Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,170)

Search Parameters:
Keywords = zinc oxide (ZnO)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1407 KiB  
Review
ZnO Nanoparticles: Advancing Agricultural Sustainability
by Lekkala Venkata Ravishankar, Nidhi Puranik, VijayaDurga V. V. Lekkala, Dakshayani Lomada, Madhava C. Reddy and Amit Kumar Maurya
Plants 2025, 14(15), 2430; https://doi.org/10.3390/plants14152430 - 5 Aug 2025
Abstract
Micronutrients play a prominent role in plant growth and development, and their bioavailability is a growing global concern. Zinc is one of the most important micronutrients in the plant life cycle, acting as a metallic cofactor for numerous biochemical reactions within plant cells. [...] Read more.
Micronutrients play a prominent role in plant growth and development, and their bioavailability is a growing global concern. Zinc is one of the most important micronutrients in the plant life cycle, acting as a metallic cofactor for numerous biochemical reactions within plant cells. Zinc deficiency in plants leads to various physiological abnormalities, ultimately affecting nutritional quality and posing challenges to food security. Biofortification methods have been adopted by agronomists to increase Zn concentrations in crops through optimal foliar and soil applications. Changing climatic conditions and conventional agricultural practices alter edaphic factors, reducing zinc bioavailability in soils due to abrupt weather changes. Precision agriculture emphasizes need-based and site-specific technologies to address these nutritional deficiencies. Nanoscience, a multidimensional approach, reduces particle size to the nanometer (nm) scale to enhance their efficiency in precise amounts. Nanoscale forms of Zn+2 and their broad applications across crops are gaining attention in agriculture under varied application methods. This review focuses on the significance of Zn oxide (ZnO) nanoparticles (ZnONPs) and their extensive application in crop production. We also discuss optimum dosage levels, ZnONPs synthesis, application methods, toxicity, and promising future strategies in this field. Full article
(This article belongs to the Special Issue Nanotechnology in Crop Physiology and Sustainable Agriculture)
Show Figures

Figure 1

21 pages, 3283 KiB  
Article
Atypical Pressure Dependent Structural Phonon and Thermodynamic Characteristics of Zinc Blende BeO
by Devki N. Talwar and Piotr Becla
Materials 2025, 18(15), 3671; https://doi.org/10.3390/ma18153671 - 5 Aug 2025
Viewed by 106
Abstract
Under normal conditions, the novel zinc blende beryllium oxide (zb BeO) exhibits in a metastable crystalline phase, which is less stable than its wurtzite counterpart. Ultrathin zb BeO epifilms have recently gained significant interest to create a wide range of advanced high-resolution, high-frequency, [...] Read more.
Under normal conditions, the novel zinc blende beryllium oxide (zb BeO) exhibits in a metastable crystalline phase, which is less stable than its wurtzite counterpart. Ultrathin zb BeO epifilms have recently gained significant interest to create a wide range of advanced high-resolution, high-frequency, flexible, transparent, nano-electronic and nanophotonic modules. BeO-based ultraviolet photodetectors and biosensors are playing important roles in providing safety and efficiency to nuclear reactors for their optimum operations. In thermal management, BeO epifilms have also been used for many high-tech devices including medical equipment. Phonon characteristics of zb BeO at ambient and high-pressure P ≠ 0 GPa are required in the development of electronics that demand enhanced heat dissipation for improving heat sink performance to lower the operating temperature. Here, we have reported methodical simulations to comprehend P-dependent structural, phonon and thermodynamical properties by using a realistic rigid-ion model (RIM). Unlike zb ZnO, the study of the Grüneisen parameter γ(T) and thermal expansion coefficient α(T) in zb BeO has revealed atypical behavior. Possible reasons for such peculiar trends are attributed to the combined effect of the short bond length and strong localization of electron charge close to the small core size Be atom in BeO. Results of RIM calculations are compared/contrasted against the limited experimental and first-principle data. Full article
(This article belongs to the Special Issue The Heat Equation: The Theoretical Basis for Materials Processing)
Show Figures

