Nitride Thin Films Coupled with Gold Nanoparticles in Light Emitting Devices. Nanomaterials. 2018; 8(4):182. https://doi.org/10.3390/nano8040182
Chicago/Turabian StyleMuñoz-Rosas, Ana Luz, Arturo Rodríguez-Gómez, and Juan Carlos Alonso-Huitrón. 2018. "Enhanced Electroluminescence from Silicon Quantum Dots Embedded in Silicon Nitride Thin Films Coupled with Gold Nanoparticles in Light Emitting Devices" Nanomaterials 8, no. 4: 182. https://doi.org/10.3390/nano8040182
APA StyleMuñoz-Rosas, A. L., Rodríguez-Gómez, A., & Alonso-Huitrón, J. C. (2018). Enhanced Electroluminescence from Silicon Quantum Dots Embedded in Silicon Nitride Thin Films Coupled with Gold Nanoparticles in Light Emitting Devices. Nanomaterials, 8(4), 182. https://doi.org/10.3390/nano8040182