Figure 1

16 pages, 2276 KiB  
Article
Effect of Nanoparticles on the Development of Bacterial Speck in Tomato (Solanum lycopersicum L.) and Chili Variegation (Capsicum annuum L.)
by Edgar Alejandro Ruiz-Ramirez, Daniel Leobardo Ochoa-Martínez, Gilberto Velázquez-Juárez, Reyna Isabel Rojas-Martinez and Victor Manuel Zuñiga-Mayo
Horticulturae 2025, 11(8), 907; https://doi.org/10.3390/horticulturae11080907 - 4 Aug 2025
Viewed by 262
Abstract
Among the new strategies for managing diseases in agricultural crops is the application of metallic nanoparticles due to their ability to inhibit the development of phytopathogenic microorganisms and to induce plant defense responses. Therefore, this research evaluated the effects of silver (AgNPs), zinc [...] Read more.
Among the new strategies for managing diseases in agricultural crops is the application of metallic nanoparticles due to their ability to inhibit the development of phytopathogenic microorganisms and to induce plant defense responses. Therefore, this research evaluated the effects of silver (AgNPs), zinc oxide (ZnONPs), and silicon dioxide (SiO2NPs) nanoparticles on symptom progression and physiological parameters in two pathosystems: Pseudomonas syringae pv. tomato (Psto) in tomato (pathosystem one, culturable pathogen) and Candidatus Liberibacter solanacearum (CaLso) in pepper plants (pathosystem two, non-culturable pathogen). For in vitro pathosystem one assays, SiO2NPs did not inhibit Psto growth. The minimum inhibitory concentration (MIC) was 31.67 ppm for AgNPs and 194.3 ppm for ZnONPs. Furthermore, the minimum lethal concentration (MLC) for AgNPs was 100 ppm, while for ZnONPs, it was 1000 ppm. For in planta assays, ZnONPs, AgNPs, and SiO2NPs reduced the number of lesions per leaf, but only ZnONPs significantly decreased the severity. Regarding pathosystem two, AgNPs, ZnONPs, and SiO2NPs application delayed symptom progression. However, only AgNPs significantly reduced severity percentage. Moreover, treatments with AgNPs and SiO2NPs increased the plant height and dry weight compared to the results for the control. Full article
Show Figures

Figure 1

32 pages, 995 KiB  
Case Report
Phytotoxic Effects and Agricultural Potential of Nanofertilizers: A Case Study Using Zeolite, Zinc Oxide, and Titanium Dioxide Under Controlled Conditions
by Ezequiel Zamora-Ledezma, Glenda Leonela Loor Aragundi, Willian Stalyn Guamán Marquines, Michael Anibal Macías Pro, José Vicente García Díaz, Henry Antonio Pacheco Gil, Julián Mauricio Botero Londoño, Mónica Andrea Botero Londoño and Camilo Zamora-Ledezma
J. Xenobiot. 2025, 15(4), 123; https://doi.org/10.3390/jox15040123 - 1 Aug 2025
Viewed by 324
Abstract
Nanofertilizers (NFs) and engineered nanoparticles (NPs) are increasingly used in agriculture, yet their environmental safety remains poorly understood. This study evaluated the comparative phytotoxicity of zinc oxide (ZnO), titanium dioxide (TiO2), and clinoptilolite nanoparticles, three commercial nanofertilizers, and potassium dichromate (K [...] Read more.
Nanofertilizers (NFs) and engineered nanoparticles (NPs) are increasingly used in agriculture, yet their environmental safety remains poorly understood. This study evaluated the comparative phytotoxicity of zinc oxide (ZnO), titanium dioxide (TiO2), and clinoptilolite nanoparticles, three commercial nanofertilizers, and potassium dichromate (K2Cr2O7) using Lactuca sativa seeds under adapted OECD-208 protocol conditions. Seeds were exposed to varying concentrations of each xenobiotic material (0.5–3% for NFs; 10–50% for NPs), with systematic assessment of seedling survival, root and hypocotyl length, dry biomass, germination index (GI), and median effective concentration (EC50) values. Nanofertilizers demonstrated significantly greater phytotoxicity than engineered nanoparticles despite lower application concentrations. The toxicity ranking was established as NF1 > NF3 > NF2 > NM2 > NM1 > NM3, with NF1 being most toxic (EC50 = 1.2%). Nanofertilizers caused 45–78% reductions in root length and 30–65% decreases in dry biomass compared with controls. GI values dropped to ≤70% in NF1 and NF3 treatments, indicating concentration-dependent growth inhibition. While nanofertilizers offer agricultural benefits, their elevated phytotoxicity compared with conventional nanoparticles necessitates rigorous pre-application safety assessment. These findings emphasize the critical need for standardized evaluation protocols incorporating both physiological and ecotoxicological endpoints to ensure safe xenobiotic nanomaterial deployment in agricultural systems. Full article
Show Figures

Graphical abstract

15 pages, 3882 KiB  
Article
Performance of Low-Cost Energy Dense Mixed Material MnO2-Cu2O Cathodes for Commercially Scalable Aqueous Zinc Batteries
by Gautam G. Yadav, Malesa Sammy, Jungsang Cho, Megan N. Booth, Michael Nyce, Jinchao Huang, Timothy N. Lambert, Damon E. Turney, Xia Wei and Sanjoy Banerjee
Batteries 2025, 11(8), 291; https://doi.org/10.3390/batteries11080291 - 1 Aug 2025
Viewed by 204
Abstract
Zinc (Zn)-based batteries have attracted significant interest for applications ranging from electric bikes to grid storage because of its advantageous properties like high abundance, non-toxicity and low-cost. Zn offers a high theoretical capacity of two electrons per atom, resulting in 820 mAh/g, making [...] Read more.
Zinc (Zn)-based batteries have attracted significant interest for applications ranging from electric bikes to grid storage because of its advantageous properties like high abundance, non-toxicity and low-cost. Zn offers a high theoretical capacity of two electrons per atom, resulting in 820 mAh/g, making it a promising anode material for the development of highly energy dense batteries. However, the advancement of Zn-based battery systems is hindered by the limited availability of cathode materials that simultaneously offer high theoretical capacity, long-term cycling stability, and affordability. In this work, we present a new mixed material cathode system, comprising of a mixture of manganese dioxide (MnO2) and copper oxide (Cu2O) as active materials, that delivers a high theoretical capacity of ~280 mAh/g (MnO2 + Cu2O active material) (based on the combined mass of MnO2 and Cu2O) and supports stable cycling for >200 cycles at 1C. We further demonstrate the scalability of this novel cathode system by increasing the electrode size and capacity, highlighting its potential for practical and commercial applications. Full article
Show Figures

Figure 1

17 pages, 3389 KiB  
Article
Enhanced OH Transport Properties of Bio-Based Anion-Exchange Membranes for Different Applications
by Suer Kurklu-Kocaoglu, Daniela Ramírez-Espinosa and Clara Casado-Coterillo
Membranes 2025, 15(8), 229; https://doi.org/10.3390/membranes15080229 - 31 Jul 2025
Viewed by 407
Abstract
The demand for anion exchange membranes (AEMs) is growing due to their applications in water electrolysis, CO2 reduction conversion and fuel cells, as well as water treatment, driven by the increasing energy demand and the need for a sustainable future. However, current [...] Read more.
The demand for anion exchange membranes (AEMs) is growing due to their applications in water electrolysis, CO2 reduction conversion and fuel cells, as well as water treatment, driven by the increasing energy demand and the need for a sustainable future. However, current AEMs still face challenges, such as insufficient permeability and stability in strongly acidic or alkaline media, which limit their durability and the sustainability of membrane fabrication. In this study, polyvinyl alcohol (PVA) and chitosan (CS) biopolymers are selected for membrane preparation. Zinc oxide (ZnO) and porous organic polymer (POP) nanoparticles are also introduced within the PVA-CS polymer blends to make mixed-matrix membranes (MMMs) with increased OH transport sites. The membranes are characterized based on typical properties for AEM applications, such as thickness, water uptake, KOH uptake, Cl and OH permeability and ion exchange capacity (IEC). The OH transport of the PVA-CS blend is increased by at least 94.2% compared with commercial membranes. The incorporation of non-porous ZnO and porous POP nanoparticles into the polymer blend does not compromise the OH transport properties. On the contrary, ZnO nanoparticles enhance the membrane’s water retention capacity, provide basic surface sites that facilitate hydroxide ion conduction and reinforce the mechanical and thermal stability. In parallel, POPs introduce a highly porous architecture that increases the internal surface area and promotes the formation of continuous hydrated pathways, essential to efficient OH mobility. Furthermore, the presence of POPs also contributes to reinforcing the mechanical integrity of the membrane. Thus, PVA-CS bio-based membranes are a promising alternative to conventional ion exchange membranes for various applications. Full article
(This article belongs to the Special Issue Membrane Technologies for Water Purification)
Show Figures

Figure 1

21 pages, 7973 KiB  
Article
Enhanced Response of ZnO Nanorod-Based Flexible MEAs for Recording Ischemia-Induced Neural Activity in Acute Brain Slices
by José Ignacio Del Río De Vicente, Valeria Marchetti, Ivano Lucarini, Elena Palmieri, Davide Polese, Luca Montaina, Francesco Maita, Jan Kriska, Jana Tureckova, Miroslava Anderova and Luca Maiolo
Nanomaterials 2025, 15(15), 1173; https://doi.org/10.3390/nano15151173 - 30 Jul 2025
Viewed by 340
Abstract
Brain ischemia is a severe condition caused by reduced cerebral blood flow, leading to the disruption of ion gradients in brain tissue. This imbalance triggers spreading depolarizations, which are waves of neuronal and glial depolarization propagating through the gray matter. Microelectrode arrays (MEAs) [...] Read more.
Brain ischemia is a severe condition caused by reduced cerebral blood flow, leading to the disruption of ion gradients in brain tissue. This imbalance triggers spreading depolarizations, which are waves of neuronal and glial depolarization propagating through the gray matter. Microelectrode arrays (MEAs) are essential for real-time monitoring of these electrophysiological processes both in vivo and in vitro, but their sensitivity and signal quality are critical for accurate detection of extracellular brain activity. In this study, we evaluate the performance of a flexible microelectrode array based on gold-coated zinc oxide nanorods (ZnO NRs), referred to as nano-fMEA, specifically for high-fidelity electrophysiological recording under pathological conditions. Acute mouse brain slices were tested under two ischemic models: oxygen–glucose deprivation (OGD) and hyperkalemia. The nano-fMEA demonstrated significant improvements in event detection rates and in capturing subtle fluctuations in neural signals compared to flat fMEAs. This enhanced performance is primarily attributed to an optimized electrode–tissue interface that reduces impedance and improves charge transfer. These features enabled the nano-fMEA to detect weak or transient electrophysiological events more effectively, making it a valuable platform for investigating neural dynamics during metabolic stress. Overall, the results underscore the promise of ZnO NRs in advancing electrophysiological tools for neuroscience research. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Graphical abstract

13 pages, 3237 KiB  
Article
Development of a UV-LED Photoreactor for Colorant Degradation in Water
by Betsabé Ildefonso-Ojeda, Macaria Hernández-Chávez, José R. Contreras-Bárbara, Karen Roa-Tort, Josué D. Rivera-Fernández and Diego A. Fabila-Bustos
Crystals 2025, 15(8), 688; https://doi.org/10.3390/cryst15080688 - 29 Jul 2025
Viewed by 307
Abstract
This work analyzes the performance of a photoreactor built with UV-LED technology. For this task, a UV-LED wavelength of 365 nm was used as an irradiation source, and it was electrically and spectrally characterized to ensure correct operation. To evaluate the functionality, the [...] Read more.
This work analyzes the performance of a photoreactor built with UV-LED technology. For this task, a UV-LED wavelength of 365 nm was used as an irradiation source, and it was electrically and spectrally characterized to ensure correct operation. To evaluate the functionality, the photoreactor was tested on the degradation of Rhodamine B (Rh B), a dye commonly used in the textile industry. The experiment was conducted under optimal conditions, using a concentration of 17 ppm of Rh B and 100 mg of zinc oxide (ZnO) as a photocatalyst in a glass reactor. The mixture was continuously stirred for 120 min, achieving 99.42% efficiency. The results showed that the UV-LED photoreactor performs well in activating ZnO for the removal of Rh B from the solution, highlighting its potential for treating textile industry wastewater. The use of LEDs offers advantages such as energy efficiency and lower environmental impact compared to traditional UV lamps. ZnO, known for its reactivity under UV light, acted as a stable photocatalyst, ensuring complete degradation of the dye without producing harmful by-products. This method provides an efficient approach to dye removal in wastewater treatment, promoting cleaner and more sustainable industrial practices. Full article
(This article belongs to the Special Issue Advances in Nanocomposites: Structure, Properties and Applications)
Show Figures

Figure 1

14 pages, 4052 KiB  
Article
ZnO/PVDF Nanogenerators with Hemisphere-Patterned PDMS for Enhanced Piezoelectric Performance
by Kibum Song and Keun-Young Shin
Polymers 2025, 17(15), 2041; https://doi.org/10.3390/polym17152041 - 26 Jul 2025
Viewed by 403
Abstract
In this study, we present a flexible piezoelectric nanogenerator based on a zinc oxide (ZnO)/polyvinylidene fluoride (PVDF) nanocomposite electrospun onto a hemisphere-patterned PDMS substrate. The nanogenerator was fabricated by replicating a silicon mold with inverted hemispheres into PDMS, followed by direct electrospinning of [...] Read more.
In this study, we present a flexible piezoelectric nanogenerator based on a zinc oxide (ZnO)/polyvinylidene fluoride (PVDF) nanocomposite electrospun onto a hemisphere-patterned PDMS substrate. The nanogenerator was fabricated by replicating a silicon mold with inverted hemispheres into PDMS, followed by direct electrospinning of ZnO-dispersed PVDF nanofibers. Varying the ZnO concentration from 0.6 to 1.4 wt% allowed us to evaluate its effect on structural, dielectric, and piezoelectric properties. The nanogenerator containing 0.8 wt% ZnO exhibited the thinnest fibers (371 nm), the highest β-phase fraction (85.6%), and the highest dielectric constant (35.8). As a result, it achieved the maximum output voltage of 7.30 V, with excellent signal consistency under an applied pressure of 5 N. Comparisons with pristine PVDF- and ZnO/PVDF-only devices demonstrated the synergistic effect of ZnO loading and patterned PDMS on the enhancement of piezoelectric output. The hemisphere-patterned PDMS substrate improved the mechanical strain distribution, interfacial contact, and charge collection efficiency. These results highlight the potential of ZnO/PVDF/PDMS hybrid nanogenerators for use in wearable electronics and self-powered sensor systems. Full article
(This article belongs to the Special Issue Recent Advances in Applied Polymers in Renewable Energy)
Show Figures

Graphical abstract

14 pages, 3187 KiB  
Article
Characterizations of Electrospun PVDF-Based Mixed Matrix Membranes with Nanomaterial Additives
by Haya Taleb, Venkatesh Gopal, Sofian Kanan, Raed Hashaikeh, Nidal Hilal and Naif Darwish
Nanomaterials 2025, 15(15), 1151; https://doi.org/10.3390/nano15151151 - 25 Jul 2025
Viewed by 359
Abstract
Water scarcity poses a formidable challenge around the world, especially in arid regions where limited availability of freshwater resources threatens both human well-being and ecosystem sustainability. Membrane-based desalination technologies offer a viable solution to address this issue by providing access to clean water. [...] Read more.
Water scarcity poses a formidable challenge around the world, especially in arid regions where limited availability of freshwater resources threatens both human well-being and ecosystem sustainability. Membrane-based desalination technologies offer a viable solution to address this issue by providing access to clean water. This work ultimately aims to develop a novel permselective polymeric membrane material to be employed in an electrochemical desalination system. This part of the study addresses the optimization, preparation, and characterization of a polyvinylidene difluoride (PVDF) polymeric membrane using the electrospinning technique. The membranes produced in this work were fabricated under specific operational, environmental, and material parameters. Five different additives and nano-additives, i.e., graphene oxide (GO), carbon nanotubes (CNTs), zinc oxide (ZnO), activated carbon (AC), and a zeolitic imidazolate metal–organic framework (ZIF-8), were used to modify the functionality and selectivity of the prepared PVDF membranes. Each membrane was synthesized at two different levels of additive composition, i.e., 0.18 wt.% and 0.45 wt.% of the entire PVDF polymeric solution. The physiochemical properties of the prepared membranes were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), zeta potential, contact angle, conductivity, porosity, and pore size distribution. Based on findings of this study, PVDF/GO membrane exhibited superior results, with an electrical conductivity of 5.611 mS/cm, an average pore size of 2.086 µm, and a surface charge of −38.33 mV. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

13 pages, 2459 KiB  
Article
Green Synthesis of Zinc Oxide Particles Using Cladophora glomerata L. (Kütz) Extract: Comparative Study of Crystal Structure, Surface Chemistry, and Antimicrobial Efficacy with Different Zinc Precursors
by Göksal Sezen and Ramazan Aktan
Processes 2025, 13(8), 2350; https://doi.org/10.3390/pr13082350 - 24 Jul 2025
Viewed by 285
Abstract
This study examined the eco-friendly synthesis of zinc oxide (ZnO) nanoparticles using Cladophora glomerata extracts as reducing and stabilizing agents, comparing zinc acetate and zinc chloride precursors for biomedical and environmental applications. Zinc acetate-synthesized ZnO nanoparticles showed a significant absorption peak around 320–330 [...] Read more.
This study examined the eco-friendly synthesis of zinc oxide (ZnO) nanoparticles using Cladophora glomerata extracts as reducing and stabilizing agents, comparing zinc acetate and zinc chloride precursors for biomedical and environmental applications. Zinc acetate-synthesized ZnO nanoparticles showed a significant absorption peak around 320–330 nm, indicating stable, quasi-spherical ZnO nanoparticles with a narrow size distribution, primarily around 100 nm. Zeta potential measurements revealed a value of −25 mV for these particles, suggesting moderate colloidal stability. XRD analysis confirmed a highly crystalline hexagonal wurtzite structure for zinc acetate-derived ZnO, and SEM images supported a proper microstructure with approximately 2 µm particle size. FTIR analysis indicated higher-quality ZnO from zinc acetate due to the absence of moisture and hydroxyl groups. Conversely, zinc chloride-derived ZnO particles displayed a broader absorption spectrum around 370 nm, indicative of significant aggregation. Their narrower zeta potential distribution around +10 mV suggested diminished colloidal stability and a heightened aggregation tendency. While a peak around 100 nm was observed, many particles exceeded 1000 nm, reaching up to 10,000 nm. XRD results showed that zinc chloride adversely affected crystallinity, and SEM analysis indicated smaller particles (approx. 1 µm). FTIR analysis demonstrated that zinc chloride samples retained hydroxyl groups. Both zinc acetate- and zinc chloride-derived ZnO nanoparticles produced notable inhibitory zones against Gram-positive (L. monocytogenes, S. aureus) and specific Gram-negative bacteria (E. coli, K. pneumoniae). Zinc acetate-derived ZnO showed a 21 mm inhibitory zone against P. vulgaris, while zinc chloride-derived ZnO showed a 10.1 mm inhibitory zone against C. albicans. Notably, zinc chloride-derived ZnO exhibited broad-spectrum antimicrobial activity. MIC readings indicated that zinc acetate-derived ZnO had better antibacterial properties at lower concentrations, such as 3.125 µg/mL against L. monocytogenes. These findings emphasize that the precursor material selection critically influences particle characteristics, including optical properties, surface charge, and colloidal stability. Full article
(This article belongs to the Topic Advanced Materials in Chemical Engineering)
Show Figures

Graphical abstract

24 pages, 2496 KiB  
Article
Zinc and Selenium Biofortification Modulates Photosynthetic Performance: A Screening of Four Brassica Microgreens
by Martina Šrajer Gajdošik, Vesna Peršić, Anja Melnjak, Doria Ban, Ivna Štolfa Čamagajevac, Zdenko Lončarić, Lidija Kalinić and Selma Mlinarić
Agronomy 2025, 15(8), 1760; https://doi.org/10.3390/agronomy15081760 - 23 Jul 2025
Viewed by 318
Abstract
Microgreens, having short growth cycles and efficient nutrient uptake, are ideal candidates for biofortification. This study investigated the effects of selenium (Se) and zinc (Zn) on photosynthetic performance in four hydroponically grown Brassica microgreens (broccoli, pak choi, kohlrabi, and kale), using direct and [...] Read more.
Microgreens, having short growth cycles and efficient nutrient uptake, are ideal candidates for biofortification. This study investigated the effects of selenium (Se) and zinc (Zn) on photosynthetic performance in four hydroponically grown Brassica microgreens (broccoli, pak choi, kohlrabi, and kale), using direct and modulated chlorophyll a fluorescence and chlorophyll-to-carotenoid ratios (Chl/Car). The plants were treated with Na2SeO4 at 0 (control), 2, 5, and 10 mg/L or ZnSO4 × 7H2O at 0 (control), 5, 10, and 20 mg/L. The results showed species-specific responses with Se or Zn uptake. Selenium enhanced photosynthetic efficiency in a dose-dependent manner for most species (8–26% on average compared to controls). It increased the plant performance index (PItot), particularly in pak choi (+62%), by improving both primary photochemistry and inter-photosystem energy transfer. Kale and kohlrabi exhibited high PSII-PSI connectivity for efficient energy distribution, with increased cyclic electron flow around PSI and reduced Chl/Car up to 8.5%, while broccoli was the least responsive. Zinc induced variable responses, reducing PItot at lower doses (19–23% average decline), with partial recovery at 20 mg/L (9% average reduction). Broccoli exhibited higher susceptibility, with inhibited QA re-oxidation, low electron turnover due to donor-side restrictions, and increased pigment ratio (+3.6%). Kohlrabi and pak choi tolerated moderate Zn levels by redirecting electron flow, but higher Zn levels impaired PSII and PSI function. Kale showed the highest tolerance, maintaining stable photochemical parameters and total electron flow, with increased pigment ratio (+4.5%) indicating better acclimation. These results highlight the beneficial stimulant role of Se and the dual essential/toxic nature of Zn, thus emphasizing genotype and dose-specific optimizations for effective biofortification. Full article
Show Figures

Figure 1

18 pages, 2652 KiB  
Article
The Use of a Composite of Modified Construction Aggregate and Activated Carbon for the Treatment of Groundwater Contaminated with Heavy Metals and Chlorides
by Katarzyna Pawluk, Marzena Lendo-Siwicka, Grzegorz Wrzesiński, Sylwia Szymanek and Osazuwa Young Osawaru
Materials 2025, 18(15), 3437; https://doi.org/10.3390/ma18153437 - 22 Jul 2025
Viewed by 227
Abstract
The treatment of contaminants from road infrastructure poses significant challenges due to their variable composition and the high concentrations of chloride ions, heavy metals, and oil-derived substances. Traditional methods for protecting groundwater environments are often insufficient. A promising alternative is permeable reactive barrier [...] Read more.
The treatment of contaminants from road infrastructure poses significant challenges due to their variable composition and the high concentrations of chloride ions, heavy metals, and oil-derived substances. Traditional methods for protecting groundwater environments are often insufficient. A promising alternative is permeable reactive barrier (PRB) technology, which utilizes recycled materials and construction waste as reactive components within the treatment zone of the ground. This paper delves into the potential of employing a composite (MIX) consisting of modified construction aggregate (as recycled material) and activated carbon (example of reactive material) to address environmental contamination from a mixture of heavy metals and chloride. The research involved chemical modifications of the road aggregate, activated carbon, and their composite, followed by laboratory tests in glass reactors and non-flow batch tests to evaluate the kinetics and chemical equilibrium of the reactions. The adsorption process was stable and conformed to the pseudo-second-order kinetics and Langmuir, Toth, and Redlich–Peterson isotherm models. Studies using MIX from a heavy metal model solution showed that monolayer adsorption was a key mechanism for removing heavy metals, with strong fits to the Langmuir (R2 > 0.80) and Freundlich models, and optimal efficiencies for Cd and Ni (R2 > 0.90). The best fit, at Cd, Cu, Ni = 0.96, however, was with the Redlich–Peterson isotherm, indicating a mix of physical and chemical adsorption on heterogeneous surfaces. The Toth model was significant for all analytes, fitting Cl and Cd well and Pb and Zn moderately. The modifications made to the composite significantly enhanced its effectiveness in removing the contaminant mixture. The test results demonstrated an average reduction of chloride by 85%, along with substantial removals of heavy metals: lead (Pb) by 90%, cadmium (Cd) by 86%, nickel (Ni) by 85%, copper (Cu) by 81%, and zinc (Zn) by 79%. Further research should focus on the removal of other contaminants and the optimization of magnesium oxide (MgO) dosage. Full article
(This article belongs to the Special Issue Recovered or Recycled Materials for Composites and Other Materials)
Show Figures

Figure 1

19 pages, 5463 KiB  
Article
Evaluation of Aqueous and Ethanolic Extracts for the Green Synthesis of Zinc Oxide Nanoparticles from Tradescantia spathacea
by Pedro Gerardo Trejo-Flores, Yazmin Sánchez-Roque, Heber Vilchis-Bravo, Yolanda del Carmen Pérez-Luna, Paulina Elizabeth Velázquez-Jiménez, Francisco Ramírez-González, Karen Magaly Soto Martínez, Pascual López de Paz, Sergio Saldaña-Trinidad and Roberto Berrones-Hernández
Nanomaterials 2025, 15(14), 1126; https://doi.org/10.3390/nano15141126 - 20 Jul 2025
Viewed by 425
Abstract
In this work, we report a green synthesis of zinc oxide (ZnO) nanoparticles using aqueous and ethanolic extracts of Tradescantia spathacea (purple maguey) as bioreducing and stabilizing agents, which are plant extracts not previously employed for metal oxide nanoparticle synthesis. This method provides [...] Read more.
In this work, we report a green synthesis of zinc oxide (ZnO) nanoparticles using aqueous and ethanolic extracts of Tradescantia spathacea (purple maguey) as bioreducing and stabilizing agents, which are plant extracts not previously employed for metal oxide nanoparticle synthesis. This method provides an efficient, eco-friendly, and reproducible route to obtain ZnO nanoparticles, while minimizing environmental impact compared to conventional chemical approaches. The extracts were prepared following a standardized protocol, and their phytochemical profiles, including total phenolics, flavonoids, and antioxidant capacity, were quantified via UV-Vis spectroscopy to confirm their reducing potential. ZnO nanoparticles were synthesized using zinc acetate dihydrate as a precursor, with variations in pH and precursor concentration in both aqueous and ethanolic media. UV-Vis spectroscopy confirmed nanoparticle formation, while X-ray diffraction (XRD) revealed a hexagonal wurtzite structure with preferential (101) orientation and lattice parameters a = b = 3.244 Å, c = 5.197 Å. Scanning electron microscopy (SEM) showed agglomerated morphologies, and Fourier transform infrared spectroscopy (FTIR) confirmed the presence of phytochemicals such as quercetin, kaempferol, saponins, and terpenes, along with Zn–O bonding, indicating surface functionalization. Zeta potential measurements showed improved dispersion under alkaline conditions, particularly with ethanolic extracts. This study presents a sustainable synthesis strategy with tunable parameters, highlighting the critical influence of precursor concentration and solvent environment on ZnO nanoparticle formation. Notably, aqueous extracts promote ZnO synthesis at low precursor concentrations, while alkaline conditions are essential when using ethanolic extracts. Compared to other green synthesis methods, this strategy offers control and reproducibility and employs a non-toxic, underexplored plant source rich in phytochemicals, potentially enhancing the crystallinity, surface functionality, and application potential of the resulting ZnO nanoparticles. These materials show promise for applications in photocatalysis, in antimicrobial coatings, in UV-blocking formulations, and as functional additives in optoelectronic and environmental remediation technologies. Full article
(This article belongs to the Special Issue Advanced Nanocatalysis in Environmental Applications)
Show Figures

Graphical abstract

26 pages, 4992 KiB  
Article
Composites from Recycled HDPE and ZnO Nanopowder with Improved Insulation and Weathering Features for Cable Jacketing Applications
by Alina Ruxandra Caramitu, Magdalena Valentina Lungu, Romeo Cristian Ciobanu, Ioana Ion, Eduard Marius Lungulescu, Gabriela Beatrice Sbarcea, Virgil Emanuel Marinescu, Sebastian Aradoaei, Mihaela Aradoaei and Raducu Machidon
Polymers 2025, 17(14), 1987; https://doi.org/10.3390/polym17141987 - 20 Jul 2025
Viewed by 393
Abstract
In this study, polymer matrix composites based on high-density polyethylene (HDPE) and recycled HDPE (HDPEr) were reinforced with zinc oxide nanoparticles (ZnO NPs). Four formulations (M1-M4) with HDPE/HDPEr/ZnO NP mass ratios of 50/50/0, 48/47/5, 45/45/10, and 43/42/15 were produced via melt injection molding. [...] Read more.
In this study, polymer matrix composites based on high-density polyethylene (HDPE) and recycled HDPE (HDPEr) were reinforced with zinc oxide nanoparticles (ZnO NPs). Four formulations (M1-M4) with HDPE/HDPEr/ZnO NP mass ratios of 50/50/0, 48/47/5, 45/45/10, and 43/42/15 were produced via melt injection molding. Disc-shaped samples (Ø30 ± 0.1 mm × 2 ± 0.1 mm) were evaluated in unaged and aged states (840 h at 100% humidity and 100 °C) using scanning electron microscopy, X-ray diffraction, ultraviolet–visible and Fourier-transform infrared spectroscopy, water absorption, thermal resistance, and mechanical and dielectric testing. Among all composites, M2 showed the best performance, with the highest aging resistance (estimated lifetime of 3891 h in humidity and 2361 h in heat). It also exhibited superior mechanical properties, with the highest indentation hardness, Vickers hardness, and elastic modulus before (0.042 GPa, 3.846 HV, and 0.732 GPa) and after aging under humidity (0.042 GPa, 3.932 HV, 0.706 GPa) and elevated temperature (0.085 GPa, 7.818 HV, 1.871 GPa). Although ZnO NPs slightly reduced electrical resistivity, M2 showed the most stable dielectric properties. In its unaged state, M2 had 22%, 30%, and 3% lower surface resistivity, volume resistivity, and dielectric strength, respectively, than M1 polymer. M2 was identified as the optimal formulation, combining mechanical strength, dielectric stability, and resistance to moisture and heat. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

Back to TopTop